The Influence of the Ar/N2 Ratio During Reactive Magnetron Sputtering of TiN Electrodes on the Resistive Switching Behavior of MIM Devices
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterization of TiN Thin Films
3.2. Electrical Measurements of Fabricated MIM Structures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RS | Resistive switching |
MIM | Metal–Insulator–Metal |
RRAM | Resistive random-access memory |
CMOS | Complementary Metal-Oxide-Semiconductor |
SRAM | Static random-access memory |
DRAM | Dynamic random-access memory |
XPS | X-ray photoelectron spectroscopy |
XRD | X-ray diffraction |
MRAM | Magnetic random-access memory |
PCM | Phase-change memory |
FeRAM | Ferroelectric random-access memory |
HRS | High-resistive state |
LRS | Low-resistive state |
BEOL | Back-end of line |
BE | Bottom electrode |
TE | Top electrode |
PVD | Physical Vapor Deposition |
sccm | standard cubic centimeter |
Re(ε) | Real part of relative permittivity |
DI | deionized |
BE | Binding Energy |
C2C | Cycle to cycle |
D2D | Device to device |
References
- Yu, S.; Kim, T.-H. Semiconductor Memory Technologies: State-of-the-Art and Future Trends. Computer 2024, 57, 150–154. [Google Scholar] [CrossRef]
- Meena, J.S.; Sze, S.M.; Chand, U.; Tseung, T.Y. Overview of emerging non-volatile memory technologies. Nanoscale Res. Lett. 2014, 9, 526. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yan, X. Overview of Resistive Random-Access Memory (RRAM): Materials, Filament Mechanisms, Performance, Optimization, and Prospects. Phys. Status Solidi PRL 2019, 13, 1900073. [Google Scholar] [CrossRef]
- Mazurak, A.; Mroczyński, R.; Jasiński, J.; Tanous, D.; Majkusiak, B.; Kano, S.; Sugimoto, H.; Fujii, M.; Valenta, J. Technology and characterization of MIS structures with co-doped silicon nanocrystals (Si-NCs) embedded in hafnium oxide (HfOx) ultra-thin layers. Microelectron. Eng. 2017, 178, 298–303. [Google Scholar] [CrossRef]
- Lelmini, D. Resistive switching memories based on metal-oxides: Mechanisms, reliability and scaling. Semicond. Sci. Techol. 2016, 31, 063002. [Google Scholar] [CrossRef]
- Lanza, M.; Wong, H.-S.P.; Pop, E.; Ielmini, D.; Strukov, D.; Regan, B.C.; Larcher, L.; Villena, M.A.; Yang, J.J.; Goux, L.; et al. Recommended Methods to Study Resistive Switching Devices. Adv. Electron. Mater. 2019, 5, 1800143. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, H.; Burr, G.W.; Hwang, C.S.; Wang, K.L.; Xia, Q.; Yang, J.J. Resistive switching materials for information processing. Nat. Rev. Mater. 2020, 5, 173–195. [Google Scholar] [CrossRef]
- Wong, H.-S.P.; Lee, H.Y.; Yu, S.; Chen, Y.S.; Wu, Y.; Chen, P.S.; Lee, B.; Chen, F.T.; Tsai, M.J. Metal-Oxide RRAM. Proc. IEEE 2012, 100, 1951–1970. [Google Scholar] [CrossRef]
- Jeyachandran, Y.; Narayandass, S.; Mangalaraj, D.; Areva, S.; Mielczarski, J. Properties of titanium nitride films prepared by direct current magnetron sputtering. Mater. Sci. Eng. A 2007, 445–446, 223–236. [Google Scholar] [CrossRef]
- Sun, C.; Lu, S.; Jin, F.; Mo, W.; Song, J.; Dong, K. Control the switching mode of Pt/HfO2/TiN RRAM devices by tunning the crystalline state of TiN electrode. J. Alloys Compd. 2018, 749, 481–486. [Google Scholar] [CrossRef]
- Wiśniewski, P.; Jasiński, J.; Mazurak, A.; Stonio, B.; Majkusiak, B. Investigation of Electrical Properties of the Al/SiO2/n++-Si Resistive Switching Structures by Means of Static, Admittance, and Impedance Spectroscopy Measurements. Materials 2021, 14, 6042. [Google Scholar] [CrossRef]
- Wiśniewski, P.; Mazurak, A.; Jasiński, J.; Beck, R.B. Study of silicon-oxide RRAM devices based on complex impedance spectroscopy. Solid State Electron. 2023, 208, 108732. [Google Scholar] [CrossRef]
- Judek, J.; Dhama, R.; Pianelli, A.; Wróbel, P.; Michałowski, P.P.; Dana, J.; Caglayan, H. Ultrafast optical properties of stoichiometric and non-stoichiometric refractory metal nitrides TiNx, ZrNx, and HfNx. Opt. Express 2024, 32, 3585–3596. [Google Scholar] [CrossRef]
- Mustapha, N.; Fekai, Z. Impact of nitrogen reactive gas and substrate temperature on the optical, electrical and structural properties of sputtered TiN thin films. J. Mater. Sci. Mater. Electron. 2020, 31, 20009–20021. [Google Scholar] [CrossRef]
- Seweryn, A.; Pietruszka, R.; Witkowski, B.S.; Wierzbicka, A.; Jakiela, R.; Sybilski, P.; Godlewski, M. Structural and Electrical Parameters of ZnO Thin Films Grown by ALD with either Water or Ozone as Oxygen Precursors. Crystals 2019, 9, 554. [Google Scholar] [CrossRef]
- Colombi, P.; Zanola, P.; Bontempi, E.; Roberti, R.; Gelfi, M.; Depero, L.E. Glancing-incidence X-ray diffraction for depth profiling of polycrystalline layers. J. Appl. Cryst. 2006, 39, 177–179. [Google Scholar] [CrossRef]
- Nelson, J.B.; Riley, D.P. An Experimental Investigation of Extrapolation Methods in the Derivation of Accurate Unit-Cell Dimensions of Crystals. Proc. Phys. Soc. 1945, 57, 160. [Google Scholar] [CrossRef]
- Puźniak, M.; Gajewski, W.; Seweryn, A.; Klepka, M.T.; Witkowski, B.S.; Godlewski, M.; Mroczyński, R. Studies of Electrical Parameters and Thermal Stability of HiPIMS Hafnium Oxynitride (HfOxNy) Thin Films. Materials 2023, 16, 2539. [Google Scholar] [CrossRef] [PubMed]
- Fairley, N.; Fernandez, V.; Richard-Plouet, M.; Guillot-Deudon, C.; Walton, J.; Smith, E.; Flahaut, D.; Greiner, M.; Biesinger, M.; Tougaard, S.; et al. Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl. Surf. Sci. Adv. 2021, 5, 100112. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. Self-consistent modelling of X-ray photoelectron spectra from air-exposed polycrystalline TiN thin films. Appl. Surf. Sci. 2016, 387, 294–300. [Google Scholar] [CrossRef]
- Crist, B.V. Handbook of Monochromatic XPS Spectra: The Elements of Native Oxides; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Greczynski, G.; Hultman, L. X-ray photoelectron spectroscopy: Towards reliable binding energy referencing. Prog. Mater. Sci. 2020, 107, 100591. [Google Scholar] [CrossRef]
- Qi, R.; Pan, L.; Feng, Y.; Wu, J.; Li, W.; Wang, Z. Evolution of chemical, structural, and mechanical properties of titanium nitride thin films deposited under different nitrogen partial pressure. Results Phys. 2020, 19, 103416. [Google Scholar] [CrossRef]
- Pouyan, P.; Amat, E.; Hamdioui, S.; Rubio, A. RRAM variability and its mitigation schemes. In Proceedings of the 2016 26th International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS), Bremen, Germany, 21–23 September 2016. [Google Scholar]
Sample | Ar/N2 | Ti [at. %] | N [at. %] | O [at. %] | C [at. %] |
---|---|---|---|---|---|
TiN-1 | 50/7 | 26.1 | 27.3 | 22.6 | 24 |
TiN-2 | 40/7 | 24.6 | 25.3 | 24.7 | 25.3 |
TiN-3 | 20/7 | 23.8 | 22.8 | 27.5 | 25.9 |
Sample | a (Å) | D (Å) |
---|---|---|
Ref. | 4.242 | - |
TiN-1 | 4.278 ± 0.01 | 8 |
TiN-2 | 4.256 ± 0.079 | 464.3 |
TiN-3 | 4.262 ± 0.01 | 757.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeżak, P.; Seweryn, A.; Klepka, M.; Mroczyński, R. The Influence of the Ar/N2 Ratio During Reactive Magnetron Sputtering of TiN Electrodes on the Resistive Switching Behavior of MIM Devices. Materials 2025, 18, 3940. https://doi.org/10.3390/ma18173940
Jeżak P, Seweryn A, Klepka M, Mroczyński R. The Influence of the Ar/N2 Ratio During Reactive Magnetron Sputtering of TiN Electrodes on the Resistive Switching Behavior of MIM Devices. Materials. 2025; 18(17):3940. https://doi.org/10.3390/ma18173940
Chicago/Turabian StyleJeżak, Piotr, Aleksandra Seweryn, Marcin Klepka, and Robert Mroczyński. 2025. "The Influence of the Ar/N2 Ratio During Reactive Magnetron Sputtering of TiN Electrodes on the Resistive Switching Behavior of MIM Devices" Materials 18, no. 17: 3940. https://doi.org/10.3390/ma18173940
APA StyleJeżak, P., Seweryn, A., Klepka, M., & Mroczyński, R. (2025). The Influence of the Ar/N2 Ratio During Reactive Magnetron Sputtering of TiN Electrodes on the Resistive Switching Behavior of MIM Devices. Materials, 18(17), 3940. https://doi.org/10.3390/ma18173940