Sustainable Conversion of Biomass to Multiwalled Carbon Nanotubes and Carbon Nanochains
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of MWCNTs
2.3. Synthesis of CNCs
2.4. Activation of CNCs
2.5. Characterization
3. Results and Discussion
3.1. Conversion of Biochar to Carbon Nanotubes
3.2. Mechanism of Carbon Nanotube Formation
3.3. Conversion of Biochar to Carbon Nanochains
3.4. Conversion of Lignite to Carbon Nanotubes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Inagaki, M.; Kang, F.; Toyoda, M.; Konno, H. Advanced Materials Science and Engineering of Carbon; Butterworth-Heinemann: Woburn, MA, USA, 2013; p. 440. [Google Scholar]
- Pant, M.; Singh, R.; Negi, P.; Tiwari, K.; Singh, Y. A comprehensive review on carbon nano-tube synthesis using chemical vapor deposition. Mater. Today Proc. 2021, 46, 11250–11253. [Google Scholar] [CrossRef]
- Kumar, M.; Ando, Y. Camphor–A botanical precursor producing garden of carbon nanotubes. Diam. Relat. Mater. 2003, 12, 998–1002. [Google Scholar] [CrossRef]
- Vivekanandhan, S.; Schreiber, M.; Muthuramkumar, S.; Misra, M.; Mohanty, A.K. Carbon nanotubes from renewable feedstocks: A move toward sustainable nanofabrication. J. Appl. Polym. Sci. 2017, 134, 44255. [Google Scholar] [CrossRef]
- Janas, D. From Bio to Nano: A Review of Sustainable Methods of Synthesis of Carbon Nanotubes. Sustainability 2020, 12, 4115. [Google Scholar] [CrossRef]
- Ge, L.; Zuo, M.; Wang, Y.; Wang, R.; Rong, N.; Qi, Z.; Zhao, C.; Zhang, Y.; Xu, C. A review of comprehensive utilization of biomass to synthesize carbon nanotubes: From chemical vapor deposition to microwave pyrolysis. J. Anal. Appl. Pyrolysis 2024, 177, 106320. [Google Scholar] [CrossRef]
- Osman, A.I.; Farrell, C.; Al-Muhtaseb, A.a.H.; Harrison, J.; Rooney, D.W. The production and application of carbon nanomaterials from high alkali silicate herbaceous biomass. Sci. Rep. 2020, 10, 2563. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Luo, C.; Cong, Q.; Yuan, X. Carbon nanotubes and Cu–Zn nanoparticles synthesis using hyperaccumulator plants. Environ. Chem. Lett. 2011, 10, 153–158. [Google Scholar] [CrossRef]
- Dubrovina, L.; Naboka, O.; Ogenko, V.; Gatenholm, P.; Enoksson, P. One-Pot synthesis of carbon nanotubes from renewable resource: Cellulose acetate. J. Mater. Sci. 2013, 49, 1144–1149. [Google Scholar] [CrossRef]
- Kang, Z.; Wang, E.; Mao, B.; Su, Z.; Chen, L.; Xu, L. Obtaining carbon nanotubes from grass. Nanotechnology 2005, 16, 1192–1195. [Google Scholar] [CrossRef]
- Hidalgo, P.; Navia, R.; Hunter, R.; Coronado, G.; Gonzalez, M. Synthesis of carbon nanotubes using biochar as precursor material under microwave irradiation. J. Environ. Manag. 2019, 244, 83–91. [Google Scholar] [CrossRef]
- Banek, N.A.; Abele, D.T.; McKenzie, K.R., Jr.; Wagner, M.J. Sustainable Conversion of Lignocellulose to High-Purity, Highly Crystalline Flake Potato Graphite. ACS Sustain. Chem. Eng. 2018, 6, 13199–13207. [Google Scholar] [CrossRef]
- Wagner, M.J.; Banek, N.A.; Abele, D.T.; Mckenzie, K.R., Jr. Method and Systems for the Production of Crystalline Flake Graphite from Biomass or Other Carbonaceous Materials. U.S. Patent 11380895B2, 5 July 2022. [Google Scholar]
- Banek, N.A.; McKenzie, K.R.; Abele, D.T.; Wagner, M.J. Sustainable conversion of biomass to rationally designed lithium-ion battery graphite. Sci. Rep. 2022, 12, 8080. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Kou, K.; Qin, M.; Wu, H.; Puleo, F.; Liotta, L.F. Controllable and Large-Scale Synthesis of Carbon Nanostructures: A Review on Bamboo-Like Nanotubes. Catalysts 2017, 7, 256. [Google Scholar] [CrossRef]
- Feng, L.; Xie, N.; Zhong, J. Carbon Nanofibers and Their Composites: A Review of Synthesizing, Properties and Applications. Materials 2014, 7, 3919–3945. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F.; Qiu, J.S.; Zhao, Z.B.; Wang, T.H.; Wang, Y.P.; Li, W. Bamboo-Shaped carbon tubes from coal. Chem. Phys. Lett. 2002, 366, 544–550. [Google Scholar] [CrossRef]
- Kumar, M. Carbon Nanotube Synthesis and Growth Mechanism. In Carbon Nanotubes-Synthesis, Characterization, Applications; Yellampalli, S., Ed.; IntechOpen: Rijeka, Croatia, 2011. [Google Scholar]
- Mckinnon, T.J.; Herring, A.M.; McCloskey, B.D. Laser Pyrolysis Method for Producing Carbon Nano-Spheres. U.S. Patent 20060137487A1, 2 June 2005. [Google Scholar]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Song, Y.; Xie, J.; Xin, L.; Fu, H. SEM Image Analysis of Pore and Fracture Characteristics of Lignite Under Temperature Gradient. Geotech. Geol. Eng. 2019, 37, 4815–4823. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McKenzie, K.R., Jr.; Banek, N.A.; Wagner, M.J. Sustainable Conversion of Biomass to Multiwalled Carbon Nanotubes and Carbon Nanochains. Materials 2025, 18, 1022. https://doi.org/10.3390/ma18051022
McKenzie KR Jr., Banek NA, Wagner MJ. Sustainable Conversion of Biomass to Multiwalled Carbon Nanotubes and Carbon Nanochains. Materials. 2025; 18(5):1022. https://doi.org/10.3390/ma18051022
Chicago/Turabian StyleMcKenzie, Kevin R., Jr., Nathan A. Banek, and Michael J. Wagner. 2025. "Sustainable Conversion of Biomass to Multiwalled Carbon Nanotubes and Carbon Nanochains" Materials 18, no. 5: 1022. https://doi.org/10.3390/ma18051022
APA StyleMcKenzie, K. R., Jr., Banek, N. A., & Wagner, M. J. (2025). Sustainable Conversion of Biomass to Multiwalled Carbon Nanotubes and Carbon Nanochains. Materials, 18(5), 1022. https://doi.org/10.3390/ma18051022