Suitable Granular Road Base from Reclaimed Asphalt Pavement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Testing Plan
- Influence of RAP type: To achieve this goal, cylindrical specimens were manufactured and compacted with the optimal moisture content determined in the characterization phase. For specimens containing recycled materials, re-compaction was performed 24 h later at a temperature of 60 °C, considering the presence of a thin layer of adhered bitumen that enhances the mechanical behavior of the material [41] and that this temperature can be reached on-site [42,43,44]. A direct comparison was made between the reference materials and the recycled materials.
- Impact of combining RAP with reference materials: In this part of the study, the effect of replacing RAP in the crushed stone on mechanical behavior was evaluated with the aim of assessing the viability of partial replacement of virgin material with recycled material, in this case, in a 25/75, 50/50 and 75/25 recycled/virgin material ratio based on previous studies [45,46,47].
3. Results and Discussion
3.1. Optimization Study of the Use of RAP as a Granular Layer
3.1.1. Influence of RAP Type
3.1.2. Impact of Combining RAP with Reference Materials
3.2. Bearing Capacity
3.3. Permanent Deformation
3.4. Permeability
3.5. Full-Scale Laboratory Test Box
3.5.1. Bearing Capacity of Full-Scale Texting Box
3.5.2. Influence on the Behavior of the Track Section
4. Conclusions
- The recycled materials analyzed in this study exhibited appropriate mechanical characteristics to be used as aggregates in base layers for road structures.
- The results demonstrate that the use of RAP enhances the internal cohesion and mechanical resistance of granular materials used in road-based applications. This improvement is attributed to the bonding capacity provided by the residual binder, which becomes activated at high ambient temperatures. This approach resulted in a 65% increase in compressive strength and up to a 126% increase in indirect tensile strength compared to reference materials.
- The load-bearing capacity of RAP-based materials was superior to that of conventional granular bases under the proposed compaction conditions, achieving up to 30% higher modulus of elasticity below static and dynamic loads.
- Despite its more discontinuous gradation, RAP demonstrated adequate permeability characteristics, ensuring sufficient protection for the lower layers of the pavement structure against water infiltration.
- In permanent deformation tests, RAP-based materials exhibited superior performance, with up to a 22% reduction in total permanent deformation compared to natural aggregates, which translates into lower maintenance needs over the pavement’s service life.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elliot, T.; Carter, A.; Ghattuwar, S.; Levasseur, A. Environmental Impacts of Road Pavement Rehabilitation. Transp. Res. D Transp. Environ. 2023, 118, 103720. [Google Scholar] [CrossRef]
- Garraín, D.; Lechón, Y. Environmental Footprint of a Road Pavement Rehabilitation Service in Spain. J. Environ. Manag. 2019, 252, 109646. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.K.; Biswal, G. Utilization of Reclaimed Asphalt Pavement (RAP) as Granular Sub-Base Material in Road Construction. Mater. Today Proc. 2022, 60, 288–293. [Google Scholar] [CrossRef]
- Yaro, N.S.A.; Sutanto, M.H.; Baloo, L.; Habib, N.Z.; Usman, A.; Yousafzai, A.K.; Ahmad, A.; Birniwa, A.H.; Jagaba, A.H.; Noor, A. A Comprehensive Overview of the Utilization of Recycled Waste Materials and Technologies in Asphalt Pavements: Towards Environmental and Sustainable Low-Carbon Roads. Processes 2023, 11, 2095. [Google Scholar] [CrossRef]
- Nemade, P.A.; Pasla, D.; Chandrappa, A.K. Durability Assessment of Concrete with Natural and Linz Donawitz Slag as Coarse Aggregates. Constr. Build. Mater. 2023, 400, 132617. [Google Scholar] [CrossRef]
- Mohammed, S.I.; Najim, K.B. Mechanical Strength, Flexural Behavior and Fracture Energy of Recycled Concrete Aggregate Self-Compacting Concrete. Structures 2020, 23, 34–43. [Google Scholar] [CrossRef]
- Sol-Sánchez, M.; Moreno-Navarro, F.; Rubio-Gámez, M.C. Viability Analysis of Deconstructed Tires as Material for Rail Pads in High-Speed Railways. Mater. Des. 2014, 64, 407–414. [Google Scholar] [CrossRef]
- Marrero, M.; Rivero-Camacho, C.; Martínez-Rocamora, A.; Alba-Rodríguez, D.; Lucas-Ruiz, V. Holistic Assessment of the Economic, Environmental, and Social Impact of Building Construction. Application to Housing Construction in Andalusia. J. Clean Prod. 2024, 434, 140170. [Google Scholar] [CrossRef]
- European Commission. LEVEL (S) Taking Action on the Total Impact of the Construction Sector; European Union (EU): Brussels, Belgium, 2019.
- Guerrero-Bustamante, O.; Camargo, R.; Dawd, I.; Duque, J.; Polo-Mendoza, R.; Gálvis, J.; Díaz, J.; Daza, O.; Cucunuba, J.; Acosta, C. Implementation of Crumb Rubber (CR) in Road Pavements: A Comprehensive Literature Review. Infrastructure 2024, 9, 223. [Google Scholar] [CrossRef]
- Arulrajah, A.; Jegatheesan, P.; Disfani, M.; Bo, M. Geotechnical and Geo-Environmental Properties of Recycled Construction and Demolition Materials in Pavement Subbase Applications. J. Mater. Civ. Eng. 2013, 25, 1077–1088. [Google Scholar] [CrossRef]
- Liang, Y.; Ye, Z.; Vernerey, F.; Xi, Y. Development of Processing Methods to Improve Strength of Concrete with 100% Recycled Coarse Aggregate. J. Mater. Civ. Eng. 2013, 27, 4014163. [Google Scholar] [CrossRef]
- Ghanbari, M.; Abbasi, A.M.; Ravanshadnia, M. Production of Natural and Recycled Aggregates: The Environmental Impacts of Energy Consumption and CO2 Emissions. J. Mater. Cycles Waste Manag. 2018, 20, 810–822. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, X.; Zheng, L.; Mao, C.; Wang, L.; Falchetto, A.C.; Guo, D. Hot In-Place Recycled Asphalt Mixtures: RAP Analysis, Compaction Characteristics and Field Evaluation. Sustainability 2024, 16, 1064. [Google Scholar] [CrossRef]
- Yu, J.; Lin, Z.; Zou, G.; Yu, H.; Leng, Z.; Zhang, Y. Long-Term Performance of Recycled Asphalt Mixtures Containing High RAP and RAS. J. Road Eng. 2024, 4, 36–53. [Google Scholar] [CrossRef]
- Moreno-Navarro, F.; Sierra-Carrillo de Albornoz, F.J.; Sol-Sánchez, M.; Rubio-Gámez, M.C. MASAI: Sustainable, Automated and Intelligent Asphalt Materials. The Way to the next Generation of Asphalt Pavements. Road Mater. Pavement Des. 2023, 24, 486–505. [Google Scholar] [CrossRef]
- Zaumanis, M.; Arraigada, M.; Wyss, S.A.; Zeyer, K.; Cavalli, M.C.; Poulikakos, L.D. Performance-Based Design of 100% Recycled Hot-Mix Asphalt and Validation Using Traffic Load Simulator. J. Clean. Prod. 2019, 237, 117679. [Google Scholar] [CrossRef]
- Hoppe, E.J.; Lane, D.S.; Fitch, G.M.; Shetty, S. Feasibility of Reclaimed Asphalt Pavement (RAP) Use as Road Base and Subbase Material; Virginia Center for Transportation Innovation and Research: Charlottesville, VA, USA, 2015. [Google Scholar]
- Guerrero-Bustamante, O.; Guillen, A.; Moreno-Navarro, F.; Rubio-Gámez, M.C.; Sol-Sánchez, M. Toward Sustainable Railway Track Foundation: Recycling RAP from Road Asphalt Pavements. Constr. Build. Mater. 2024, 439, 137436. [Google Scholar] [CrossRef]
- Thakur, J.K.; Han, J. Recent Development of Recycled Asphalt Pavement (RAP) Bases Treated for Roadway Applications. Transp. Infrastruct. Geotechnol. 2015, 2, 68–86. [Google Scholar] [CrossRef]
- Luo, C. High Performance Granular Base and Subbase Materials Incorporating Reclaimed Asphalt Concrete Pavement. Doctoral Thesis, McMaster University, Hamilton, ON, Canada, 2014. [Google Scholar]
- Arshad, M.; Ahmed, M.F. Potential Use of Reclaimed Asphalt Pavement and Recycled Concrete Aggregate in Base/Subbase Layers of Flexible Pavements. Constr. Build. Mater. 2017, 151, 83–97. [Google Scholar] [CrossRef]
- Coban, H.S.; Cetin, B.; Ceylan, H.; Edil, T.B.; Likos, W.J. Evaluation of Long-Term Performance of Recycled Aggregate Base (RAB) Layers and Optimization of Their Design Thicknesses. Road Mater. Pavement Des. 2023, 24, 1310–1329. [Google Scholar] [CrossRef]
- Yuan, D.; Nazarian, S.; Hoyos, L.; Puppala, A. Evaluation and Mix Design of Cement-Treated Base Materials with High Content of Reclaimed Asphalt Pavement. Transp. Res. Rec. J. Transp. Res. Board 2011, 2212, 110–119. [Google Scholar] [CrossRef]
- Polo-Mendoza, R.; Mora, O.; Duque, J.; Turbay, E.; Martinez-Arguelles, G.; Fuentes, L.; Guerrero, O.; Perez, S. Environmental and Economic Feasibility of Implementing Perpetual Pavements (PPs) against Conventional Pavements: A Case Study of Barranquilla City, Colombia. Case Stud. Constr. Mater. 2023, 18, e02112. [Google Scholar] [CrossRef]
- Attia, M.; Abdelrahman, M. Effect of State of Stress on the Resilient Modulus of Base Layer Containing Reclaimed Asphalt Pavement. Road Mater. Pavement Des. 2011, 12, 79–97. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, I.; Lastra-González, P.; Indacoechea-Vega, I.; Castro-Fresno, D. Technical Feasibility for the Replacement of High Rates of Natural Aggregates in Asphalt Mixtures. Int. J. Pavement Eng. 2021, 22, 940–949. [Google Scholar] [CrossRef]
- Coelho, L.M.; Guimarães, A.C.R.; de Azevedo, A.R.G.; Monteiro, S.N. Sustainable Reclaimed Asphalt Emulsified Granular Mixture for Pavement Base Stabilization: Prediction of Mechanical Behavior Based on Repeated Load Triaxial Tests. Sustainability 2024, 16, 5335. [Google Scholar] [CrossRef]
- Bustos, G. Pliego de Prescripciones Técnicas Generales Para Obras de Carreteras y Puentes PG-3, 4th ed.; Ediciones Liteam: Madrid, Spain, 2004. [Google Scholar]
- UNE EN 933-3:2023; Part 3: Determination of Particle Shape—Flakiness Index. AENOR—Asociación Española de Normalización y Certificación NORMA: Madrid, Spain, 2012.
- UNE EN 933-5:2023; Part 5: Determination of Percentage of Crushed particles in Coarse and All-in Natural Aggregates. AENOR—Asociación Española de Normalización y Certificación NORMA: Madrid, Spain, 2023.
- UNE-EN 933-8:2012+A1; Part 8: Assess-ment of Fines—Sand Equivalent Test. AENOR—Asociación Española de Normalización y Certificación NORMA: Madrid, Spain, 2015.
- UNE EN 1097-2:2021; Part 2: Methods for the Determination of Resistance to Fragmentation. AENOR—Asociación Española de Normalización y Certificación NORMA: Madrid, Spain, 2021.
- UNE-EN 1097-6; Part 6: Determination of Particle Density and Water Absorption. AENOR—Asociación Española de Normalización y Certificación NORMA: Madrid, Spain, 2022.
- UNE EN 933-1:2012; Part 1: Determination of Particle Size Distribution—Sieving Method. AENOR—Asociación Española de Normalización y Certificación NORMA: Madrid, Spain, 2012.
- UNE 103501:1994; Geotecnia. Ensayo de Compactación. Proctor Modificado. AENOR—Asociación Española de Normalización y Certificación NORMA: Madrid, Spain, 1994.
- UNE-EN 12697-1:2013; Bituminous Mixtures. Test Methods for Hot Mix Asphalt. Part 1: Soluble Binder Content. AENOR—Asociación Española de Normalización y Certificación NORMA: Madrid, Spain, 2013.
- UNE-EN 1426:2015; Bitumen and Bituminous Binders. Determination of Needle Penetration. AENOR—Asociación Española de Normalización y Certificación NORMA: Madrid, Spain, 2015.
- UNE-EN 1427:2015; Bitumen and Bituminous Binders. Determination of the Softening Point. Ring and Ball Method. AENOR—Asociación Española de Normalización y Certificación NORMA: Madrid, Spain, 2015.
- Pirozzolo, L.; Sol-Sánchez, M.; Moreno-Navarro, F.; Martínez-Montes, G.; Rubio-Gámez, M.C. Evaluation of Bituminous Sub-Ballast Manufactured at Low Temperatures as an Alternative for the Construction of More Sustainable Railway Structures. Mater. De Construcción 2017, 67, e128. [Google Scholar] [CrossRef]
- Taziani, E.A.; Toraldo, E.; Mariani, E.; Crispino, M. Investigation on the Compaction Temperature Effect on Reactivating Aged Bitumen of 100% RAP Mixtures. In Pavement and Asset Management; Taylor & Francis Group: Abingdon, UK, 2019; ISBN 9780429264702. [Google Scholar]
- Gong, X.; Liu, Q.; Lv, Y.; Chen, S.; Wu, S.; Ying, H. A Systematic Review on the Strategies of Reducing Asphalt Pavement Temperature. Case Stud. Constr. Mater. 2023, 18, e01852. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, X.; Tan, K.; Wang, J. A Review on the Influencing Factors of Pavement Surface Temperature. Environ. Sci. Pollut. Res. 2022, 29, 67659–67674. [Google Scholar] [CrossRef]
- Coelho, L.M.; Guimarães, A.C.R. Effect of Compaction Temperature on the Mechanical Behavior of Granular Base Containing RAP. In Proceedings of the 5th International Conference on Transportation Geotechnics (ICTG), Sydney, Australia, 20–22 November 2024; Volume 5, pp. 129–137. [Google Scholar]
- Costa, J.O.; Borges, P.H.R.; dos Santos, F.A.; Bezerra, A.C.S.; Van den bergh, W.; Blom, J. Cementitious Binders and Reclaimed Asphalt Aggregates for Sustainable Pavement Base Layers: Potential, Challenges and Research Needs. Constr. Build. Mater. 2020, 265, 120325. [Google Scholar] [CrossRef]
- Tauste, R.; Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M.C. The Effect of the Nature of Rejuvenators on the Rheological Properties of Aged Asphalt Binders. In Proceedings of the RILEM 252-CMB Symposium: Chemo-Mechanical Characterization of Bituminous Materials, Braunschweig, Germany, 17–18 September 2018; Springer: Cham, Switzerland, 2019; pp. 220–225. [Google Scholar]
- Moreno-Navarro, F.; Sol-Sánchez, M.; García-Travé, G.; Tauste-Martínez, R.; Rubio-Gámez, M.C.; Rodriguez-López, C.; Hernández-Pérez, M.; Gambín-Peñalver, J. Laboratory Study of Soil-Cement Manufactured with RAP for Its Application as a Sustainable and High-Performance Base in Asphalt Pavements. In Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields; CRC Press: London, UK, 2022; Volume 3, pp. 313–321. [Google Scholar]
- Navarro, F.M.; Gámez, M.C.R. Influence of Crumb Rubber on the Indirect Tensile Strength and Stiffness Modulus of Hot Bituminous Mixes. J. Mater. Civ. Eng. 2012, 24, 715–724. [Google Scholar] [CrossRef]
- NORMA UNE 103400:1993; Simple Compression Test on Soil Specimens. AENOR-Asociación Española de Normalización y Certificación: Madrid, Spain, 1993.
- NORMA UNE-EN 12697-23:2018; Part 23: Determination of the Indirect Tensile Strength of Bituminous Specimens. AENOR-Asociación Española de Normalización y Certificación: Madrid, Spain, 2018.
- NORMA UNE 103808:2006; Ensayo de Carga Vertical de Suelos Mediante Placa Estática. AENOR-Asociación Española de Normalización y Certificación: Madrid, Spain, 2006.
- NORMA UNE 103807-2:2021; Ensayo de Carga Vertical de Suelos Mediante Placa Dinámica. AENOR-Asociación Española de Normalización y Certificación: Madrid, Spain, 2021.
- UNE EN 12697-22:2022; Bituminous Mixtures—Test Methods—Part 22: Wheel Tracking. AENOR-Asociación Española de Normalización y Certificación: Madrid, Spain, 2022.
- NORMA UNE 103403:1999; Determinación de La Permeabilidad de Una Muestra de Suelo—Método de Carga Constante. AENOR-Asociación Española de Normalización y Certificación: Madrid, Spain, 1999.
- UNE-EN 13108-2:2007; Bituminous Mixtures—Material Specifications—Part 2: Asphalt Concrete for Very Thin Layers. AENOR-Asociación Española de Normalización y Certificación: Madrid, Spain, 2007.
- Sol-Sánchez, M.; Moreno-Navarro, F.; Carmen Rubio-Gámez, M. Large-Scale Testing Box: A Tool to Evaluate the Structural Performance of Railway Tracks. In Railroad Ballast Testing and Properties; ASTM International100 Barr Harbor Drive: West Conshohocken, PA, USA, 2018; pp. 191–207. [Google Scholar]
- Alam, T.B.; Abdelrahman, M.; Schram, S.A. Laboratory Characterisation of Recycled Asphalt Pavement as a Base Layer. Int. J. Pavement Eng. 2010, 11, 123–131. [Google Scholar] [CrossRef]
- Tauste, R.; Hidalgo, A.E.; García, G.M.; Moreno-Navarro, F.; Rubio-Gámez, M.C. Understanding the Influence of Filler Type and Asphalt Binder Content on the Moisture and Fatigue Resistance of Asphalt Mortars. Mater. De Construcción 2022, 72, e301. [Google Scholar] [CrossRef]
- Moreno-Navarro, F.; Sol-Sánchez, M.; Tomás-Fortún, E.; Rubio-Gámez, M.C. High-Modulus Asphalt Mixtures Modified with Acrylic Fibers for Their Use in Pavements under Severe Climate Conditions. J. Cold Reg. Eng. 2016, 30, 04016003. [Google Scholar] [CrossRef]
- Brand, A.S.; Roesler, J.R.; Al-Qadi, I.L.; Shangguan, P. Fractionated Reclaimed Asphalt Pavement (FRAP) as a Coarse Aggregate Replacement in a Ternary Blended Concrete Pavement; CORE: Downers Grove, IL, USA, 2012. [Google Scholar]
- Su, Y.-M.; Hossiney, N.; Tia, M.; Bergin, M. Mechanical Properties Assessment of Concrete Containing Reclaimed Asphalt Pavement Using the Superpave Indirect Tensile Strength Test. J. Test Eval. 2014, 42, 912–920. [Google Scholar] [CrossRef]
- Arshad, M. Development of a Correlation between the Resilient Modulus and CBR Value for Granular Blends Containing Natural Aggregates and RAP/RCA Materials. Adv. Mater. Sci. Eng. 2019, 2019, 1–16. [Google Scholar] [CrossRef]
- Dong, Q.; Huang, B. Laboratory Evaluation on Resilient Modulus and Rate Dependencies of RAP Used as Unbound Base Material. J. Mater. Civ. Eng. 2014, 26, 379–383. [Google Scholar] [CrossRef]
- Kumar Pradhan, S.; Das, U.; Ranjan Patra, A. Utilization of Reclaimed Asphalt Pavement (RAP) Materials in HMA Mixtures for Flexible Pavement Construction. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Jacobs, G.; Couscheir, K.; Hernando, D.; Moins, B.; Vansteenkiste, S.; Tanghe, T.; Duerinckx, B.; Van den bergh, W. Mechanical Performance of Asphalt Base Layers with High RAP Content and Recycling Agents. Road Mater. Pavement Des. 2024, 25, 84–94. [Google Scholar] [CrossRef]
- Hidalgo-Signes, C.; Martínez-Fernández, P.; Garzón-Roca, J.; Insa-Franco, R. Analysis of the Bearing Capacity of Unbound Granular Mixtures with Rubber Particles from Scrap Tyres When Used as Sub-Ballast. Mater. De Construcción 2016, 66, 105. [Google Scholar] [CrossRef]
- Seferoğlu, A.G.; Seferoğlu, M.T.; Akpinar, M.V. Experimental Study on Cement-Treated and Untreated RAP Blended Bases: Cyclic Plate Loading Test. Constr. Build. Mater. 2018, 182, 580–587. [Google Scholar] [CrossRef]
- Arshad, A.K.; Abd Karim, Z.; Shaffie, E.; Hashim, W.; Abd Rahman, Z. Marshall Properties and Rutting Resistance of Hot Mix Asphalt with Variable Reclaimed Asphalt Pavement (RAP) Content. IOP Conf. Ser. Mater. Sci. Eng. 2017, 271, 012078. [Google Scholar] [CrossRef]
- Howard, I.L.; Doyle, J.D.; Cox, B.C. Merits of Reclaimed Asphalt Pavement-Dominated Warm Mixed Flexible Pavement Base Layers. Road Mater. Pavement Des. 2013, 14, 106–128. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, H.; Jiang, H.; Xu, X.; Liang, M.; Hou, Y.; Yao, Z. Experimental Assessment of Reclaimed Bitumen and RAP Asphalt Mixtures Incorporating a Developed Rejuvenator. Constr. Build. Mater. 2019, 215, 660–669. [Google Scholar] [CrossRef]
- Seferoğlu, A.G.; Seferoğlu, M.T.; Akpınar, M.V. Investigation of the Effect of Recycled Asphalt Pavement Material on Permeability and Bearing Capacity in the Base Layer. Adv. Civ. Eng. 2018, 2018, 1–6. [Google Scholar] [CrossRef]
- Koohmishi, M.; Azarhoosh, A. Assessment of Permeability of Granular Drainage Layer Considering Particle Size and Air Void Distribution. Constr. Build. Mater. 2021, 270, 121373. [Google Scholar] [CrossRef]
- Kandlavath, H.N.; Chowdhury, P.S.; Reddy, M.A. Evaluation of Horizontal Permeability Characteristics of Granular Subbase Material. Transp. Res. Procedia 2020, 48, 3725–3733. [Google Scholar] [CrossRef]
- Sol-Sánchez, M.; Moreno-Navarro, F.; Rubio-Gámez, M.C.; Manzo, N.; Fontseré, V. Full-Scale Study of Neoballast Section for Its Application in Railway Tracks: Optimization of Track Design. Mater. Struct. 2018, 51, 43. [Google Scholar] [CrossRef]
- d’Angelo, G.; Sol-Sánchez, M.; Moreno-Navarro, F.; Lo Presti, D.; Thom, N. Use of Bitumen-Stabilised Ballast for Improving Railway Trackbed Conventional Maintenance. Géotechnique 2018, 68, 518–527. [Google Scholar] [CrossRef]
- Sol-Sánchez, M.; Pirozzolo, L.; Moreno-Navarro, F.; Rubio-Gámez, M.C. A Study into the Mechanical Performance of Different Configurations for the Railway Track Section: A Laboratory Approach. Eng. Struct. 2016, 119, 13–23. [Google Scholar] [CrossRef]
Properties | Standard | Crushed Stone | RAP 1 | RAP 2 | RAP 3 |
---|---|---|---|---|---|
Flakiness index (%) | UNE EN 933-3:2023 [30] | 18 | 13 | 6 | 11 |
Percentage of fractured face (%) | UNE-EN 933-5:2023 [31] | 100 | 100 | 100 | 100 |
Sand equivalent (%) | UNE-EN 933-8:2015 [32] | 55 | 78 | 81 | 69 |
Resistance to fragmentation (L.A.) (4/8 mm) (%) | UNE EN 1097-2:2021 [33] | 23.9 | 20.7 | 15.3 | 20.8 |
Resistance to fragmentation (L.A.) (8/11.2 mm) (%) | UNE EN 1097-2:2021 [33] | 20.8 | 17.1 | 12.8 | 18.7 |
Density (Mg/m3) | UNE-EN 1097-6 [34] | 2.81 | 2.57 | 2.57 | 2.56 |
Coefficient of uniformity (Cu) | UNE-EN 933-1:2012 [35] | 45 | 8 | 10 | 11 |
Curvature coefficient (Cc) | UNE-EN 933-1:2012 [35] | 3.1 | 3.1 | 3.1 | 1.4 |
Modified Proctor Opt. Moisture content (%)/Max Dry Density. (g/cm3) | UNE 103501:1994 [36] | 5.0/2.37 | 5.5/2.25 | 5.5/2.32 | 5.5/2.33 |
Recovery of binder by Evaporation | |||||
Residual binder content (% Total weight) | UNE-EN 12697-1:2013 [37] | - | 3.9 | 3.0 | 4.0 |
Binder Penetration (25 °C) (0.01 mm) | UNE-EN 1426:2015 [38] | - | 16.0 | 4.0 | 8.0 |
Softening Point (°C) | UNE-EN1427:2015 [39] | - | 71 | 129 | 85 |
Stage | Properties | Materials | Test |
---|---|---|---|
Optimization Study of the Use of RAP as a Granular Layer | Impact of RAP Type Impact of Combining RAP with Reference Materials | Crushed Stone RAP 1 RAP 2 RAP 3 | Indirect Tensile Strength Compressive Strength |
Bearing Capacity | Elastic Modulus | Crushed Stone Opt. RAP | 300 mm Static Plate Bearing Test 300 mm Dynamic Punching Test |
Permanent Deformation | Total Rut Depth | Wheel Tracking Test | |
Permeability | Vertical Permeability (K) | Permeameter | |
Full Scale Laboratory Testing Box | Bearing CapacityPermanent Deformation | 600 mm Static Plate Bearing Test 600 mm Dynamic Punching Test Permanent Deformation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero-Bustamante, O.; Guillen, A.; Moreno-Navarro, F.; Rubio-Gámez, M.C.; Sol-Sánchez, M. Suitable Granular Road Base from Reclaimed Asphalt Pavement. Materials 2025, 18, 854. https://doi.org/10.3390/ma18040854
Guerrero-Bustamante O, Guillen A, Moreno-Navarro F, Rubio-Gámez MC, Sol-Sánchez M. Suitable Granular Road Base from Reclaimed Asphalt Pavement. Materials. 2025; 18(4):854. https://doi.org/10.3390/ma18040854
Chicago/Turabian StyleGuerrero-Bustamante, Oswaldo, Amparo Guillen, Fernando Moreno-Navarro, M. C. Rubio-Gámez, and Miguel Sol-Sánchez. 2025. "Suitable Granular Road Base from Reclaimed Asphalt Pavement" Materials 18, no. 4: 854. https://doi.org/10.3390/ma18040854
APA StyleGuerrero-Bustamante, O., Guillen, A., Moreno-Navarro, F., Rubio-Gámez, M. C., & Sol-Sánchez, M. (2025). Suitable Granular Road Base from Reclaimed Asphalt Pavement. Materials, 18(4), 854. https://doi.org/10.3390/ma18040854