Pulse-Echo Ultrasonic Verification of Silicate Surface Treatments Using an External-Excitation/Single-Receiver Configuration: ROC-Based Differentiation of Concrete Specimens
Abstract
1. Introduction
Unresolved Issues in Current Research
- Integration of modern classifiers: Only a few studies have combined single-sensor PEUT with machine-learning classifiers for concrete applications [8].
2. Materials and Experimental Setup
3. Evaluated Parameters and Statistical Approach
- Maximum amplitude (V): Represents the peak voltage of the received ultrasonic signal, indicative of the energy reflected from internal features or surface modifications.
- Root mean square (RMS) (V): This measures the signal power over time and reflects the overall energy content of the reflected wave.
- Signal duration (ns): This denotes the time interval during which the signal maintains a significant amplitude, indicating the damping characteristics and potential scattering in the material.
- Rise time (ns): The time required for the signal to rise from a defined low percentage to a high percentage of its peak amplitude, which is used to assess the sharpness of the signal.
- Energy (V2/Hz): Obtained by integrating the squared voltage spectrum over the analysis bandwidth and expressing the result per unit frequency, thus providing a bandwidth-normalised measure of the ultrasonic pulse energy.
- Rise time to duration ratio (–): Provides a normalised measure of the signal onset sharpness relative to its total duration, potentially highlighting differences caused by surface treatment.
- Descriptive statistics: Computation of the mean, median, standard deviation, and interquartile range for each parameter.
- Normality tests: The Shapiro–Wilk test was applied to assess the data distribution.
- Inferential statistics: Depending on the data distribution, either the Student’s t-test, Welch’s t-test (Welch), or the non-parametric Mann–Whitney U test (MW) was used for between-group comparisons.
- Classification modelling: Logistic regression models were built to predict the probability of a specimen being treated or untreated, based on the evaluated parameters. Model performance was assessed using receiver operating characteristic (ROC) curves and the area under the curve (AUC) metric. The optimal cut-off values were derived using the Youden index.
4. Results
4.1. Max-Amplitude (V)
- R vs. A: p = 1.56 × 10−5 (MW), p = 3.29 × 10−6 (Welch);
- R vs. B: p = 2.66 × 10−8 (MW), p = 2.40 × 10−7 (Welch);
- A vs. B: p = 1.65 × 10−9 (MW), p = 1.49 × 10−12 (Welch).
Amplitude ROC Analysis
- R vs. A (Figure 4)
- B vs. R (Figure 5)
- B vs. A (Figure 6)
4.2. RMS (V)
- R vs. A: p = 5.40 × 10−3 (MW), p = 5.91 × 10−4 (Welch);
- R vs. B: p = 4.77 × 10−6 (MW), p = 1.74 × 10−7 (Welch);
- A vs. B: p = 3.52 × 10−9 (MW), p = 2.32 × 10−12 (Welch).
RMS ROC Analysis
- R vs. A (Figure 8)
- B vs. R (Figure 9)
- B vs. A (Figure 10)
4.3. Duration (ns)
- R vs. A: no significant difference p = 0.84 (MW), p = 0.91(Welch);
- R vs. B: significant difference p = 0.0032 (MW), p = 0.0285 (Welch);
- A vs. B: significant difference p = 0.0056 (MW), p = 0.0330 (Welch).
4.4. Rise Time (ns)
- R vs. A: p = 0.0001 (MW), p = 0.0046 (Welch);
- A vs. B: p = 3.12 × 10−6 (MW), p = 3.00 × 10−4 (Welch);
- R vs. B: not significant p = 0.54 (MW), p = 0.65 (Welch).
4.5. Energy [V2/Hz]
- R vs. A: p = 5.0 × 10−4 (MW), p = 1.7 × 10−4 (Welch);
- R vs. B: p = 5.8 × 10−9 (MW), p = 6.8 × 10−8 (Welch);
- A vs. B: p = 2.2 × 10−9 (MW), p = 2.2 × 10−11 (Welch).
Energy ROC Analysis
- R vs. A (Figure 14)
- B vs. R (Figure 15)
- B vs. A (Figure 16)
4.6. Rise Time/Duration (–)
- R vs. A: p = 3.02 × 10−5 (MW), p = 1.43 × 10−4 (Welch);
- R vs. B: p = 0.097 (MW), p = 0.070 (Welch);
- A vs. B: p = 6.11 × 10−8 (MW), p = 4.10 × 10−7 (Welch).
5. Discussion
Limitations and Risk Scenarios
6. Conclusions
6.1. Key Findings
- Discriminative features: Signal energy and RMS voltage yielded the highest single-feature performance (AUC ≈ 0.96 for B vs. R and B vs. A; 0.86 for B vs. R). Maximum amplitude was the most reliable indicator for identifying silicate-treated specimens (AUC ≈ 0.83 for R vs. A).
- Decision thresholds: ROC-derived cut-offs, such as energy > 1.37 × 10−12 V2 Hz−1 or RMS > 6.12 × 10−5 V, correctly classified ≥ 90% of specimens in every pairwise contrast while keeping the false-positive rate below 10%.
- Physical interpretation: The sealer (B) added a thin, acoustically mismatched surface layer that attenuated and dampened the wavefield, whereas the pure silicate treatment (A) improved mechanical continuity at the interface and thus enhanced wave transmission.
- Practicality: A single 1 MHz broadband transducer, USB digitiser, and open-source processing scripts (~EUR 2000 total) are sufficient to deploy the method, enabling rapid acceptance tests on prefabricated façade panels, bridge-deck sealers, or hydrophobic coatings in water-treatment facilities.
6.2. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RMS | Root mean square |
ROC | Receiver operating characteristic |
AUC | Area under the curve |
PEUT | Pulse-echo ultrasonic testing |
NDE | Non-destructive evaluation |
CEN | Comité Européen de Normalisation |
QC | Quality control |
SAFT | Synthetic aperture focusing technique |
References
- Krause, M.; Bärmann, M.; Frielinghaus, R.; Kretzschmar, F.; Kroggel, O.; Langenberg, K.J.; Maierhofer, C.; Müller, W.; Neisecke, J.; Schickert, M.; et al. Comparison of Pulse-Echo Methods for Testing Concrete. NDT E Int. 1997, 30, 195–204. [Google Scholar] [CrossRef]
- Choi, H.; Popovics, J.S. NDE Application of Ultrasonic Tomography to a Full-Scale Concrete Structure. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 1076–1085. [Google Scholar] [CrossRef] [PubMed]
- Bond, L.J. Basic Inspection Methods (Pulse-Echo and Transmission Methods). In Review of Progress in Quantitative Nondestructive Evaluation; Springer: Cham, Switzerland, 2018; pp. 1–6. [Google Scholar]
- Roach, D.; Rackow, K. Development and Validation of Bonded Composite Doubler Repairs for Commercial Aircraft. In Aircraft Sustainment and Repair; Butterworth-Heinemann: Oxford, UK, 2018; pp. 545–743. [Google Scholar]
- Zatar, W.; Chen, G.; Nghiem, H.; Xiao, F. Ultrasonic Pulse-Echo Signals for Quantitative Assessment of Reinforced Concrete Anomalies. Appl. Sci. 2024, 14, 4860. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Liu, Y.; Xiong, J.; Zhao, Z.; Ran, L.; Yi, X. Simulation Study on the Performance of Ultrasonic Pulse–Echo Detector for Ice Thickness Identification. J. Phys. Conf. Ser. 2024, 2694, 012052. [Google Scholar] [CrossRef]
- Mukhti, J.A.; Gucunski, N.; Kee, S.-H. AI-assisted ultrasonic wave analysis for automated classification of steel corrosion-induced concrete damage. Autom. Constr. 2024, 167, 105704. [Google Scholar] [CrossRef]
- Ha, J.M.; Seung, H.M.; Choi, W. Autoencoder-Based Detection of Near-Surface Defects in Ultrasonic Testing. Ultrasonics 2022, 119, 106637. [Google Scholar] [CrossRef]
- Zarzuela, R.; Luna, M.; Carrascosa, L.M.; Yeste, M.P.; Garcia-Lodeiro, I.; Blanco-Varela, M.T.; Cauqui, M.A.; Rodríguez-Izquierdo, J.M.; Mosquera, M.J. Producing C-S-H Gel by Reaction between Silica Oligomers and Portlandite: A Promising Approach to Repair Cementitious Materials. Cem. Concr. Res. 2020, 130, 106008. [Google Scholar] [CrossRef]
- Song, Z.; Xue, X.; Li, Y.; Yang, J.; He, Z.; Shen, S.; Jiang, L.; Zhang, W.; Xu, L.; Zhang, H.; et al. Experimental Exploration of the Waterproofing Mechanism of Inorganic Sodium Silicate-Based Concrete Sealers. Constr. Build. Mater. 2016, 104, 276–283. [Google Scholar] [CrossRef]
- Yuan, M.; Dai, A.; Liao, L.; Chen, Y.; Ji, X. Numerical Study on Surface Roughness Measurement Based on Nonlinear Ultrasonics in Through-Transmission and Pulse-Echo Modes. Materials 2021, 14, 4855. [Google Scholar] [CrossRef]
- Li, Z. A Study on Ultrasonic Echo Tomography for Non-Destructive Evaluation of Hardened Cementitious Concrete. J. Build. Pathol. Rehabil. 2020, 5, 13. [Google Scholar] [CrossRef]
- Topolář, L.; Štefan, Z.; Fládr, J.; Vodička, J.; Křivý, V. Determination of Surface Properties of Treated Cement Pastes by Acoustic Methods and Scratch Test—Pilot Experiments. MATEC Web Conf. 2022, 364, 03009. [Google Scholar] [CrossRef]
- Kim, W.; Jeong, K.; Lee, T. Statistical Reliability Analysis of Ultrasonic Velocity Method for Predicting Residual Strength of High-Strength Concrete under High-Temperature Conditions. Materials 2024, 17, 1406. [Google Scholar] [CrossRef]
- Sansalone, M.; Carino, N.J. Impact-Echo: A Method for Flaw Detection in Concrete Using Transient Stress Waves; National Bureau of Standard: Gaithersburg, MD, USA, 1986; Volume 84, pp. 1–25. [Google Scholar]
- Bishko, A.; Samokrutov, A.A.; Shevaldykin, V.G. Ultrasonic Echo-Pulse Tomography of Concrete Using Shear Waves Low-Frequency Phased Antenna Arrays. In Proceedings of the 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28 October 2008; pp. 1–8. [Google Scholar]
- CSN EN 196-1:2016 (Czech version of EN 196-1:2016); Methods of Testing Cement—Part 1: Determination of Strength. Czech Office for Standards, Metrology and Testing: Prague, Czech Republic, 2016.
- Liu, Z.; Zhao, K.; Hu, C.; Tang, Y. Effect of Water-Cement Ratio on Pore Structure and Strength of Foam Concrete. Adv. Mater. Sci. Eng. 2016, 2016, 9520294. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; Fang, Z.; Sun, M.; Fan, Y.; Shah, S.P. Influence of Water-to-Binder Ratio on Autogenous Shrinkage and Electrical Resistivity of Cement Mortar. Buildings 2025, 15, 1444. [Google Scholar] [CrossRef]
- Helal, J.; Sofi, M.; Mendis, P. Non-Destructive Testing of Concrete: A Review of Methods. Electron. J. Struct. Eng. 2015, 14, 97–105. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, D.; Tang, Y.; Jian, Y. Compression Damage Precursors of Silane-Protected Concrete under Sulfate Erosion Based on Acoustic Emission Characterisation. Fractal Fract. 2025, 9, 254. [Google Scholar] [CrossRef]
- Lencis, U.; Udris, A.; Kara De Maeijer, P.; Korjakins, A. Methodology for Determining the Correct Ultrasonic Pulse Velocity in Concrete. Buildings 2024, 14, 720. [Google Scholar] [CrossRef]
- Djayaprabha, H.S.; Athikkali, P. Mechanical Strengths and Ultrasonic Pulse Velocity Evaluation of Supersulfated Cement Mortar Incorporating Sodium Sulfate. E3S Web Conf. 2023, 429, 05007. [Google Scholar] [CrossRef]
- Liu, D.; Wang, X.; Wu, Y. Active and Passive Monitoring of Corrosion State of Reinforced Concrete Using Embedded Cement-Based Acoustic Emission Sensors. Constr. Build. Mater. 2024, 406, 130196. [Google Scholar] [CrossRef]
- Pei, K.C.; Tsai, Y.J. Non-Linear Ultrasound Technique to Evaluate Degradation of Heat-Damaged Concrete Specimens. In Proceedings of the WCNDT 2024, Incheon, Republic of Korea, 27–31 May 2024. [Google Scholar]
- Johannes, R.; Godin, N.; Gaillet, L. Application of the Acousto-Ultrasonics Technique to Bridge Cables in Their Anchorages. E-J. Nondestruct. Test. 2024, 29. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Luo, S.; Yue, S.; Li, Z.; Yang, D. Self-Powered and Self-Healing Underwater Sensors with Functions of Intelligent Drowning Warning and Rescuing by Using a Nonswelling Hydrogel. ACS Appl. Mater. Interfaces 2025, 17, 26055–26064. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, P.; Shu, X. Durability Evaluation of Reinforced Concrete with Bio-Based Surface Treatment Using Soy Methyl Ester. J. Build. Eng. 2024, 81, 108564. [Google Scholar] [CrossRef]
- Petro, J.T.; Kim, J. Detection of Delamination in Concrete Using Ultrasonic Pulse Velocity Test. Constr. Build. Mater. 2012, 26, 574–582. [Google Scholar] [CrossRef]
Commercial Lithium Waterglass [Li2O = 2.07 wt.%; SiO2 = 18.97 wt.%] (g) | Water (g) | Hexylene Glycol (g) | |
---|---|---|---|
Treatment A | 56.4 | 42.5 | - |
Treatment B | 56.4 | 30.7 | 12.7 |
Parameter | Frequency | Amplitude | Pulse Width | Edge Time | Burst Period |
---|---|---|---|---|---|
Value | 5 MHz | 2 V | 100 ns | 5 ns | 5 s |
R | A | B | |
---|---|---|---|
Mean | 2.347 × 10−4 | 3.162 × 10−4 | 1.664 × 10−4 |
Standard error of the mean | 7.651 × 10−6 | 1.336 × 10−5 | 8.619 × 10−6 |
Median | 2.314 × 10−4 | 3.105 × 10−4 | 1.705 × 10−4 |
Mode | 1.979 × 10−4 | 3.105 × 10−4 | 1.614 × 10−4 |
Standard deviation | 4.120 × 10−5 | 7.320 × 10−5 | 4.479 × 10−5 |
Sample variance | 1.698 × 10−9 | 5.359 × 10−9 | 2.006 × 10−9 |
Kurtosis | −4.296 × 10−1 | 2.958 × 10−1 | 9.040 |
Skewness | 7.835 × 10−1 | 5.804 × 10−1 | 2.332 |
Range (maximum–minimum) | 1.340 × 10−4 | 2.588 × 10−4 | 2.283 × 10−4 |
Minimum | 1.796 × 10−4 | 2.040 × 10−4 | 1.157 × 10−4 |
Maximum | 3.136 × 10−4 | 4.628 × 10−4 | 3.440 × 10−4 |
Sum | 6.808 × 10−3 | 9.487 × 10−3 | 4.494 × 10−3 |
Count | 29 | 30 | 27 |
95% Confidence interval | 1.567 × 10−5 | 2.733 × 10−5 | 1.772 × 10−5 |
Compare | AUC | Optimal Cut-Off | Sensitivity | Specificity |
---|---|---|---|---|
R vs. A | 0.83 | 2.89 × 10−4 | 0.83 | 0.83 |
R vs. B 1 | 0.93 | 1.98 × 10−4 | 0.90 | 0.89 |
B vs. A | 0.97 | 2.04 × 10−4 | 1.00 | 0.93 |
R | A | B | |
---|---|---|---|
Mean | 6.249 × 10−5 | 6.843 × 10−5 | 5.114 × 10−5 |
Standard error of the mean | 1.143 × 10−6 | 1.164 × 10−6 | 1.480 × 10−6 |
Median | 6.374 × 10−5 | 6.527 × 10−5 | 4.948 × 10−5 |
Mode | - | - | - |
Standard deviation | 6.155 × 10−6 | 6.375 × 10−6 | 7.690 × 10−6 |
Sample variance | 3.788 × 10−11 | 4.063 × 10−11 | 5.913 × 10−11 |
Kurtosis | 5.144 × 10−1 | −8.304 × 10−1 | −3.740 × 10−1 |
Skewness | −9.311 × 10−1 | 5.703 × 10−1 | 6.334 × 10−1 |
Range (maximum–minimum) | 2.204 × 10−5 | 2.282 × 10−5 | 2.814 × 10−5 |
Minimum | 4.840 × 10−5 | 5.761 × 10−5 | 4.091 × 10−5 |
Maximum | 7.044 × 10−5 | 8.043 × 10−5 | 6.906 × 10−5 |
Sum | 1.812 × 10−3 | 2.053 × 10−3 | 1.381 × 10−3 |
Count | 29 | 30 | 27 |
95% Confidence interval | 2.341 × 10−6 | 2.380 × 10−6 | 3.042 × 10−6 |
Compare | AUC | Optimal Cut-Off | Sensitivity | Specificity |
---|---|---|---|---|
R vs. A | 0.71 | 7.06 × 10−5 | 0.37 | 1.00 |
B vs. R | 0.86 | 5.91 × 10−5 | 0.83 | 0.78 |
B vs. A | 0.96 | 6.12 × 10−5 | 0.97 | 0.89 |
R | A | B | |
---|---|---|---|
Mean | 370,475.9 | 367,466.7 | 303,133.3 |
Standard error of the mean | 11,322.43 | 11,145.71 | 27,199.86 |
Median | 375,000 | 342,300 | 298,400 |
Mode | 491,000 | 332,600 | 143,700 |
Standard deviation | 60,973.15 | 61,047.54 | 141,334.6 |
Sample variance | 3.72 × 109 | 3.73 × 109 | 2 × 1010 |
Kurtosis | −0.21279 | −0.23998 | 7.333138 |
Skewness | 0.388176 | 0.665053 | 1.911788 |
Range (maximum–minimum) | 233,300 | 232,900 | 756,600 |
Minimum | 257,700 | 278,600 | 82,900 |
Maximum | 491,000 | 511,500 | 839,500 |
Sum | 10,743,800 | 11,024,000 | 8,184,600 |
Count | 29 | 30 | 27 |
95% Confidence interval | 23,192.95 | 22,795.53 | 55,910.11 |
R | A | B | |
---|---|---|---|
Mean | 73,979.31 | 34,963.33 | 67,307.41 |
Standard error of the mean | 12,564.84 | 2013.66 | 7607.43 |
Median | 49,400 | 38,750 | 53,900 |
Mode | 216,900 | 40,300 | 102,900 |
Standard deviation | 67,663.76 | 11029.29 | 39,529.37 |
Sample variance | 4.58 × 109 | 1.22 × 108 | 1.56 × 109 |
Kurtosis | 1.17 | 0.15 | 7.28 |
Skewness | 1.67 | −1.09 | 2.32 |
Range (maximum–minimum) | 202,000 | 39,500 | 192,900 |
Minimum | 14,900 | 10,800 | 25,300 |
Maximum | 216,900 | 50,300 | 218,200 |
Sum | 2,145,400 | 1,048,900 | 1,817,300 |
Count | 29 | 30 | 27 |
95% Confidence interval | 25,737.92 | 4118.40 | 15,637.30 |
R | A | B | |
---|---|---|---|
Mean | 1.44 × 10−12 | 1.7 × 10−12 | 7.69 × 10−13 |
Standard error of the mean | 4.76 × 10−14 | 4.41 × 10−14 | 8.97 × 10−14 |
Median | 1.49 × 10−12 | 1.69 × 10−12 | 6.75 × 10−13 |
Mode | - | - | - |
Standard deviation | 2.56 × 10−13 | 2.42 × 10−13 | 4.66 × 10−13 |
Sample variance | 6.57 × 10−26 | 5.83 × 10−26 | 2.17 × 10−25 |
Kurtosis | 0.614629 | −0.13344 | 20.7908 |
Skewness | −1.193 | 0.513 | 4.319 |
Range (maximum–minimum) | 8.98 × 10−13 | 8.63 × 10−13 | 2.64 × 10−12 |
Minimum | 8.71 × 10−13 | 1.32 × 10−12 | 3.32 × 10−13 |
Maximum | 1.77 × 10−12 | 2.18 × 10−12 | 2.97 × 10−12 |
Sum | 4.18 × 10−11 | 5.1 × 10−11 | 2.08 × 10−11 |
Count | 29 | 30 | 27 |
95% Confidence interval | 9.75 × 10−14 | 9.02 × 10−14 | 1.84 × 10−13 |
Compare | AUC | Optimal Cut-Off | Sensitivity | Specificity |
---|---|---|---|---|
R vs. A | 0.61 | 1.65 × 10−12 | 0.60 | 0.79 |
B vs. R | 0.96 | 1.37 × 10−12 | 1.00 | 0.96 |
B vs. A | 0.96 | 1.32 × 10−12 | 1.00 | 0.96 |
R | A | B | |
---|---|---|---|
Mean | 0.200 | 0.097 | 0.259 |
Standard error of the mean | 0.033 | 0.006 | 0.034 |
Median | 0.128 | 0.107 | 0.258 |
Mode | - | 0.121 | - |
Standard deviation | 0.180 | 0.033 | 0.175 |
Sample variance | 0.032 | 0.001 | 0.031 |
Kurtosis | 2.210 | −0.393 | 8.950 |
Skewness | 1.805 | −0.948 | 2.540 |
Range (maximum–minimum) | 0.693 | 0.103 | 0.906 |
Minimum | 0.038 | 0.034 | 0.040 |
Maximum | 0.731 | 0.137 | 0.946 |
Sum | 5.813 | 2.918 | 6.994 |
Count | 29 | 30 | 27 |
95% Confidence interval | 0.068 | 0.012 | 0.069 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topolář, L.; Kalina, L.; Markusík, D.; Cába, V.; Sedlačík, M.; Černý, F.; Skibicki, S.; Bílek, V. Pulse-Echo Ultrasonic Verification of Silicate Surface Treatments Using an External-Excitation/Single-Receiver Configuration: ROC-Based Differentiation of Concrete Specimens. Materials 2025, 18, 3765. https://doi.org/10.3390/ma18163765
Topolář L, Kalina L, Markusík D, Cába V, Sedlačík M, Černý F, Skibicki S, Bílek V. Pulse-Echo Ultrasonic Verification of Silicate Surface Treatments Using an External-Excitation/Single-Receiver Configuration: ROC-Based Differentiation of Concrete Specimens. Materials. 2025; 18(16):3765. https://doi.org/10.3390/ma18163765
Chicago/Turabian StyleTopolář, Libor, Lukáš Kalina, David Markusík, Vladislav Cába, Martin Sedlačík, Felix Černý, Szymon Skibicki, and Vlastimil Bílek. 2025. "Pulse-Echo Ultrasonic Verification of Silicate Surface Treatments Using an External-Excitation/Single-Receiver Configuration: ROC-Based Differentiation of Concrete Specimens" Materials 18, no. 16: 3765. https://doi.org/10.3390/ma18163765
APA StyleTopolář, L., Kalina, L., Markusík, D., Cába, V., Sedlačík, M., Černý, F., Skibicki, S., & Bílek, V. (2025). Pulse-Echo Ultrasonic Verification of Silicate Surface Treatments Using an External-Excitation/Single-Receiver Configuration: ROC-Based Differentiation of Concrete Specimens. Materials, 18(16), 3765. https://doi.org/10.3390/ma18163765