Influence of Strain Rate on the Strain-Induced Martensite Transformation in Austenitic Steel AISI 321 and Barkhausen Noise Emission
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. EBSD Observations
3.2. XRD and Hardness Measurements
3.3. MBN Measurements
4. Discussion of Obtained Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berns, H.; Gavriljuk, V.; Riedner, S. High Interstitial Stainless Steels, 1st ed.; Springer: Berlin/Heidlberg, Germany, 2012. [Google Scholar] [CrossRef]
- Mangonon, P.L.; Thomas, G. The martensite phases in 304 stainless steel. Metall. Trans. 1970, 1, 1577–1578. [Google Scholar] [CrossRef]
- Mine, Y.; Horita, Z.; Murakami, Y. Effect of hydrogen on martensite formation in austenitic stainless steels in high-pressure torsion. Acta Mater. 2009, 57, 2993–3002. [Google Scholar] [CrossRef]
- Shukla, S.; Patil, A.P. Effect of strain induced martensite reversal on the degree of sensitisation of metastable austenitic stainless steel. Proc. Struct. Integr. 2019, 14, 259–264. [Google Scholar] [CrossRef]
- Hotz, H.; Kirsch, B. Influence of tool properties on thermomechanical load and surface morphology when cryogenically turning metastable austenitic steel AISI 347. J. Manuf. Process. 2020, 52, 120–131. [Google Scholar] [CrossRef]
- Talonen, J.; Aspegren, P.; Hänninen, H. Comparison of different methods for measuring strain induced α’ martensite content in austenitic steels. Mater. Sci. Technol. 2004, 20, 1506–1512. [Google Scholar] [CrossRef]
- Haušild, P.; Davydov, V.; Drahokoupil, J.; Landa, M.; Pilvin, P. Characterization of strain-induced martensitic transformation in a metastable stainless steel. Mater. Des. 2010, 31, 1821–1827. [Google Scholar] [CrossRef]
- Haušild, P.; Kolařík, K.; Karlík, M. Characterization of strain-induced martensitic transformation in A301 stainless steel by Barkhausen noise measurement. Mater. Des. 2013, 44, 548–554. [Google Scholar] [CrossRef]
- Astudilo, M.R.N.; Nicolás, M.N.; Ruzzante, J.; Gómez, M.P.; Ferrari, G.C.; Padovese, L.R.; Pumarega, M.I.L. Correlation between martensitic phase transformation and magnetic Barkhausen noise of AISI 304 steel. Proc. Mater. Sci. 2015, 9, 435–443. [Google Scholar] [CrossRef]
- Kleber, X.; Barroso, S.P. Investigation of shot-peened austenitic stainless steel 304L by means of magnetic Barkhausen noise. Mater. Sci. Eng. A 2010, 527, 6046–6052. [Google Scholar] [CrossRef]
- Tavares, S.S.M.; Noris, L.F.; Pardal, J.M.; da Silva, M.R. Temper embrittlement of super martensitic stainless steel and non-destructive inspection by magnetic Barkhausen noise. Eng. Fail. Anal. 2019, 100, 322–328. [Google Scholar] [CrossRef]
- Jiles, D. Introduction to Magnetism and Magnetic Materials, 3rd ed.; Taylor & Francis Group: New York, NY, USA, 2016. [Google Scholar]
- Ktena, A.; Hristoforou, E.; Gerhardt, G.J.L.; Missell, F.P.; Landgraf, F.J.G.; Rodrigues, D.L.; Albertis-Campos, M. Barkhausen noise as a microstructure characterisation tool. Phys. B 2014, 435, 109–112. [Google Scholar] [CrossRef]
- Roskosz, M.; Fryczowski, K.; Tuz, L.; Wu, J.; Schabowicz, K.; Logoń, D. Analysis of the Possibility of Plastic Deformation Characterisation in X2CrNi18-9 Steel Using Measurements of Electromagnetic Parameters. Materials 2021, 14, 2904. [Google Scholar] [CrossRef] [PubMed]
- Rydz, D.; Mróz, S.; Szota, P.; Stradomski, G.; Garstka, T.; Dyl, T.C. The Analysis of Plastic Forming in the Rolling Process of Difficult-to-Deform Ti + Ni Layered Composites. Materials 2025, 18, 1926. [Google Scholar] [CrossRef] [PubMed]
- Anglada-Rivera, J.; Padovese, L.R.; Capó-Sanchez, J. Magnetic Barkhausen noise and hysteresis loop in commercial carbon steel: Influence of applied tensile stress and grain size. J. Magn. Magn. Mater. 2001, 231, 299–306. [Google Scholar] [CrossRef]
- Pitoňák, M.; Ondruš, J.; Zgútová, K.; Neslušan, M.; Moravec, J. Influence of Strain Rate on Plastic Deformation of the Flange in Steel Road Barrier. Materials 2023, 13, 1396. [Google Scholar] [CrossRef]
- Batista, L.; Rabe, U.; Altpeter, I.; Hirsekom, S.; Dobmann, G. On the mechanism of non-destructive evaluation of cementite content in steel using a combination of magnetic Barkhausen noise and magnetic force microscopy techniques. J. Magn. Magn. Mater. 2014, 354, 248–256. [Google Scholar] [CrossRef]
- Blažek, D.; Neslušan, M.; Mičica, M.; Pištora, J. Extraction of Barkhausen noise from the measured raw signal in high-frequency regimes. Measurement 2016, 94, 456–463. [Google Scholar] [CrossRef]
- Neslušan, M.; Haušild, P.; Šugárová, J.; Minárik, P.; Trojan, K.; Jambor, M.; Šugár, P. Barkhausen Noise Emission in AISI 321 Austenitic Steel Originating from the Strain-Induced Martensite Transformation. Metals 2021, 11, 429. [Google Scholar] [CrossRef]
- Matěj, Z.; Kadlecová, A.; Janeček, M.; Matějová, L.; Dopita, M.; Kužel, R. Refining bimodal microstructure of materials with MSTRUCT. Powder Diffr. 2014, 29 (Suppl. S2), S35–S41. [Google Scholar] [CrossRef]
- Varga, R. Domain Walls and Their Dynamics, 1st ed.; Pavol Jozef Šafárik University: Košice, Slovakia, 2014. [Google Scholar]
- Chikazumi, S. Physics of Ferromagnetism, 2nd ed.; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Manh, T.L.; Caleyo, F.; Hallen, J.M.; Pérez-Benitez, J.A.; Espina-Hernández, J.H. Novel method for the accurate determination of magnetocrystalline energy from Barkhausen noise in ferromagnetic materials. Mater. Sci. Eng. B 2017, 225, 98–107. [Google Scholar] [CrossRef]
- He, Y.; Mehdi, M.; Hilinski, E.J.; Edrisy, A. The coarse-process characterisation of local anisotropy on non-oriented electrical steel using magnetic Barkhausen noise. J. Magn. Magn. Mater. 2018, 453, 149–162. [Google Scholar] [CrossRef]
- Neslušan, M.; Bahleda, F.; Minárik, P.; Zgútová, K.; Jambor, M. Non-destructive monitoring of corrosion extent in steel rope wires via Barkhausen noise emission. J. Magn. Magn. Mater. 2019, 484, 179–187. [Google Scholar] [CrossRef]
- Neslušan, M.; Minárik, P.; Grenčík, J.; Trojan, K.; Zgútová, K. Non-destructive evaluation of the railway wheel surface damage after long-term operation via Barkhausen noise technique. Wear 2019, 420–421, 195–206. [Google Scholar] [CrossRef]
- Cullity, B.D.; Graham, C.D. Introduction to the Magnetic Materials, 2nd ed.; IEEE Press: Piscataway, NJ, USA, 2009; pp. 251–254. [Google Scholar]
- Martínez-Ortiz, P.; Pérez-Benitez, J.A.; Espina-Hernández, J.H.; Caleyo, F.; Hallen, J.M. On the estimation of the magnetic easy axis in pipeline steels using magnetic Barkhausen noise. J. Magn. Magn. Mater. 2015, 374, 67–74. [Google Scholar] [CrossRef]
- Stutius, W.; Dillinger, J.R. Magnetic and thermal properties of some austenitic stainless steels at low temperatures. J. Appl. Phys. 1973, 44, 2887–2888. [Google Scholar] [CrossRef]
- Brooks, J.W.; Loretto, M.H.; Smallman, R.E. In Situ Observations of the Formation of Martensite in Stainless Steel. Acta Metal. 1979, 27, 1829–1838. [Google Scholar] [CrossRef]
- Aristeidakis, J.S.; Haidemenopoulos, G.N. Constitutive and transformation kinetics modeling of ε-, α -Martensite and mechanical twinning in steels containing austenite. Acta Mater. 2022, 228, 117757. [Google Scholar] [CrossRef]
- Bures, R.; Neslusan, M.; Faberova, M.; Čilliková, M.; Birčáková, Z.; Kollar, P.; Fuzer, J.; Milyutin, V. Formation of Effective Non-ferromagnetic Barrier in Fe/MgO Soft Magnetic Composite. ACS Appl. Electron. Mater. 2024, 6, 1928–1939. [Google Scholar] [CrossRef]
- Tadić, B.; Mijatović, S.; Janićević, S.; Spasojević, D.; Rodgers, G.J. The critical Barkhausen avalanches in thin random-field ferromagnets with an open boundary. Sci. Rep. 2019, 9, 6340. [Google Scholar] [CrossRef]
- Neslušan, M.; Pitoňák, M.; Minárik, P.; Tkáč, M.; Kollár, P.; Životský, O. Influence of domain walls thickness, density and alignment on Barkhausen noise emission in low alloyed steels. Sci. Rep. 2023, 13, 5687. [Google Scholar] [CrossRef]
Fe | C | Mn | Cr | Ni | S | P | Si | Ti |
---|---|---|---|---|---|---|---|---|
bal. | 0.08 | 2 | 17 ÷ 19 | 9 ÷ 12 | 0.03 | 0.045 | 1 | 5 × %C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čilliková, M.; Ganev, N.; Moravec, J.; Mičietová, A.; Neslušan, M.; Minárik, P. Influence of Strain Rate on the Strain-Induced Martensite Transformation in Austenitic Steel AISI 321 and Barkhausen Noise Emission. Materials 2025, 18, 3714. https://doi.org/10.3390/ma18153714
Čilliková M, Ganev N, Moravec J, Mičietová A, Neslušan M, Minárik P. Influence of Strain Rate on the Strain-Induced Martensite Transformation in Austenitic Steel AISI 321 and Barkhausen Noise Emission. Materials. 2025; 18(15):3714. https://doi.org/10.3390/ma18153714
Chicago/Turabian StyleČilliková, Mária, Nikolaj Ganev, Ján Moravec, Anna Mičietová, Miroslav Neslušan, and Peter Minárik. 2025. "Influence of Strain Rate on the Strain-Induced Martensite Transformation in Austenitic Steel AISI 321 and Barkhausen Noise Emission" Materials 18, no. 15: 3714. https://doi.org/10.3390/ma18153714
APA StyleČilliková, M., Ganev, N., Moravec, J., Mičietová, A., Neslušan, M., & Minárik, P. (2025). Influence of Strain Rate on the Strain-Induced Martensite Transformation in Austenitic Steel AISI 321 and Barkhausen Noise Emission. Materials, 18(15), 3714. https://doi.org/10.3390/ma18153714