Adsorption and Decomposition Mechanisms of Li2S on 2D Thgraphene Modulated by Doping and External Electrical Field
Abstract
1. Introduction
- (1)
- It has excellent conductivity, facilitating the transmission of ions and electrons.
- (2)
- It demonstrates a strong adsorption for LiPSs.
- (3)
- It can lower the decomposition barrier of Li2S and facilitate the diffusion of Li ions on the surface.
2. Computational Methods
3. Results and Discussions
3.1. Structural and Electrical Properties of Pristine Thgraphene
3.2. Structure and Properties of Single-Atom Substitutionally Doped Thgraphene
3.3. Optimized Structures of Li2S Adsorption on Pristine and Doped Thgraphene
3.4. Charge Transfer Between Li2S and Substrate Materials
3.5. The Electronic DOS of the Adsorption System
3.6. Modulation Adsorption Mechanisms by External Electric Field
3.7. Diffusion Properties of Li on the Pristine and Doped Thgraphene Substrate
3.8. Decomposition of Li2S on Pristine and Doped Thgraphene Substrates
3.9. Lithium Storage on Pristine and Doped Thgraphene Surface
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, J.D.; Yan, C.Y.; Li, G.Q.; Cheng, H.; Li, Y.; Liu, T.Y.; Mao, Q.; Cho, H.Y.J.; Gao, Q.; Gao, C.X.; et al. Recent developments of electrospun nanofibers for electrochemical energy storage and conversion. Energy Storage Mater. 2024, 65, 40. [Google Scholar] [CrossRef]
- Liu, D.; Guo, P.F.; Pan, H.G.; Wu, R.B. Emerging high-entropy compounds for electrochemical energy storage and conversion. Prog. Mater. Sci. 2024, 145, 52. [Google Scholar] [CrossRef]
- Bao, C.; Chu, P.; Xu, C.X.; Yuan, J.P.; Si, L.J.; Bo, Z.; Ostrikov, K.; Yang, H.C. More disorder is better: Cutting-edge progress of high entropy materials in electrochemical energy storage applications. Energy Storage Mater. 2024, 69, 27. [Google Scholar] [CrossRef]
- Subashini, C.; Sivasubramanian, R.; Sundaram, M.M.; Priyadharsini, N. The evolution of allotropic forms of Na2CoP2O7 electrode and its role in future hybrid energy storage. J. Energy Storage 2025, 130, 117390. [Google Scholar] [CrossRef]
- Divakaran, A.M.; Minakshi, M.; Bahri, P.A.; Paul, S.; Kumari, P.; Divakaran, A.M.; Manjunatha, K.N. Rational design on materials for developing next generation lithium-ion secondary battery. Prog. Solid State Chem. 2021, 62, 27. [Google Scholar] [CrossRef]
- Adeoti, M.O.; Jamiru, T.; Adegbola, T.A.; Suleiman, I.; Abdullahi, M.; Aramide, B.P. Selection criteria of polymer nanocomposites for electrical energy storage applications: A concise review. Express Polym. Lett. 2025, 19, 208–229. [Google Scholar] [CrossRef]
- Yang, Z.; Han, Y.C.; Chen, K.; Zhang, G.D.; Xing, S.X. Transforming Waste into Valuable Resources: Mo2C Nanoparticles Modified Waste Pinecone-Derived Carbon as an Effective Sulfur Host for Lithium-Sulfur Batteries. Materials 2025, 18, 1141. [Google Scholar] [CrossRef]
- Chen, L.P.; Wang, R.H.; Li, N.; Bai, Y.; Zhou, Y.M.; Wang, J. Optimized Adsorption-Catalytic Conversion for Lithium Polysulfides by Constructing Bimetallic Compounds for Lithium-Sulfur Batteries. Materials 2024, 17, 3075. [Google Scholar] [CrossRef]
- Cheng, C.S.; Chung, S.H. Nickel-plated sulfur nanocomposites for electrochemically stable high-loading sulfur cathodes in a lean-electrolyte lithium-sulfur cell. Chem. Eng. J. 2022, 429, 7. [Google Scholar] [CrossRef]
- Khossossi, N.; Panda, P.K.; Singh, D.; Shukla, V.; Mishra, Y.K.; Essaoudi, I.; Ainane, A.; Ahuja, R. Rational Design of 2D h-BAs Monolayer as Advanced Sulfur Host for High Energy Density Li-S Batteries. ACS Appl. Energ. Mater. 2020, 3, 7306–7317. [Google Scholar] [CrossRef]
- Zhou, P.F.; Zhu, L.Y.; Fu, D.W.; Du, J.G.; Zhao, X.Z.; Sun, B.X. Research on the Performance Improvement Method for Lithium-Ion Battery in High-Power Application Scenarios. Energies 2024, 17, 1746. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, T.Y.; Tian, H.J.; Su, D.W.; Zhang, Q.; Wang, G.X. Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability. Adv. Mater. 2021, 33, 67. [Google Scholar] [CrossRef] [PubMed]
- He, J.R.; Manthiram, A. A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Mater. 2019, 20, 55–70. [Google Scholar] [CrossRef]
- Gicha, B.B.; Tufa, L.T.; Nwaji, N.; Hu, X.J.; Lee, J. Advances in All-Solid-State Lithium-Sulfur Batteries for Commercialization. Nano-Micro Lett. 2024, 16, 38. [Google Scholar] [CrossRef]
- Kim, D.J.; Park, J.W.; Kim, J.S.; Cho, K.K.; Kim, K.W.; Ahn, J.H.; Jo, M.K.; Choi, H.J.; Bae, D.H.; Ahn, H.J. The Electrochemical Properties of Lithium/Sulfur Cell Using Sulfur-Carbon Nanotubes Composite. J. Nanosci. Nanotechnol. 2011, 11, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Sun, Q.J.; Li, Q.; Zhang, J.L.; Ming, J. Electrolyte Issues in Lithium-Sulfur Batteries: Development, Prospect, and Challenges. Energy Fuels 2021, 35, 10405–10427. [Google Scholar] [CrossRef]
- Gong, N.; Hu, X.W.; Fang, T.T.; Yang, C.Y.; Xie, T.Z.; Peng, W.C.; Li, Y.; Zhang, F.B.; Fan, X.B. Transition Metals Embedded Siloxene as Single-Atom Catalyst for Advanced Sulfur Host in Lithium-Sulfur Batteries: A Theoretical Study. Adv. Energy Mater. 2022, 12, 9. [Google Scholar] [CrossRef]
- Jiang, H.R.; Shyy, W.; Liu, M.; Ren, Y.X.; Zhao, T.S. Borophene and defective borophene as potential anchoring materials for lithium-sulfur batteries: A first-principles study. J. Mater. Chem. A 2018, 6, 2107–2114. [Google Scholar] [CrossRef]
- Mao, X.T.; Zhu, L.; Fu, A.P. Arsenene, antimonene and bismuthene as anchoring materials for lithium-sulfur batteries: A computational study. Int. J. Quantum Chem. 2021, 121, 10. [Google Scholar] [CrossRef]
- Wang, H.; Qiu, Z.G.; Guo, J.Y.; Shu, H.B.; Wei, Q. Unravelling the anchoring effects of Hd-Graphene for lithium-sulfur batteries: A first-principles calculation. J. Energy Storage 2024, 90, 9. [Google Scholar] [CrossRef]
- Ali, T.; Yan, C.L. 2 D Materials for Inhibiting the Shuttle Effect in Advanced Lithium-Sulfur Batteries. ChemSusChem 2020, 13, 1447–1479. [Google Scholar] [CrossRef]
- Lu, Z.Y.; Zhao, E.R.; Zhang, C.; Chen, C. Review Two-dimensional materials and their applications in fuel cells. iScience 2024, 27, 16. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Shringi, A.K.; Wood, H.J.; Asuo, I.M.; Oturak, S.; Sanchez, D.E.; Sharma, T.S.K.; Chaurasiya, R.; Mishra, A.; Choi, W.M.; et al. Substitutional doping of 2D transition metal dichalcogenides for device applications: Current status, challenges and prospects. Mater. Sci. Eng. R-Rep. 2025, 163, 34. [Google Scholar] [CrossRef]
- Fei, K.C.; He, Q.; Wu, M.W.; Liu, J.F.; Wei, Z.; Luo, W.; Zhao, Y. Computational study on two-dimensional transition metal borides for enhanced lithium-sulfur battery performance: Insights on anchoring, catalytic activity, and solvation effects. J. Colloid Interface Sci. 2025, 680, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.S.; He, Q.; Zhao, Y. Virtual screening of two-dimensional selenides and transition metal doped SnSe for lithium-sulfur batteries: A first-principles study. Appl. Surf. Sci. 2021, 570, 10. [Google Scholar] [CrossRef]
- Wang, W.Y.; Meng, J.; Hu, Y.J.; Wang, J.J.; Li, Q.X.; Yang, J.L. Thgraphene: A novel two-dimensional carbon allotrope as a potential multifunctional material for electrochemical water splitting and potassium-ion batteries. J. Mater. Chem. A 2022, 10, 9848–9857. [Google Scholar] [CrossRef]
- Wang, J.J.; Chai, X.Y.; Sun, C.; Zhuo, Z.W.; Meng, J.; Li, S.J.; Yang, J.Q.; Wang, J.Y.; Wang, W.Y.; Xu, K.; et al. Thgraphene with High Polysulfide Anchoring Ability and Catalytic Performance for Advanced Na-S Batteries: A First-Principles Study. Langmuir 2024, 40, 27083–27090. [Google Scholar] [CrossRef]
- Cankurtaran, B.O.; Gale, J.D.; Ford, M.J. First principles calculations using density matrix divide-and-conquer within the SIESTA methodology. J. Phys.-Condes. Matter 2008, 20, 12. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 19. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- de Luzuriaga, I.O.; Elleuchi, S.; Jarraya, K.; Artacho, E.; López, X.; Gil, A. Semi-empirical and linear-scaling DFT methods to characterize duplex DNA and G-quadruplexes in the presence of interacting small molecules. Phys. Chem. Chem. Phys. 2022, 24, 11510–11519. [Google Scholar] [CrossRef] [PubMed]
- Froyen, S. Brillouin-zone integration by Fourier quadrature: Special points for superlattice and supercell calculations. Phys. review. B Condens. Matter 1989, 39, 3168–3172. [Google Scholar] [CrossRef]
- Udagawa, T.; Suzuki, K.; Tachikawa, M. Multicomponent Molecular Orbital-Climbing Image-Nudged Elastic Band Method to Analyze Chemical Reactions Including Nuclear Quantum Effect. ChemPhysChem 2015, 16, 3156–3160. [Google Scholar] [CrossRef]
- Liu, Q.; Xiao, B.; Cheng, J.B.; Li, Y.C.; Li, Q.Z.; Li, W.Z.; Xu, X.F.; Yu, X.F. Carbon Excess C3N: A Potential Candidate as Li-Ion Battery Material. ACS Appl. Mater. Interfaces 2018, 10, 37135–37141. [Google Scholar] [CrossRef] [PubMed]
- He, B.L.; Shen, J.S.; Ma, D.W.; Lu, Z.S.; Yang, Z.X. Boron-Doped C3N Monolayer as a Promising Metal-Free Oxygen Reduction Reaction Catalyst: A Theoretical Insight. J. Phys. Chem. C 2018, 122, 20312–20322. [Google Scholar] [CrossRef]
- Wang, H.; Kong, F.; Qiu, Z.G.; Guo, J.Y.; Shu, H.B.; Wei, Q. Theoretical prediction of 2D biphenylene as a potential anchoring material for lithium-sulfur batteries. Phys. Chem. Chem. Phys. 2023, 25, 25240–25250. [Google Scholar] [CrossRef]
- Kong, F.; Chen, L.; Yang, M.R.; Guo, J.Y.; Wang, Y.; Shu, H.B.; Dai, J. Theoretical probing the anchoring properties of BNP2 monolayer for lithium-sulfur batteries. Appl. Surf. Sci. 2022, 594, 8. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653–658. [Google Scholar] [CrossRef]
- Krishtal, A.; Geldof, D.; Vanommeslaeghe, K.; Van Alsenoy, C.; Geerlings, P. Evaluating London Dispersion Interactions in DFT: A Non local Anisotropic Buckingham-Hirshfeld Model. J. Chem. Theory Comput. 2012, 8, 125–134. [Google Scholar] [CrossRef]
- Koh, W.; Moon, H.S.; Lee, S.G.; Choi, J.I.; Jang, S.S. A First-Principles Study of Lithium Adsorption on a Graphene-Fullerene Nanohybrid System. ChemPhysChem 2015, 16, 789–795. [Google Scholar] [CrossRef]
- Kong, F.; Chen, L.; Yang, M.R.; Guo, J.Y.; Wan, J.; Shu, H.B.; Dai, J. Investigation of the anchoring and electrocatalytic properties of pristine and doped borophosphene for Na-S batteries. Phys. Chem. Chem. Phys. 2023, 25, 5443–5452. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.Y.; Zhu, Y.F.; Li, Y.A.; Liu, H.S.; Cong, Y.; Li, Q.; Wu, M.B. Homonuclear transition-metal dimers embedded monolayer C2N as promising anchoring and electrocatalytic materials for lithium-sulfur battery: First-principles calculations. Appl. Surf. Sci. 2023, 610, 9. [Google Scholar] [CrossRef]
- Yang, L.F.; Mi, W.B.; Wang, X.C. Tailoring magnetism of black phosphorene doped with B, C, N, O, F, S and Se atom: A DFT calculation. J. Alloys Compd. 2016, 662, 528–533. [Google Scholar] [CrossRef]
- Cocoletzi, H.H.; Aguila, J.E.C. DFT studies on the Al, B, and P doping of silicene. Superlattices Microstruct. 2018, 114, 242–250. [Google Scholar] [CrossRef]
- Li, D.B.; Yang, P. Structure, electronic and optical properties of B single- and double-doped graphene. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2023, 290, 8. [Google Scholar] [CrossRef]
- Dai, X.S.; Shen, T.; Feng, Y.; Liu, H.C. Structure, electronic and optical properties of Al, Si, P doped penta-graphene: A first-principles study. Physica B 2019, 574, 8. [Google Scholar] [CrossRef]
- Yao, X.H.; Li, K.J.; Ye, J.Q.; Shao, Q.Y. First principles study on B/N pairs co-doping zigzag single-walled carbon nanotubes. Chem. Phys. Lett. 2016, 653, 144–148. [Google Scholar] [CrossRef]
- Shou, H.; Zhou, Q.; Wei, S.; Liu, H.; Lv, H.; Wu, X.; Song, L. High-Throughput Screening of Sulfur Reduction Reaction Catalysts Utilizing Electronic Fingerprint Similarity. JACS Au 2024, 4, 930–939. [Google Scholar] [CrossRef]
- Kim, H.S.; Jeong, C.S. Electrochemical Properties of Binary Electrolytes for Lithium-sulfur Batteries. Bull. Korean Chem. Soc. 2011, 32, 3682–3686. [Google Scholar] [CrossRef]
- Jayan, R.; Islam, M.M. First-Principles Investigation of the Anchoring Behavior of Pristine and Defect-Engineered Tungsten Disulfide for Lithium-Sulfur Batteries. J. Phys. Chem. C 2020, 124, 27323–27332. [Google Scholar] [CrossRef]
- Shao, Y.F.; Wang, Q.; Hu, L.; Pan, H.; Shi, X.Q. BC2N monolayers as promising anchoring materials for lithium-sulfur batteries: First-principles insights. Carbon 2019, 149, 530–537. [Google Scholar] [CrossRef]
- Yi, Z.L.; Su, F.Y.; Huo, L.; Cui, G.Y.; Zhang, C.L.; Han, P.D.; Dong, N.; Chen, C.M. New insights into Li2S2/Li2S adsorption on the graphene bearing single vacancy: A DFT study. Appl. Surf. Sci. 2020, 503, 10. [Google Scholar] [CrossRef]
- Guo, L.C.; Li, J.J.; Wang, H.Y.; Zhao, N.Q.; Shi, C.S.; Ma, L.Y.; He, C.N.; He, F.; Liu, E.Z. Dopant-Modulating Mechanism of Lithium Adsorption and Diffusion at the Graphene/Li2S Interface. Phys. Rev. Appl. 2018, 9, 9. [Google Scholar] [CrossRef]
- Chan, S.C.; Cheng, Y.L.; Chang, B.K.; Hong, C.W. DFT calculation in design of near-infrared absorbing nitrogen-doped graphene quantum dots. Phys. Chem. Chem. Phys. 2022, 24, 1580–1589. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.N.; Shi, C.; Zhao, X.X.; Zhang, Y.; Chen, S.Q.; Cheng, X.B.; Song, J.J. Physical Field Effects to Suppress Polysulfide Shuttling in Lithium-Sulfur Battery. Adv. Mater. 2024, 36, 26. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.H.; Qiu, Z.G.; Guo, J.Y. Theoretical evaluation of gas sensing and capturing characteristics on the point defective diboron dinitride monolayer. J. Phys. Chem. Solids 2024, 184, 12. [Google Scholar] [CrossRef]
- Xu, R.H.; Kong, F.; Wan, J.; Guo, J.Y. Computational evaluation of sensing properties of a novel 2D diboron dinitride for detecting toxic gas molecules. Mater. Sci. Semicond. Process. 2023, 161, 11. [Google Scholar] [CrossRef]
- Xu, Y.G.; Ou, X.D.; Zhang, X.W. Theoretical Study of Two-Dimensional α-Tellurene with Pseudo-Heterospecies as a Promising Elemental Anchoring Material for Lithium-Sulfur Batteries. J. Phys. Chem. C 2021, 125, 4623–4631. [Google Scholar] [CrossRef]
- Pollak, E.; Geng, B.S.; Jeon, K.J.; Lucas, I.T.; Richardson, T.J.; Wang, F.; Kostecki, R. The Interaction of Li+ with Single-Layer and Few-Layer Graphene. Nano Lett. 2010, 10, 3386–3388. [Google Scholar] [CrossRef]
- Deng, X.Y.; Chen, X.F.; Huang, Y.; Xiao, B.B.; Du, H.Y. Two-Dimensional GeP3 as a High Capacity Anode Material for Non-Lithium-Ion Batteries. J. Phys. Chem. C 2019, 123, 4721–4728. [Google Scholar] [CrossRef]
- Zhou, G.M.; Tian, H.Z.; Jin, Y.; Tao, X.Y.; Liu, B.F.; Zhang, R.F.; Seh, Z.W.; Zhuo, D.; Liu, Y.Y.; Sun, J.; et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.B.A.; Shao, X.F.; Li, F.; Zhao, M.W. Anchoring effects of S-terminated Ti2C MXene for lithium-sulfur batteries: A first-principles study. Appl. Surf. Sci. 2018, 455, 522–526. [Google Scholar] [CrossRef]
- Du, J.L.; Lin, H.; Huang, Y. Conductive BSi4 monolayer with superior electrochemical performance for alkali metal ion batteries. Mater. Sci. Semicond. Process. 2024, 172, 7. [Google Scholar] [CrossRef]
- Sun, X.L.; Wu, S.Y.; Dinh, K.N.; Wang, Z.G. Metallic two-dimensional Cu2Si monolayer as promising anode materials for lithium and sodium ion batteries, a first principles study. J. Solid State Chem. 2019, 274, 265–269. [Google Scholar] [CrossRef]
Thgraphene | BC1-Thgraphene | NC1-Thgraphene | PC1-Thgraphene | |
---|---|---|---|---|
Adsorption energy (eV) | 3.10 | 3.53 | 3.13 | 4.48 |
Adsorption distance () | 1.93 | 2.02 | 1.91 | 2.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Guo, J.; Chen, L.; Tao, F. Adsorption and Decomposition Mechanisms of Li2S on 2D Thgraphene Modulated by Doping and External Electrical Field. Materials 2025, 18, 3269. https://doi.org/10.3390/ma18143269
Zhang R, Guo J, Chen L, Tao F. Adsorption and Decomposition Mechanisms of Li2S on 2D Thgraphene Modulated by Doping and External Electrical Field. Materials. 2025; 18(14):3269. https://doi.org/10.3390/ma18143269
Chicago/Turabian StyleZhang, Ruofeng, Jiyuan Guo, Lanqing Chen, and Fengjie Tao. 2025. "Adsorption and Decomposition Mechanisms of Li2S on 2D Thgraphene Modulated by Doping and External Electrical Field" Materials 18, no. 14: 3269. https://doi.org/10.3390/ma18143269
APA StyleZhang, R., Guo, J., Chen, L., & Tao, F. (2025). Adsorption and Decomposition Mechanisms of Li2S on 2D Thgraphene Modulated by Doping and External Electrical Field. Materials, 18(14), 3269. https://doi.org/10.3390/ma18143269