Assessment of Steel Storage Tank Thickness Obtained from the API 650 Design Procedure Through Nonlinear Dynamic Analysis, Accounting for Large Deformation Effects
Abstract
:1. Introduction
2. Added Mass Method and Verification
3. Hoop and Longitudinal Stresses in Cylindrical Storage Tanks
3.1. Hoop (Circumferential) Stress
3.2. Longitudinal (Axial) Stress
4. Selected Seismic Records
5. Investigation of the Storage Tanks Designed According to Annex E of API 650
5.1. Spectral Analysis of Storage Tanks Designed According to API 650
5.2. Time History Analysis of the Storage Tanks Designed Based on API 650
6. Optimum Design of Storage Tanks Through Nonlinear Time History Analysis
7. Conclusions
- The storage tanks with smaller ratios, designed in accordance with Annex E of API 650, exhibit the “elephant-foot” buckling phenomenon in their fundamental mode shape. This behavior is particularly noticeable in storage tanks with ratios of 0.3, 0.6, and 0.9. As the ratio increases, the fundamental mode shape transitions, increasingly resembling the behavior of a cantilever column.
- The analysis of tanks designed in accordance with Annex E of API 650 reveals that longitudinal stress is the governing factor in all cases. The study indicates that the DCR for hoop stress consistently remains below 1.5, whereas the DCR for longitudinal stress ranges from 3.5 to 27. These findings suggest that the longitudinal stress demand derived from the target spectrum and API 650 design procedure significantly underestimates the critical earthquake demands resulted from the nonlinear time history analysis.
- For storage tanks with optimum thickness, DCR for longitudinal stress has been the controlling factor in all cases. The optimum thickness for each tank was selected such that the maximum DCR ranged between 0.74 and 1. Given that the thickness was selected to ensure practicality in industrial applications, the final thickness was reported as an integer in millimeters.
- For storage tanks with optimum thickness, it can be observed that the critical earthquake, under conditions where the structure remains within the linear range, corresponds to records E2, E4, and E8. This outcome could have been anticipated by analyzing the spectra of these seismic records. When the maximum displacement is considered as the controlling parameter, and the displacement values presented in Table 5.5 are regarded as the maximum allowable displacements, the ratio of the average displacement to the allowable displacement demonstrates that this ratio consistently remains less than or equal to 1.
- The analysis of storage tanks designed based on Annex E of API 650 shows that while the design aligns properly with the target spectrum of ASCE 7 resulting from spectral analysis, there are notable limitations. Spectral analysis relies on the average earthquake spectrum and is inherently linear, whereas real earthquake records exhibit significant deviations. Specifically, for fundamental periods less than 0.15 s, certain earthquake records, like record number 18, demonstrate that the SRSS spectrum can exceed the target spectrum of ASCE 7 by up to three times. This discrepancy indicates that structures designed solely on the target spectrum of ASCE 7 may not perform adequately under actual seismic events. Nonlinear analysis of materials and geometry for various seismic records highlights that the maximum displacements for different tanks vary significantly depending on the earthquake record. The critical earthquakes leading to maximum displacements include records 8, 12, 14, 18, and 20. When comparing the nonlinear time history analysis results with spectral analysis for R = 3, the displacement ratios reveal that the target spectrum of ASCE 7 does not provide a suitable design criterion for the investigated tanks. Therefore, it is recommended that, given the critical nature of storage tank structures, especially in the oil and gas industry, the design process should incorporate nonlinear time history analysis to ensure structural integrity and performance during actual seismic events.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Merino Vela, R.; Brunesi, E.; Nascimbene, R. Probabilistic evaluation of earthquake-induced sloshing wave height in above-ground liquid storage tanks. Eng. Struct. 2020, 202, 109870. [Google Scholar] [CrossRef]
- Calvi, G.M.; Nascimbene, R. Seismic Design and Analysis of Tanks; John Wiley & Sons: Hoboken, NJ, USA, 2023. [Google Scholar]
- Jia, J. Modern Earthquake Engineering: Offshore and Land-Based Structures; Springer: New York, NY, USA, 2016. [Google Scholar]
- Rawat, A.; Mittal, V.; Chakraborty, T.; Matsagar, V. Earthquake induced sloshing and hydrodynamic pressures in rigid liquid storage tanks analyzed by coupled acoustic-structural and Euler-Lagrange methods. Thin-Walled Struct. 2019, 134, 333–346. [Google Scholar] [CrossRef]
- Eshghi, S.; Razzaghi, M.S. Performance of cylindrical liquid storage tanks in Silakhor, Iran earthquake of March 31, 2006. Bull. N. Z. Soc. Earthq. Eng. 2007, 40, 173–182. [Google Scholar] [CrossRef]
- Brunesi, E.; Nascimbene, R.; Pagani, M.; Beilic, D. Seismic performance of storage steel tanks during the May 2012 Emilia, Italy, Earthquakes. J. Perform. Constr. Facil. 2015, 29, 04014137. [Google Scholar] [CrossRef]
- Yazdanian, M.; Ingham, J.M.; Kahanek, C.; Dizhur, D. Damage to flat-based wine storage tanks in the 2013 and 2016 New Zealand earthquakes. J. Constr. Steel Res. 2020, 168, 105983. [Google Scholar] [CrossRef]
- Zama, S.; Nishi, H.; Hatayama, K.; Yamada, M.; Yoshihara, H.; Ogawa, Y. On damage of oil storage tanks due to the 2011 off the Pacific Coast of Tohoku Earthquake (Mw9. 0), Japan. In Proceedings of the 15th World Conference on Earthquake Engineering (15WCEE), Lisboa, Portugal, 24–28 September 2012. [Google Scholar]
- Fischer, E.C.; Liu, J.; Varma, A.H. Investigation of cylindrical steel tank damage at wineries during earthquakes: Lessons learned and mitigation opportunities. Pract. Period. Struct. Des. Constr. 2016, 21, 04016004. [Google Scholar] [CrossRef]
- Fischer, E. Learning from Earthquakes: 2014 Napa Valley Earthquake Reconnaissance Report. Available online: https://docs.lib.purdue.edu/civlgradreports/1/ (accessed on 29 November 2024).
- Korkmaz, K.A.; Sari, A.; Carhoglu, A.I. Seismic risk assessment of storage tanks in Turkish industrial facilities. J. Loss Prev. Process Ind. 2011, 24, 314–320. [Google Scholar] [CrossRef]
- Tsipianitis, A.; Tsompanakis, Y. Impact of damping modeling on the seismic response of base-isolated liquid storage tanks. Soil Dyn. Earthq. Eng. 2019, 121, 281–292. [Google Scholar] [CrossRef]
- Brunesi, E.; Nascimbene, R. Evaluating the Seismic Resilience of Above-Ground Liquid Storage Tanks. Buildings 2024, 14, 3212. [Google Scholar] [CrossRef]
- Housner, G.W. The dynamic behavior of water tanks. Bull. Seismol. Soc. Am. 1963, 53, 381–387. [Google Scholar] [CrossRef]
- Veletsos, A.S.; Tang, Y.; Tang, H. Dynamic response of flexibly supported liquid-storage tanks. J. Struct. Eng. 1992, 118, 264–283. [Google Scholar] [CrossRef]
- Malhotra, P.K. Seismic response of soil-supported unanchored liquid-storage tanks. J. Struct. Eng. 1997, 123, 440–450. [Google Scholar] [CrossRef]
- Bakalis, K.; Vamvatsikos, D.; Fragiadakis, M. Seismic risk assessment of liquid storage tanks via a nonlinear surrogate model. Earthq. Eng. Struct. Dyn. 2017, 46, 2851–2868. [Google Scholar] [CrossRef]
- Wu, G.; Ma, Q.; Taylor, R. Numerical simulation of sloshing waves in a 3D tank based on a finite element method. Appl. Ocean. Res. 1998, 20, 337–355. [Google Scholar] [CrossRef]
- Xue, M.A.; Chen, Y.; Zheng, J.; Qian, L.; Yuan, X. Fluid dynamics analysis of sloshing pressure distribution in storage vessels of different shapes. Ocean Eng. 2019, 192, 106582. [Google Scholar] [CrossRef]
- Felix-Gonzalez, I.; Sanchez-Mondragon, J.; Cruces-Giron, A. Sloshing study on prismatic LNG tank for the vertical location of the rotational center. Comput. Part. Mech. 2022, 9, 843–862. [Google Scholar] [CrossRef]
- Merino, R.J.; Brunesi, E.; Nascimbene, R. Derivation of floor acceleration spectra for an industrial liquid tank supporting structure with braced frame systems. Eng. Struct. 2018, 171, 105–122. [Google Scholar] [CrossRef]
- Nascimbene, R.; Rassati, G.A. Seismic Design and Evaluation of Elevated Steel Tanks Supported by Concentric Braced Frames. CivilEng 2024, 5, 521–536. [Google Scholar] [CrossRef]
- Nascimbene, R.; Fagà, E.; Moratti, M. Seismic Strengthening of Elevated Reinforced Concrete Tanks: Analytical Framework and Validation Techniques. Buildings 2024, 14, 2254. [Google Scholar] [CrossRef]
- Haroun, M.A.; Tayel, M.A. Response of tanks to vertical seismic excitations. Earthq. Eng. Struct. Dyn. 1985, 13, 583–595. [Google Scholar] [CrossRef]
- Park, J.-H.; Koh, H.; Kim, J. Fluid-structure interaction analysis by a coupled boundary element-finite element method in time domain. In Boundary Element Technology VII; Springer: New York, NY, USA, 1992; pp. 227–243. [Google Scholar]
- Chen, W.; Haroun, M.A.; Liu, F. Large amplitude liquid sloshing in seismically excited tanks. Earthq. Eng. Struct. Dyn. 1996, 25, 653–669. [Google Scholar] [CrossRef]
- Hoskins, L.M.; Jacobsen, L.S. Water pressure in a tank caused by a simulated earthquake. Bull. Seismol. Soc. Am. 1934, 24, 1–32. [Google Scholar] [CrossRef]
- Kianoush, M.; Chen, J. Effect of vertical acceleration on response of concrete rectangular liquid storage tanks. Eng. Struct. 2006, 28, 704–715. [Google Scholar] [CrossRef]
- Veletsos, A. Seismic effects in flexible liquid storage tanks. In Proceedings of the 5th World Conference on Earthquake Engineering (5WCEE), Rome, Italy, 25–29 June 1973. [Google Scholar]
- Wu, G.; Eatock Taylor, R.; Greaves, D. The effect of viscosity on the transient free-surface waves in a two-dimensional tank. J. Eng. Math. 2001, 40, 77–90. [Google Scholar] [CrossRef]
- Estekanchi, H.; Alembagheri, M. Seismic analysis of steel liquid storage tanks by endurance time method. Thin-Walled Struct. 2012, 50, 14–23. [Google Scholar] [CrossRef]
- Constantin, L.; De Courcy, J.; Titurus, B.; Rendall, T.; Cooper, J.E. Analysis of damping from vertical sloshing in a SDOF system. Mech. Syst. Signal Process. 2021, 152, 107452. [Google Scholar] [CrossRef]
- Jamshidi, S.; Firouz-Abadi, R.; Amirzadegan, S. New mathematical model to analysis fluid sloshing in 3D tanks with slotted middle baffle. Ocean Eng. 2022, 262, 112061. [Google Scholar] [CrossRef]
- Huang, S.; Duan, W.; Han, X.; Nicoll, R.; You, Y.; Sheng, S. Nonlinear analysis of sloshing and floating body coupled motion in the time-domain. Ocean Eng. 2018, 164, 350–366. [Google Scholar] [CrossRef]
- Monaghan, J.J. Simulating free surface flows with SPH. J. Comput. Phys. 1994, 110, 399–406. [Google Scholar] [CrossRef]
- Shao, J.; Li, H.; Liu, G.; Liu, M. An improved SPH method for modeling liquid sloshing dynamics. Comput. Struct. 2012, 100, 18–26. [Google Scholar] [CrossRef]
- Gabbianelli, G.; Milanesi, R.; Gandelli, E.; Dubini, P.; Nascimbene, R. Seismic vulnerability assessment of steel storage tanks protected through sliding isolators. Earthq. Eng. Struct. Dyn. 2023, 52, 2597–2681. [Google Scholar] [CrossRef]
- Bagheri, S.; Farajian, M. The effects of input earthquake characteristics on the nonlinear dynamic behavior of FPS isolated liquid storage tanks. J. Vib. Control 2018, 24, 1264–1282. [Google Scholar] [CrossRef]
- API 650; Welded Tanks for Oil Storage. American Petroleum Institute: Washington, DC, USA, 2021.
- ASCE 7; Minimum Design Loads and Associated Criteria for Buildings and Other Structures. American Society of Civil Engineers: Reston, VA, USA, 2016.
- Veletsos, A.; Shivakumar, P. Tanks containing liquids or solids. In A Handbook in Computer Analysis and Design of Earthquake Resistant Structures; Computational Mechanics Publications: Ann Arbor, MI, USA, 1997; pp. 725–774. [Google Scholar]
- Buratti, N.; Tavano, M. Dynamic buckling and seismic fragility of anchored steel tanks by the added mass method. Earthq. Eng. Struct. Dyn. 2014, 43, 1–21. [Google Scholar] [CrossRef]
- Nascimbene, R. Investigation of seismic damage to existing buildings by using remotely observed images. Eng. Fail. Anal. 2024, 161, 108282. [Google Scholar] [CrossRef]
- Mohammad, K.; Ruggieri, S.; Tateo, V.; Butenweg, C.; Nascimbene, R.; Uva, G. Assessment of the seismic overpressure in flat bottom steel silos based on advanced FE modelling approach. Soil Dyn. Earthq. Eng. 2025, 190, 109149. [Google Scholar]
- Quinci, G.; Paolacci, F.; Fragiadakis, M.; Bursi, O. A machine learning framework for seismic risk assessment of industrial equipment. Reliab. Eng. Syst. Saf. 2025, 254, 110606. [Google Scholar] [CrossRef]
- Butenweg, C.; Bursi, O.; Paolacci, F.; Marinkovic, M.; Lanese, I.; Nardin, C.; Quinci, G. Seismic performance of an industrial multi-storey frame structure with process equipment subjected to shake table testing. Eng. Struct. 2021, 243, 112681. [Google Scholar] [CrossRef]
No. | H/R | R (m) | (m) | H (m) | Thickmin (mm) | (MPa) | (MPa) | DCRLong | DCRHoop |
---|---|---|---|---|---|---|---|---|---|
1 | 0.3 | 12 | 3.0 | 3.6 | 6 | 20.68 | 183.81 | 0.045 | 0.503 |
2 | 0.6 | 6 | 3.0 | 3.6 | 6 | 29.52 | 183.81 | 0.055 | 0.251 |
3 | 0.9 | 6 | 4.5 | 5.4 | 6 | 32.44 | 183.81 | 0.146 | 0.381 |
4 | 1.2 | 6 | 6.0 | 7.2 | 6 | 34.90 | 183.81 | 0.295 | 0.504 |
5 | 1.5 | 6 | 7.5 | 9 | 6 | 37.06 | 183.81 | 0.497 | 0.619 |
6 | 1.8 | 6 | 9.0 | 10.8 | 6 | 39.02 | 183.81 | 0.748 | 0.726 |
7 | 2.1 | 6 | 10.5 | 12.6 | 8 | 46.34 | 183.81 | 1.092 | 0.583 |
8 | 2.4 | 6 | 12.0 | 14.4 | 10 | 53.53 | 183.81 | 1.017 | 0.514 |
9 | 2.7 | 6 | 13.5 | 16.2 | 12 | 60.62 | 183.81 | 0.969 | 0.469 |
10 | 3.0 | 6 | 15.0 | 18 | 14 | 67.63 | 183.81 | 0.937 | 0.436 |
No. | H/R | Thickmin (mm) | (MPa) | (MPa) | FLong (MPa) | FHoop (MPa) | Max. Disp (mm) | DCR (Long) | DCR (Hoop) |
---|---|---|---|---|---|---|---|---|---|
1 | 0.3 | 6 | 20.68 | 183.81 | 44.843 | 76.894 | 6.432 | 2.17 | 0.42 |
2 | 0.6 | 6 | 29.52 | 183.81 | 23.399 | 43.326 | 1.881 | 0.79 | 0.24 |
3 | 0.9 | 6 | 32.44 | 183.81 | 21.124 | 82.313 | 3.794 | 0.65 | 0.45 |
4 | 1.2 | 6 | 34.90 | 183.81 | 22.537 | 66.307 | 4.102 | 0.65 | 0.36 |
5 | 1.5 | 6 | 37.06 | 183.81 | 38.725 | 73.231 | 6.121 | 1.04 | 0.40 |
6 | 1.8 | 6 | 39.02 | 183.81 | 58.894 | 76.279 | 9.186 | 1.51 | 0.41 |
7 | 2.1 | 8 | 46.34 | 183.81 | 64.999 | 54.507 | 10.950 | 1.40 | 0.30 |
8 | 2.4 | 10 | 53.53 | 183.81 | 71.674 | 44.568 | 13.455 | 1.34 | 0.24 |
9 | 2.7 | 12 | 60.62 | 183.81 | 78.865 | 38.108 | 16.505 | 1.30 | 0.21 |
10 | 3.0 | 14 | 67.63 | 183.81 | 86.304 | 33.437 | 20.153 | 1.28 | 0.18 |
No. | H/R | Thickmin (mm) | (MPa) | (MPa) | FLong (MPa) | FHoop (MPa) | Max. Resultant Disp (mm) | DCR (Long) | DCR (Hoop) |
---|---|---|---|---|---|---|---|---|---|
1 | 0.3 | 6 | 20.68 | 183.81 | 25.624 | 43.94 | 3.676 | 1.24 | 0.24 |
2 | 0.6 | 6 | 29.52 | 183.81 | 13.371 | 24.758 | 1.075 | 0.45 | 0.13 |
3 | 0.9 | 6 | 32.44 | 183.81 | 12.071 | 47.036 | 2.168 | 0.37 | 0.26 |
4 | 1.2 | 6 | 34.90 | 183.81 | 12.878 | 37.890 | 2.344 | 0.37 | 0.21 |
5 | 1.5 | 6 | 37.06 | 183.81 | 22.129 | 41.846 | 3.498 | 0.60 | 0.23 |
6 | 1.8 | 6 | 39.02 | 183.81 | 33.653 | 43.588 | 5.249 | 0.86 | 0.24 |
7 | 2.1 | 8 | 46.34 | 183.81 | 37.142 | 31.147 | 6.259 | 0.80 | 0.17 |
8 | 2.4 | 10 | 53.53 | 183.81 | 40.957 | 25.467 | 7.689 | 0.77 | 0.14 |
9 | 2.7 | 12 | 60.62 | 183.81 | 45.066 | 21.776 | 9.431 | 0.74 | 0.12 |
10 | 3.0 | 14 | 67.63 | 183.81 | 49.316 | 19.107 | 11.516 | 0.73 | 0.10 |
No. | H/R | Thickmin (mm) | (MPa) | (MPa) | FLong (MPa) | FHoop (MPa) | Max. Resultant Disp (mm) | DCR (Long) | DCR (Hoop) |
---|---|---|---|---|---|---|---|---|---|
1 | 0.3 | 6 | 20.68 | 183.81 | 29.89 | 51.26 | 4.29 | 1.45 | 0.28 |
2 | 0.6 | 6 | 29.52 | 183.81 | 15.60 | 28.88 | 1.25 | 0.53 | 0.16 |
3 | 0.9 | 6 | 32.44 | 183.81 | 14.08 | 54.88 | 2.53 | 0.43 | 0.30 |
4 | 1.2 | 6 | 34.9 | 183.81 | 15.02 | 44.21 | 2.73 | 0.43 | 0.24 |
5 | 1.5 | 6 | 37.06 | 183.81 | 25.82 | 48.82 | 4.08 | 0.70 | 0.27 |
6 | 1.8 | 6 | 39.02 | 183.81 | 39.26 | 50.85 | 6.12 | 1.01 | 0.28 |
7 | 2.1 | 8 | 46.34 | 183.81 | 43.33 | 36.34 | 7.30 | 0.94 | 0.20 |
8 | 2.4 | 10 | 53.53 | 183.81 | 47.78 | 29.71 | 8.97 | 0.89 | 0.16 |
9 | 2.7 | 12 | 60.62 | 183.81 | 52.58 | 25.41 | 11.00 | 0.87 | 0.14 |
10 | 3.0 | 14 | 67.63 | 183.81 | 57.54 | 22.29 | 13.44 | 0.85 | 0.12 |
E | Disp. for H/R (mm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.3 | 0.6 | 0.9 | 1.2 | 1.5 | 1.8 | 2.1 | 2.4 | 2.7 | 3.0 | |
1 | 9.35 | 1.26 | 3.08 | 4.59 | 8.64 | 14.84 | 12.91 | 13.23 | 16.98 | 14.83 |
2 | 14.86 | 4.51 | 8.40 | 12.91 | 13.29 | 23.50 | 29.49 | 35.50 | 39.63 | 32.73 |
3 | 12.32 | 4.01 | 9.80 | 12.09 | 14.19 | 12.45 | 13.41 | 19.13 | 21.38 | 52.40 |
4 | 34.75 | 7.07 | 11.20 | 14.90 | 21.58 | 32.96 | 37.69 | 40.61 | 41.38 | 55.19 |
5 | 10.84 | 3.77 | 7.70 | 6.53 | 10.75 | 17.62 | 19.98 | 34.02 | 41.69 | 57.59 |
6 | 19.56 | 4.25 | 5.60 | 6.71 | 22.67 | 27.59 | 36.13 | 35.01 | 40.76 | 57.76 |
7 | 22.27 | 4.61 | 7.70 | 15.16 | 18.04 | 28.79 | 26.60 | 34.82 | 37.77 | 44.95 |
8 | 13.38 | 8.17 | 11.90 | 15.47 | 17.94 | 36.18 | 38.27 | 37.94 | 50.30 | 69.71 |
9 | 10.20 | 4.19 | 4.90 | 7.03 | 11.79 | 18.89 | 19.93 | 23.85 | 20.56 | 27.92 |
10 | 17.40 | 1.70 | 4.20 | 12.15 | 20.11 | 31.33 | 35.50 | 42.36 | 42.94 | 45.19 |
11 | 16.79 | 4.28 | 9.80 | 11.56 | 16.19 | 25.96 | 29.79 | 36.16 | 45.15 | 39.39 |
12 | 18.59 | 2.35 | 8.40 | 9.45 | 21.52 | 40.74 | 45.34 | 46.58 | 48.38 | 59.24 |
13 | 10.38 | 2.12 | 7.00 | 9.61 | 9.04 | 27.51 | 26.96 | 32.23 | 47.50 | 63.41 |
14 | 125.41 | 1.20 | 2.66 | 3.72 | 15.18 | 24.54 | 35.98 | 42.48 | 59.02 | 46.01 |
15 | 6.81 | 1.18 | 2.85 | 6.68 | 5.44 | 7.94 | 12.16 | 9.02 | 11.36 | 16.99 |
16 | 9.01 | 1.47 | 3.42 | 6.89 | 8.28 | 34.56 | 23.06 | 28.84 | 37.77 | 65.64 |
17 | 7.22 | 1.12 | 3.28 | 3.77 | 6.54 | 18.36 | 17.80 | 26.83 | 26.85 | 32.13 |
18 | Diver. | 4.57 | 20.25 | 41.03 | 37.93 | 36.81 | 42.91 | 48.53 | 56.93 | 60.74 |
19 | 5.14 | 1.47 | 2.79 | 3.69 | 6.16 | 11.03 | 10.07 | 9.82 | 20.03 | 22.93 |
20 | 13.91 | 2.00 | 4.27 | 11.29 | 14.40 | 40.24 | 35.36 | 84.42 | 46.32 | 71.77 |
(mm) | 19.90 | 3.27 | 6.96 | 10.76 | 14.98 | 25.59 | 27.47 | 34.07 | 37.64 | 46.83 |
4.64 | 2.61 | 2.75 | 3.94 | 3.67 | 4.18 | 3.76 | 3.80 | 3.42 | 3.48 |
No. | H/R | Thick min (mm) | (MPa) | (MPa) | DCR (Long) | DCR (Hoop) |
---|---|---|---|---|---|---|
1 | 0.3 | 6 | 20.68 | 183.81 | 26.60 | 1.45 |
2 | 0.6 | 6 | 29.52 | 183.81 | 9.49 | 1.14 |
3 | 0.9 | 6 | 32.44 | 183.81 | 12.08 | 1.45 |
4 | 1.2 | 6 | 34.90 | 183.81 | 14.04 | 1.52 |
5 | 1.5 | 6 | 37.06 | 183.81 | 11.33 | 1.37 |
6 | 1.8 | 6 | 39.02 | 183.81 | 3.59 | 0.84 |
7 | 2.1 | 8 | 46.34 | 183.81 | 4.32 | 0.91 |
8 | 2.4 | 10 | 53.53 | 183.81 | 5.60 | 1.45 |
9 | 2.7 | 12 | 60.62 | 183.81 | 6.47 | 1.22 |
10 | 3.0 | 14 | 67.63 | 183.81 | 4.97 | 1.29 |
No. | H/R | ThickOpt (mm) | (MPa) | (MPa) | DCR (Long) | DCR (Hoop) |
---|---|---|---|---|---|---|
1 | 0.3 | 30 | 54.34 | 183.81 | 0.92 | 0.53 |
2 | 0.6 | 12 | 46.07 | 183.81 | 0.98 | 0.38 |
3 | 0.9 | 20 | 71.05 | 183.81 | 0.99 | 0.69 |
4 | 1.2 | 20 | 73.51 | 183.81 | 0.88 | 0.69 |
5 | 1.5 | 20 | 75.67 | 183.81 | 0.83 | 0.50 |
6 | 1.8 | 30 | 103.42 | 183.81 | 1.00 | 0.53 |
7 | 2.1 | 35 | 103.42 | 183.81 | 0.80 | 0.30 |
8 | 2.4 | 48 | 103.42 | 183.81 | 0.74 | 0.18 |
9 | 2.7 | 71 | 103.42 | 183.81 | 0.81 | 0.14 |
10 | 3 | 110 | 103.42 | 183.81 | 0.88 | 0.11 |
EQ | Maximum Displacement for H/R (mm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.3 | 0.6 | 0.9 | 1.2 | 1.5 | 1.8 | 2.1 | 2.4 | 2.7 | 3.0 | |
1 | 0.83 | 0.57 | 0.56 | 0.90 | 1.19 | 1.34 | 2.29 | 2.54 | 4.38 | 3.02 |
2 | 1.91 | 2.53 | 2.85 | 2.32 | 6.62 | 5.33 | 7.22 | 5.95 | 20.46 | 5.00 |
3 | 2.72 | 1.51 | 1.52 | 2.94 | 3.11 | 3.30 | 2.64 | 3.74 | 13.85 | 4.34 |
4 | 5.02 | 1.30 | 1.74 | 5.16 | 9.22 | 28.06 | 11.91 | 11.62 | 32.99 | 17.59 |
5 | 2.05 | 1.47 | 1.72 | 2.15 | 3.69 | 3.96 | 5.60 | 9.70 | 11.18 | 10.26 |
6 | 1.81 | 0.82 | 0.68 | 2.04 | 3.88 | 3.81 | 5.31 | 4.32 | 6.66 | 5.83 |
7 | 3.17 | 2.23 | 2.70 | 3.55 | 5.44 | 6.22 | 4.74 | 9.80 | 13.24 | 10.82 |
8 | 7.50 | 2.57 | 5.30 | 8.33 | 6.00 | 8.58 | 6.77 | 9.43 | 17.88 | 13.26 |
9 | 3.00 | 1.57 | 1.67 | 2.73 | 4.20 | 3.30 | 4.52 | 4.24 | 11.41 | 4.56 |
10 | 0.95 | 0.67 | 0.70 | 1.06 | 1.51 | 1.55 | 2.75 | 3.09 | 6.77 | 3.54 |
11 | 1.50 | 0.84 | 1.04 | 1.46 | 4.73 | 4.34 | 3.82 | 4.32 | 14.75 | 5.04 |
12 | 1.77 | 1.80 | 2.26 | 1.89 | 2.54 | 1.79 | 3.01 | 5.73 | 10.61 | 7.08 |
13 | 1.88 | 0.83 | 0.92 | 2.02 | 2.38 | 2.41 | 2.86 | 4.92 | 12.27 | 5.53 |
14 | 0.74 | 0.55 | 0.53 | 0.79 | 1.05 | 1.13 | 1.64 | 2.39 | 3.24 | 2.34 |
15 | 0.81 | 0.57 | 0.58 | 1.12 | 1.24 | 1.05 | 1.09 | 1.35 | 4.17 | 2.05 |
16 | 0.70 | 0.56 | 0.56 | 0.94 | 1.14 | 1.39 | 1.97 | 2.33 | 5.59 | 2.79 |
17 | 0.73 | 0.47 | 0.53 | 0.81 | 1.29 | 1.26 | 1.94 | 3.18 | 4.43 | 3.56 |
18 | 2.23 | 1.23 | 2.14 | 2.40 | 8.07 | 4.86 | 5.90 | 7.85 | 29.62 | 9.28 |
19 | 0.85 | 0.55 | 0.52 | 0.92 | 1.41 | 1.24 | 1.81 | 2.31 | 3.27 | 2.68 |
20 | 1.50 | 1.40 | 1.13 | 1.38 | 1.67 | 1.74 | 2.87 | 3.02 | 4.22 | 4.50 |
(mm) | 2.08 | 1.20 | 1.48 | 2.24 | 3.52 | 4.33 | 4.03 | 5.09 | 11.55 | 6.15 |
0.49 | 0.96 | 0.59 | 0.82 | 0.86 | 0.71 | 0.55 | 0.57 | 1.05 | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fallah Daryavarsari, S.; Nascimbene, R. Assessment of Steel Storage Tank Thickness Obtained from the API 650 Design Procedure Through Nonlinear Dynamic Analysis, Accounting for Large Deformation Effects. Materials 2025, 18, 66. https://doi.org/10.3390/ma18010066
Fallah Daryavarsari S, Nascimbene R. Assessment of Steel Storage Tank Thickness Obtained from the API 650 Design Procedure Through Nonlinear Dynamic Analysis, Accounting for Large Deformation Effects. Materials. 2025; 18(1):66. https://doi.org/10.3390/ma18010066
Chicago/Turabian StyleFallah Daryavarsari, Sobhan, and Roberto Nascimbene. 2025. "Assessment of Steel Storage Tank Thickness Obtained from the API 650 Design Procedure Through Nonlinear Dynamic Analysis, Accounting for Large Deformation Effects" Materials 18, no. 1: 66. https://doi.org/10.3390/ma18010066
APA StyleFallah Daryavarsari, S., & Nascimbene, R. (2025). Assessment of Steel Storage Tank Thickness Obtained from the API 650 Design Procedure Through Nonlinear Dynamic Analysis, Accounting for Large Deformation Effects. Materials, 18(1), 66. https://doi.org/10.3390/ma18010066