Laser Powder Bed Fusion Additive Manufacturing of a CoCrFeNiCu High-Entropy Alloy: Processability, Microstructural Insights, and (In Situ) Mechanical Behavior
Abstract
1. Introduction
2. Materials and Methods
2.1. Powder Material
2.2. Sample Manufacturing and Testing
3. Results
3.1. L-PBF Processability
3.1.1. Single Scan Tracks (SST)
3.1.2. Investigation of Density Cubes
3.2. Microstructure and Crack Morphology
3.3. Mechanical Testing
3.3.1. Hardness Testing
3.3.2. Charpy Impact Testing
3.3.3. Tensile Behavior
3.3.4. In Situ Tensile Testing
4. Discussion
4.1. Hot Cracking Mechanism
4.2. Effect of Process Parameters on Density and Processability
4.3. Deformation Behavior
5. Conclusions
- (1)
- Manufacturing of samples with a high density of 99.8% was achieved at a VED of 187.7 J/mm3. However, microcracks were also observed. Reducing the volume energy density using lower laser power reduces the occurrence of hot cracks but does not inhibit them in this study.
- (2)
- The observed crack formation mechanism is identified as hot cracking, supported by three key findings:
- The presence of dendritic structures beneath the crack surface (Figure 5b).
- Segregation of low-melting-point elements Cu and Mn near the cracks (Figure 5c).
- Intergranular cracks detected through EBSD measurements, which revealed high residual stress concentrations in particular at high-angle grain boundaries (HAGBs) (Figure 6c).
- (3)
- The in situ tensile tests revealed significant damage evolution within the selected ROIs, including cracks perpendicular to the loading direction, crack networks, and pores. The observations revealed stable crack propagation despite significant microstructural changes, such as slip line formation and increased grain boundary visibility, during elastic to plastic deformation transitions.
- (4)
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, M.C.; Yeh, J.-W.; Liaw, P.K.; Zhang, Y. (Eds.) High-Entropy Alloys: Fundamentals and Applications; Springer International Publishing: Cham, Switzerland, 2016; ISBN 9783319270135. [Google Scholar]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Jiang, H.; Gong, Q.; Peterlechner, M.; Daum, L.; Rösner, H.; Wilde, G. Hardness and microstructural evolution of CoCrFeNi high-entropy alloys during severe plastic deformation. Mater. Sci. Eng. A 2024, 908, 146758. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, S.; Jia, Y.; Zhang, W.; Chen, R.; Cao, B.; Yu, S.; Wei, J. Review on the Tensile Properties and Strengthening Mechanisms of Additive Manufactured CoCrFeNi-Based High-Entropy Alloys. Metals 2024, 14, 437. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, T.; Du, S.; Wang, Q.; Xiong, R.; Jiao, Z.; Ma, S.; Wang, Z. Tuning the microstructure and strengthening mechanism of the CoCrFeNi high-entropy alloy via doping metalloid and interstitial elements. J. Alloys Compd. 2023, 960, 170622. [Google Scholar] [CrossRef]
- Wang, N.; Ma, K.; Li, Q.-D.; Yuan, Y.-D.; Zhao, Y.-C. Effect of Mn content on microstructure and properties of AlCrCuFeMnx high-entropy alloy. China Foundry 2024, 21, 147–158. [Google Scholar] [CrossRef]
- Chi, C.; Yu, H.; Dong, J.; Liu, W.; Cheng, S.; Liu, Z.; Xie, X. The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe–Cr–Ni type austenitic heat resistant steel for USC power plant application. Prog. Nat. Sci. Mater. Int. 2012, 22, 175–185. [Google Scholar] [CrossRef]
- Zhao, F.-C.; Ji, G.-N.; Zhao, X.-M.; Zhao, R.-D.; Wu, F.-F. The role of copper in transforming CuxCoCrNiAl high-entropy alloys for enhanced strength and ductility. Mater. Charact. 2025, 223, 114973. [Google Scholar] [CrossRef]
- Kuzminova, Y.; Firsov, D.; Dudin, A.; Sergeev, S.; Zhilyaev, A.; Dyakov, A.; Chupeeva, A.; Alekseev, A.; Martynov, D.; Akhatov, I.; et al. The effect of the parameters of the powder bed fusion process on the microstructure and mechanical properties of CrFeCoNi medium-entropy alloys. Intermetallics 2020, 116, 106651. [Google Scholar] [CrossRef]
- Salishchev, G.A.; Tikhonovsky, M.A.; Shaysultanov, D.G.; Stepanov, N.D.; Kuznetsov, A.V.; Kolodiy, I.V.; Tortika, A.S.; Senkov, O.N. Effect of Mn and v on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J. Alloys Compd. 2014, 591, 11–21. [Google Scholar] [CrossRef]
- Gali, A.; George, E.P. Tensile properties of high- and medium-entropy alloys. Intermetallics 2013, 39, 74–78. [Google Scholar] [CrossRef]
- Lam, T.-N.; Luo, M.-Y.; Kawasaki, T.; Harjo, S.; Jain, J.; Lee, S.-Y.; Yeh, A.-C.; Huang, E.-W. Tensile Response of As-Cast CoCrFeNi and CoCrFeMnNi High-Entropy Alloys. Crystals 2022, 12, 157. [Google Scholar] [CrossRef]
- Brif, Y.; Thomas, M.; Todd, I. The use of high-entropy alloys in additive manufacturing. Scr. Mater. 2015, 99, 93–96. [Google Scholar] [CrossRef]
- Lu, N.; Lei, Z.; Hu, K.; Yu, X.; Li, P.; Bi, J.; Wu, S.; Chen, Y. Hot cracking behavior and mechanism of a third-generation Ni-based single-crystal superalloy during directed energy deposition. Addit. Manuf. 2020, 34, 101228. [Google Scholar] [CrossRef]
- Seidou, A.H.; Blondiau, C.; Dedry, O.; Angelo, O.; Victor, T.; Tchuindjang, J.T.; Mertens, A. Differential thermal analysis to assist the design of corrosion-resistant high entropy alloys for laser powder bed fusion. Mater. Res. Proc. 2024, 41, 353–362. [Google Scholar] [CrossRef]
- Oñate, A.; Sanhueza, J.P.; Zegpi, D.; Tuninetti, V.; Ramirez, J.; Medina, C.; Melendrez, M.; Rojas, D. Supervised machine learning-based multi-class phase prediction in high-entropy alloys using robust databases. J. Alloys Compd. 2023, 962, 171224. [Google Scholar] [CrossRef]
- Oñate, A.; Sanhueza, J.P.; Dueña, G.; Wackerling, D.; Sauceda, S.; Salvo, C.; Valenzuela, M.; Medina, C.; Seidou, A.H.; Tchuindjang, J.T.; et al. Sigma Phase Stabilization by Nb Doping in a New High-Entropy Alloy in the FeCrMnNiCu System: A Study of Phase Prediction and Nanomechanical Response. Metals 2024, 14, 74. [Google Scholar] [CrossRef]
- Cabrera, M.; Oropesa, Y.; Sanhueza, J.P.; Tuninetti, V.; Oñate, A. Multicomponent alloys design and mechanical response: From high entropy alloys to complex concentrated alloys. Mater. Sci. Eng. R Rep. 2024, 161, 100853. [Google Scholar] [CrossRef]
- Sun, Z.; Tan, X.P.; Descoins, M.; Mangelinck, D.; Tor, S.B.; Lim, C.S. Revealing hot tearing mechanism for an additively manufactured high-entropy alloy via selective laser melting. Scr. Mater. 2019, 168, 129–133. [Google Scholar] [CrossRef]
- Niu, P.; Li, R.; Zhu, S.; Wang, M.; Chen, C.; Yuan, T. Hot cracking, crystal orientation and compressive strength of an equimolar CoCrFeMnNi high-entropy alloy printed by selective laser melting. Opt. Laser Technol. 2020, 127, 106147. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, W.; Song, B.; Yin, S.; Wang, X.; Wei, Q.; Shi, Y. Towards understanding metallurgical defect formation of selective laser melted wrought aluminum alloys. Adv. Powder Mater. 2022, 1, 100035. [Google Scholar] [CrossRef]
- Sun, Z.; Tan, X.; Wang, C.; Descoins, M.; Mangelinck, D.; Tor, S.B.; Jägle, E.A.; Zaefferer, S.; Raabe, D. Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: Example of an AlxCoCrFeNi high-entropy alloy. Acta Mater. 2021, 204, 116505. [Google Scholar] [CrossRef]
- Niu, P.; Li, R.; Fan, Z.; Cao, P.; Zheng, D.; Wang, M.; Deng, C.; Yuan, T. Inhibiting cracking and improving strength for additive manufactured Al CoCrFeNi high entropy alloy via changing crystal structure from BCC-to-FCC. Addit. Manuf. 2023, 71, 103584. [Google Scholar] [CrossRef]
- Sonawane, A.; Roux, G.; Blandin, J.-J.; Despres, A.; Martin, G. Cracking mechanism and its sensitivity to processing conditions during laser powder bed fusion of a structural aluminum alloy. Materialia 2021, 15, 100976. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, J.; Zheng, H.; Li, H.; Liu, S.; Cheng, G.J. A review on microstructures and properties of high entropy alloys manufactured by selective laser melting. Int. J. Extrem. Manuf. 2020, 2, 32003. [Google Scholar] [CrossRef]
- Cobbinah, P.V.; Nzeukou, R.A.; Onawale, O.T.; Matizamhuka, W.R. Laser Powder Bed Fusion of Potential Superalloys: A Review. Metals 2021, 11, 58. [Google Scholar] [CrossRef]
- Lin, D.; Xu, L.; Jing, H.; Han, Y.; Zhao, L.; Minami, F. Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting. Addit. Manuf. 2020, 32, 101058. [Google Scholar] [CrossRef]
- Li, C.; Liu, Z.Y.; Fang, X.Y.; Guo, Y.B. Residual Stress in Metal Additive Manufacturing. Procedia CIRP 2018, 71, 348–353. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Z.; Tong, Y.; Zhang, W.; Wu, Z. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy. J. Mater. Sci. Technol. 2021, 60, 35–43. [Google Scholar] [CrossRef]
- Yu, Y.; Shi, P.; Feng, K.; Liu, J.; Cheng, J.; Qiao, Z.; Yang, J.; Li, J.; Liu, W. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment. Acta Metall. Sin. (Engl. Lett.) 2020, 33, 1077–1090. [Google Scholar] [CrossRef]
- VDI 3405 Blatt 2: Additive Manufacturing Processes, Rapid Manufacturing—Beam Melting of Metallic Parts—Qualification, Quality Assurance and Post Processing. 2013. Available online: https://www.vdi.de/richtlinien/details/vdi-3405-blatt-2-additive-manufacturing-processes-rapid-manufacturing-beam-melting-of-metallic-parts-qualification-quality-assurance-and-post-processing (accessed on 19 May 2025).
- DIN EN ISO 6892-1. Metallic Materials-Tensile Testing-Part 1: Method of Test at Room Temperature (ISO 6892-1:2019); German Version EN ISO 6892-1:2019. Available online: https://www.dinmedia.de/de/norm/din-en-iso-6892-1/317931281 (accessed on 23 June 2025).
- DIN EN ISO 148-1. Metallic Materials–Charpy Pendulum Impact Test–Part 1: Test Method (ISO 148-1:2016); German Version EN ISO 148-1:2016. Available online: https://www.dinmedia.de/de/norm/din-en-iso-148-1/252982324 (accessed on 23 June 2025).
- Chauvet, E.; Kontis, P.; Jägle, E.A.; Gault, B.; Raabe, D.; Tassin, C.; Blandin, J.-J.; Dendievel, R.; Vayre, B.; Abed, S.; et al. Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron Beam Melting. Acta Mater. 2018, 142, 82–94. [Google Scholar] [CrossRef]
- Yu, P.; Kou, S.; Lin, C.-M. Solidification and Liquation Cracking in Welds of High Entropy CoCrFeNiCux Alloys. Materials 2023, 16, 5621. [Google Scholar] [CrossRef] [PubMed]
- George, E.P.; Curtin, W.A.; Tasan, C.C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020, 188, 435–474. [Google Scholar] [CrossRef]
- Hussain, S.W.; Mehmood, M.A.; Karim, M.R.A.; Godfrey, A.; Yaqoob, K. Microstructural evolution and mechanical characterization of a WC-reinforced CoCrFeNi HEA matrix composite. Sci. Rep. 2022, 12, 9822. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Carroll, J.D.; Michael, J.R.; Battaile, C.C.; Chen, S.R.; Lane, J.M.D. Investigating active slip planes in tantalum under compressive load: Crystal plasticity and slip trace analyses of single crystals. Acta Mater. 2020, 185, 1–12. [Google Scholar] [CrossRef]
- Bibhanshu, N.; Gussev, M.N.; Massey, C.P.; Field, K.G. Investigation of deformation mechanisms in an advanced FeCrAl alloy using in-situ SEM-EBSD testing. Mater. Sci. Eng. A 2022, 832, 142373. [Google Scholar] [CrossRef]
- Mamun, A.A.; Moat, R.J.; Kelleher, J.; Bouchard, P.J. Origin of the Bauschinger effect in a polycrystalline material. Mater. Sci. Eng. A 2017, 707, 576–584. [Google Scholar] [CrossRef]
Co | Cr | Fe | Ni | Cu | Mn | Al, Ti, Zr, V |
---|---|---|---|---|---|---|
25.0 | 22.0 | 23.27 | 25.8 | 2.9 | 1.2 | 0.1 each |
Specimen | Impact Energy [J] | Building Orientation | Temperature [°C] | Condition |
---|---|---|---|---|
AS-RT-V | 40 | Vertical | 20 | as-built |
AS-RT-H | 29 | Horizontal | 20 | as-built |
HT-RT-V | 31 | Vertical | 20 | 400 °C/2.5 h/FC |
HT-RT-H | 33 | Horizontal | 20 | 400 °C/2.5 h/FC |
HT-233K-V | 34 | Vertical | −40 | 400 °C/2.5 h/FC |
HT-233K-H | 29 | Horizontal | −40 | 400 °C/2.5 h/FC |
Specimen No. | YS [MPa] | UTS [MPa] | A [%] | Condition |
---|---|---|---|---|
AS1 | 468.24 | 660.61 | 29.08 | As-built |
AS2 | 490.17 | 658.55 | 18.91 | As-built |
AS3 | 531.09 | 673.37 | 26.33 | As-built |
HT1 | 539.94 | 662.42 | 28.95 | Heat treated |
HT2 | 527.99 | 636.01 | 12.14 | Heat treated |
HT3 | 555.18 | 680.92 | 20.41 | Heat treated |
mean overall | 519 ± 29.9 | 662 ± 14 | 24.74 ± 4.3 | |
mean (AS) | 496 ± 26 | 664 ± 6.6 | 24.8 ± 4.3 | |
mean (HT) | 541 ± 11.1 | 659 ± 18.4 | 24.7 ± 4.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burgio, V.; Moeini, G. Laser Powder Bed Fusion Additive Manufacturing of a CoCrFeNiCu High-Entropy Alloy: Processability, Microstructural Insights, and (In Situ) Mechanical Behavior. Materials 2025, 18, 3071. https://doi.org/10.3390/ma18133071
Burgio V, Moeini G. Laser Powder Bed Fusion Additive Manufacturing of a CoCrFeNiCu High-Entropy Alloy: Processability, Microstructural Insights, and (In Situ) Mechanical Behavior. Materials. 2025; 18(13):3071. https://doi.org/10.3390/ma18133071
Chicago/Turabian StyleBurgio, Vito, and Ghazal Moeini. 2025. "Laser Powder Bed Fusion Additive Manufacturing of a CoCrFeNiCu High-Entropy Alloy: Processability, Microstructural Insights, and (In Situ) Mechanical Behavior" Materials 18, no. 13: 3071. https://doi.org/10.3390/ma18133071
APA StyleBurgio, V., & Moeini, G. (2025). Laser Powder Bed Fusion Additive Manufacturing of a CoCrFeNiCu High-Entropy Alloy: Processability, Microstructural Insights, and (In Situ) Mechanical Behavior. Materials, 18(13), 3071. https://doi.org/10.3390/ma18133071