The Evolution of the Tensile Properties of MoS2-Coated Titanium Alloy Bolts Under the Synergistic Damage of NaCl Corrosion and Preloading
Abstract
:1. Introduction
2. Materials and Methods
2.1. Corrosion Tests
2.2. Friction Tests
2.3. Tensile Test of Assembly Bolts After Corrosion
2.4. Microstructure Characterization
3. Results and Discussion
3.1. Microstructure of the Coating on Bolts
3.2. Friction Coefficient and Thread Friction Coefficient Test
3.3. Surface Morphologies of Corroded Bolts
3.4. Tensile Properties of Bolts After Corrosion
3.5. Fracture Morphology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TC4+MoS2 | titanium alloy bolts coated with MoS2 |
TC4+AO+MoS2 | titanium alloy bolts treated with anodizing oxidation and MoS2 coating |
TC4 | Ti6Al4V |
ITER | International Thermonuclear Experimental Reactor |
PTFE | polytetrafluoroethylene |
SEM | scanning electron microscope |
EDS | energy-dispersive spectrometry |
COF | coefficient of friction |
σs | yield strength |
μtot | thread friction coefficient |
d2 | pitch diameter |
db | friction diameter of the nut bearing surface |
p | pitch |
tb | torque of end face friction |
Tth | thread torque |
t | tightening torque |
f | axial force |
References
- Putyrskii, S.V.; Yakovlev, A.L.; Nochovnaya, N.A. Benefits and Applications of High-Strength Titanium Alloys. Russ. Eng. Res. 2018, 38, 945–948. [Google Scholar] [CrossRef]
- Zhao, Q.; Sun, Q.; Xin, S.; Chen, Y.; Wu, C.; Wang, H.; Xu, J.; Wan, M.; Zeng, W.; Zhao, Y. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process. Mater. Sci. Eng. A 2022, 845, 143260. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, A.; Zhang, Z.; Liu, K.; Zhu, X.; Chen, W. Cause Analysis of Bolt Seizure Failure and Experimental Study On Influencing Factors. In Proceedings of the 2022 12th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Baishan, China, 27–31 July 2022; pp. 1142–1145. [Google Scholar] [CrossRef]
- Söderman, A.; Törnquist, P.L. Galling is a serious issue in many industries that use stainless steel fasteners- but there are solutions. Met. Powder Rep. 2021, 76, 194–195. [Google Scholar] [CrossRef]
- Croccolo, D.; De Agostinis, M.; Vincenzi, N. Influence of tightening procedures and lubrication conditions on titanium screw joints for lightweight applications. Tribol. Int. 2012, 55, 68–76. [Google Scholar] [CrossRef]
- Podgornik, B.; Hogmark, S.; Sandberg, O. Influence of surface roughness and coating type on the galling properties of coated forming tool steel. Surf. Coat. Technol. 2004, 184, 338–348. [Google Scholar] [CrossRef]
- McDonnell, K.A.; Bley, E.-B.; O’Donoghue, P.; Adeyemi, I.; Pambaguian, L.; Twomey, B. Anti-galling treatemnt for bolts and fasteners using coblast. In Proceedings of the 14th ISMSE & 12th ICPMSE, Biarritz, France, 1–5 October 2018. [Google Scholar]
- Wiklund, U.; Hutchings, I. Investigation of surface treatments for galling protection of titanium alloys. Wear 2001, 251, 1034–1041. [Google Scholar] [CrossRef]
- Hua, Y.; Li, F.; Zhang, D.; Liu, T.; Yan, W.; Liu, J.; Zhu, M. Anti-loosening Performance of Three Kind of Coated Bolts under Cyclic Transverse Load. Lubr. Eng. 2023, 48, 67–73. [Google Scholar]
- Li, X.; Zhu, H. Two-dimensional MoS2: Properties, preparation, and applications. J. Mater. 2015, 1, 33–44. [Google Scholar] [CrossRef]
- Lalegani, Z.; Ebrahimi, S.S.; Hamawandi, B.; La Spada, L.; Batili, H.; Toprak, M. Targeted dielectric coating of silver nanoparticles with silica to manipulate optical properties for metasurface applications. Mater. Chem. Phys. 2022, 287, 126250. [Google Scholar] [CrossRef]
- Lincoln, R.L.; Scarpa, F.; Ting, V.P.; Trask, R.S. Multifunctional composites: A metamaterial perspective. Multifunct. Mater. 2019, 2, 043001. [Google Scholar] [CrossRef]
- Oldiges, D.; Hamilton, S. Moly Disulfide in Bolting Applications. In Proceedings of the ASME 2016 Pressure Vessels and Piping Conference, Vancouver, BC, Canada, 17–21 July 2016; Volume 3: Design and Analysis. Paper No. V003T03A007. [Google Scholar]
- Xu, X. Study on the Influence of Frictional Coefficient on the Assembly Quality of Bolts. Heat Treat. Technol. Equip. 2024, 45, 29–32+36. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, J.; Ouyang, H.; Cai, Z.; Peng, J.; Zhu, M. Anti-loosening performance of coatings on fasteners subjected to dynamic shear load. Friction 2018, 6, 32–46. [Google Scholar] [CrossRef]
- Gradt, T.; Schneider, T. Tribological Performance of MoS2 Coatings in Various Environments. Lubricants 2016, 4, 32. [Google Scholar] [CrossRef]
- Cai, S.; Guo, P.; Liu, J.; Zhang, D.; Ke, P.; Wang, A.; Zhu, Y. Friction and Wear Mechanism of MoS2/C Composite Coatings Under Atmospheric Environment. Tribol. Lett. 2017, 65, 79. [Google Scholar] [CrossRef]
- Luo, J.; Cai, Z.B.; Mo, J.L.; Peng, J.F.; Zhu, M.H. Torsional Fretting Wear Behavior of Bonded MoS2Solid Lubricant Coatings. Tribol. Trans. 2015, 58, 1124–1130. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Z.; Shen, Q. Enhancing tribological performance by anodizing micro-textured surfaces with nano-MoS2 coatings prepared on aluminum-silicon alloys. Tribol. Int. 2018, 122, 84–95. [Google Scholar] [CrossRef]
- Hanjun, H.; Zhen, C.; Xingguang, L.; Xingguo, F.; Yugang, Z.; Kaifeng, Z.; Hui, Z. Effects of substrate roughness on the vacuum tribological properties of duplex PEO/bonded-MoS2 coatings on Ti6Al4V. Surf. Coat. Technol. 2018, 349, 593–601. [Google Scholar] [CrossRef]
- Kim, S.-W.; Jang, J.-S.; Chung, S.-K.; Nam, K.-W.; Yoo, J.-P.; Kim, D.-H. A parametric study of low friction coating by PVD method on the spiralock female thread for ITER application. Fusion Eng. Des. 2023, 192, 113836. [Google Scholar] [CrossRef]
- Liu, J.; Ouyang, H.; Feng, Z.; Cai, Z.; Liu, X.; Zhu, M. Study on self-loosening of bolted joints excited by dynamic axial load. Tribol. Int. 2017, 115, 432–451. [Google Scholar] [CrossRef]
- ArunKumar, S.; Jegathish, V.; Soundharya, R.; JesyAlka, M.; Arul, C.; Sathyanarayanan, S.; Mayavan, S. Evaluating the performance of MoS2 based materials for corrosion protection of mild steel in an aggressive chloride environment. RSC Adv. 2017, 7, 17332–17335. [Google Scholar] [CrossRef]
- Zhang, Y.; Die, J.; Li, F.; Li, H.; Tu, J.; Zhang, K.; Yu, X. Polypyrrole-Modified Molybdenum Disulfide Nanocomposite Epoxy Coating Inhibits Corrosion of Mild Steel. Coatings 2023, 13, 1046. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Lee, J.M.; Cheung, J.-H.; Kim, I.-T. Clamping force loss of high-strength bolts as a result of bolt head corrosion damage: Experimental research A. Eng. Fail. Anal. 2016, 59, 509–525. [Google Scholar] [CrossRef]
- Kim, I.-T.; Lee, J.M.; Huh, J.; Ahn, J.-H. Tensile behaviors of friction bolt connection with bolt head corrosion damage: Experimental research B. Eng. Fail. Anal. 2016, 59, 526–543. [Google Scholar] [CrossRef]
- Wei, S.; Zhao, W.; Xin, H.; Jiang, J.; Yu, Y. Study on the degradation of axial tensile performance of corroded bolts in steel bridges. Constr. Build. Mater. 2024, 450, 138648. [Google Scholar] [CrossRef]
- Wang, H.; Tang, F.; Qin, S.; Tu, K.; Guo, J. Corrosion-Induced Mechanical Degradation of High-Strength Bolted Steel Connection. J. Mater. Civ. Eng. 2020, 32, 04020203. [Google Scholar] [CrossRef]
- Nie, S.; Wang, H.; Yang, B.; Cheng, Z.; Ye, X.; Chen, Z. Corrosion-induced mechanical properties of shear bolted connections in high-strength weathering steel. Thin-Walled Struct. 2023, 190, 111013. [Google Scholar] [CrossRef]
- Siu, J.H.; Li, L.K. An investigation of the effect of surface roughness and coating thickness on the friction and wear behaviour of a commercial MoS2–metal coating on AISI 400C steel. Wear 2000, 237, 283–287. [Google Scholar] [CrossRef]
- Chen, H.; Wang, W.; Le, K.; Liu, Y.; Gao, X.; Luo, Y.; Zhao, X.; Liu, X.; Xu, S.; Liu, W. Effects of substrate roughness on the tribological properties of duplex plasma nitrided and MoS2 coated Ti6Al4V alloy. Tribol. Int. 2024, 191, 109123. [Google Scholar] [CrossRef]
- Bulaqi, H.A.; Mashhadi, M.M.; Geramipanah, F.; Safari, H.; Paknejad, M. Effect of the coefficient of friction and tightening speed on the preload induced at the dental implant complex with the finite element method. J. Prosthet. Dent. 2015, 113, 405–411. [Google Scholar] [CrossRef]
- Joseph, A.; Gautham, V.; Akshay, K.; Sajith, V. 2D MoS2-hBN hybrid coatings for enhanced corrosion resistance of solid lubricant coatings. Surf. Coat. Technol. 2022, 443, 128612. [Google Scholar] [CrossRef]
- Presuel-Moreno, F.; Jakab, M.; Tailleart, N.; Goldman, M.; Scully, J.R. Corrosion-resistant metallic coatings. Mater. Today 2008, 11, 14–23. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, Z.; Lu, Y.; Xing, Y.; Zhang, F.; Yang, C. Corrosion evolution and axial mechanical performance degradation of corroded M24 high-strength bolts. J. Constr. Steel Res. 2024, 213, 108411. [Google Scholar] [CrossRef]
- Zou, Z.; Zeng, F.; Wu, H.; Liu, J.; Li, Y.; Gu, Y.; Yuan, T.; Zhang, F. The Joint Strength and Fracture Mechanisms of TC4/TC4 and TA0/TA0 Brazed with Ti-25Cu-15Ni Braze Alloy. J. Mater. Eng. Perform. 2017, 26, 2079–2085. [Google Scholar] [CrossRef]
- Feng, D.; Dong, C.; Hu, Y.; Wang, Y.; Ma, J.; Huang, Z.; Wan, Q. Fracture Mode Transition during Assembly of TC4 High-Lock Bolt under Tensile Load: A Combined Experimental Study and Finite Element Analysis. Materials 2022, 15, 4049. [Google Scholar] [CrossRef]
- Cao, R.; Chen, J.H.; Zhang, J. Study on Fracture Mechanisms of TiAl Alloys by In Situ Tensile Tests. Key Eng. Mater. 2007, 353–358, 34–37. [Google Scholar] [CrossRef]
96 h | 192 h | 1100 h | 2100 h | 4300 h | |
---|---|---|---|---|---|
TC4+MoS2 (salt spray) | 1195.3 ± 20.7 | 1203.7 ± 63.3 | 1185.7 ± 54.7 | 1174.3 ± 52.7 | 1101.0 ± 55.0 |
TC4+AO+MoS2 (salt spray) | 1241.3 ± 17.7 | 1185.7 ± 90.3 | 1229.3 ± 77.7 | 1149.0 ± 33.0 | 1108.7 ± 29.3 |
TC4+MoS2 (costal hanging) | - | - | - | 1114.5 ± 90.5 | 1186.3 ± 20.3 |
TC4+AO+MoS2 (costal hanging) | - | - | - | 1157.5 ± 49.5 | 1178.3 ± 22.3 |
96 h | 192h | 1100 h | 2100 h | 4300 h | |
---|---|---|---|---|---|
TC4+MoS2 (salt spray) | 1345.7 ± 25.7 | 1370.3 ± 43.7 | 1381.7 ± 15.3 | 1318.7 ± 18.3 | 1333.3 ± 24.7 |
TC4+AO+MoS2 (salt spray) | 1385.0 ± 11.0 | 1371.3 ± 32.7 | 1424.94 ± 50.3 | 1322.3 ± 20.3 | 1344.7 ± 34.7 |
TC4+MoS2 (costal hanging) | - | - | - | 1372.0 ± 20.0 | 1344.3 ± 12.3 |
TC4+AO+MoS2 (costal hanging) | - | - | - | 1387.0 ± 15.0 | 1346.0 ± 28.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, D.; Xie, M.; Yu, W.; Li, C.; Guo, R.; Hu, Y.; Ming, Q.; Wan, Q. The Evolution of the Tensile Properties of MoS2-Coated Titanium Alloy Bolts Under the Synergistic Damage of NaCl Corrosion and Preloading. Materials 2025, 18, 123. https://doi.org/10.3390/ma18010123
Feng D, Xie M, Yu W, Li C, Guo R, Hu Y, Ming Q, Wan Q. The Evolution of the Tensile Properties of MoS2-Coated Titanium Alloy Bolts Under the Synergistic Damage of NaCl Corrosion and Preloading. Materials. 2025; 18(1):123. https://doi.org/10.3390/ma18010123
Chicago/Turabian StyleFeng, Derong, Maoyang Xie, Weilin Yu, Chao Li, Raolong Guo, Yunpeng Hu, Quanyuan Ming, and Qiang Wan. 2025. "The Evolution of the Tensile Properties of MoS2-Coated Titanium Alloy Bolts Under the Synergistic Damage of NaCl Corrosion and Preloading" Materials 18, no. 1: 123. https://doi.org/10.3390/ma18010123
APA StyleFeng, D., Xie, M., Yu, W., Li, C., Guo, R., Hu, Y., Ming, Q., & Wan, Q. (2025). The Evolution of the Tensile Properties of MoS2-Coated Titanium Alloy Bolts Under the Synergistic Damage of NaCl Corrosion and Preloading. Materials, 18(1), 123. https://doi.org/10.3390/ma18010123