Kombucha as a Solvent for Chitosan Coatings: A New Strategy to Extend Shelf Life of Red Peppers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Methodology of Kombucha, Chitosan–Kombucha Solutions and Films
2.1.1. Preparation of Kombucha
2.1.2. Preparation of Chitosan–Kombucha Solutions
2.1.3. Preparation of Chitosan–Kombucha Films
2.1.4. Total Phenolic and Flavonoid Content in Kombucha Solutions
2.1.5. Preparation of Indicator Microorganism Cultures for Antibacterial Testing
2.1.6. Antibacterial Activity of Kombucha–Chitosan Solutions
2.1.7. Water Vapor Transmission Rate
2.1.8. Mechanical Properties
2.2. Research Methodology of Coated Red Bell Peppers
2.2.1. Plant Material
2.2.2. Texture Parameter Analysis
2.2.3. Ascorbic Acid Determination
2.2.4. Sensory Evaluation
2.2.5. Radical Cation Scavenging Activity
2.2.6. Statistical Analysis
3. Results and Discussion
3.1. Properties of Three Types of Kombucha and Kombucha–Chitosan Solutions
3.1.1. Total Phenolic (TPC) and Flavonoid (TFC) Content in Kombucha Solutions
3.1.2. Antibacterial Properties of Kombucha–Chitosan Solutions
3.2. Properties of Lemon Balm Kombucha Films
3.3. Evaluation of the Quality of Red Pepper Coated with Chitosan–Lemon Balm Kombucha Solution
3.3.1. Texture Parameters
3.3.2. Sensory Evaluation
3.3.3. Ascorbic Acid Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barman, K.; Ahmad, M.S.; Siddiqui, M.W. Factors Affecting the Quality of Fruits and Vegetables: Recent Understandings. In Postharvest Biology and Technology of Horticultural Crops; Apple Academic Press: Pleasant, NJ, USA; CRC Press: Boca Raton, FL, USA, 2015; pp. 23–72. [Google Scholar] [CrossRef]
- Abdollahzadeh, E.; Nematollahi, A.; Hosseini, H. Composition of Antimicrobial Edible Films and Methods for Assessing Their Antimicrobial Activity: A Review. Trends Food Sci. Technol. 2021, 110, 291–303. [Google Scholar] [CrossRef]
- Kazemian-Bazkiaee, F.; Ebrahimi, A.; Hosseini, S.M.; Shojaee-Aliabadi, S.; Farhoodi, M.; Rahmatzadeh, B.; Sheikhi, Z. Evaluating the Protective Effect of Edible Coatings on Lipid Oxidation, Fatty Acid Composition, Aflatoxins Levels of Roasted Peanut Kernels. J. Food Meas. Charact. 2020, 14, 1025–1038. [Google Scholar] [CrossRef]
- De Pilli, T. Development of a Vegetable Oil and Egg Proteins Edible Film to Replace Preservatives and Primary Packaging of Sweet Baked Goods. Food Control 2020, 114, 107273. [Google Scholar] [CrossRef]
- Kõrge, K.; Bajić, M.; Likozar, B.; Novak, U. Active Chitosan-Chestnut Extract Films Used for Packaging and Storage of Fresh Pasta. Int. J. Food Sci. Technol. 2020, 55, 3043–3052. [Google Scholar] [CrossRef]
- Yousuf, B.; Qadri, O.S.; Srivastava, A.K. Recent Developments in Shelf-Life Extension of Fresh-Cut Fruits and Vegetables by Application of Different Edible Coatings: A Review. LWT 2018, 89, 198–209. [Google Scholar] [CrossRef]
- Garcia, L.C.; Pereira, L.M.; De Luca Sarantópoulos, C.I.G.; Hubinger, M.D. Effect of Antimicrobial Starch Edible Coating on Shelf-Life of Fresh Strawberries. Packag. Technol. Sci. 2012, 25, 413–425. [Google Scholar] [CrossRef]
- Kumarihami, H.M.P.C.; Kim, Y.H.; Kwack, Y.B.; Kim, J.; Kim, J.G. Application of Chitosan as Edible Coating to Enhance Storability and Fruit Quality of Kiwifruit: A Review. Sci. Hortic. 2022, 292, 110647. [Google Scholar] [CrossRef]
- Rohasmizah, H.; Azizah, M. Pectin-Based Edible Coatings and Nanoemulsion for the Preservation of Fruits and Vegetables: A Review. Appl. Food Res. 2022, 2, 100221. [Google Scholar] [CrossRef]
- Moghadam, M.; Salami, M.; Mohammadian, M.; Khodadadi, M.; Emam-Djomeh, Z. Development of Antioxidant Edible Films Based on Mung Bean Protein Enriched with Pomegranate Peel. Food Hydrocoll. 2020, 104, 105735. [Google Scholar] [CrossRef]
- Mohanty, B. Functionality of Protein-Based Edible Coating-Review. J. Entomol. Zool. Stud. 2020, 8, 1432–1440. [Google Scholar]
- Yousef, A.R.; Abd El-Moniem, E.A.; Sh Mahmoud, T.M. Edible Coating of Soy Protein or Gelatin as a Carrier of Thyme Oil for Maintaining Quality of “Barhee” Dates Fruits During Cold Storage. Plant Arch. 2020, 20, 9311–9322. [Google Scholar]
- Yousuf, B.; Sun, Y.; Wu, S. Lipid and Lipid-Containing Composite Edible Coatings and Films. Food Rev. Int. 2022, 38, 574–597. [Google Scholar] [CrossRef]
- Wang, H.; Ding, F.; Ma, L.; Zhang, Y. Edible Films from Chitosan-Gelatin: Physical Properties and Food Packaging Application. Food Biosci. 2021, 40, 100871. [Google Scholar] [CrossRef]
- Amor, G.; Sabbah, M.; Caputo, L.; Idbella, M.; De Feo, V.; Porta, R.; Fechtali, T.; Mauriello, G. Basil Essential Oil: Composition, Antimicrobial Properties, and Microencapsulation to Produce Active Chitosan Films for Food Packaging. Foods 2021, 10, 121. [Google Scholar] [CrossRef]
- Kumar, N.; Neeraj; Pratibha; Singla, M. Enhancement of Storage Life and Quality Maintenance of Litchi (Litchi Chinensis Sonn.) Fruit Using Chitosan:Pullulan Blend Antimicrobial Edible Coating. Int. J. Fruit Sci. 2020, 20, S1662–S1680. [Google Scholar] [CrossRef]
- Melo, N.F.C.B.; de Lima, M.A.B.; Stamford, T.L.M.; Galembeck, A.; Flores, M.A.P.; de Campos Takaki, G.M.; da Costa Medeiros, J.A.; Stamford-Arnaud, T.M.; Montenegro Stamford, T.C. In Vivo and in Vitro Antifungal Effect of Fungal Chitosan Nanocomposite Edible Coating against Strawberry Phytopathogenic Fungi. Int. J. Food Sci. Technol. 2020, 55, 3381–3391. [Google Scholar] [CrossRef]
- Melro, E.; Antunes, F.E.; da Silva, G.J.; Cruz, I.; Ramos, P.E.; Carvalho, F.; Alves, L. Chitosan Films in Food Applications. Tuning Film Properties by Changing Acidic Dissolution Conditions. Polymers 2020, 13, 1. [Google Scholar] [CrossRef]
- Qiao, C.; Ma, X.; Wang, X.; Liu, L. Structure and Properties of Chitosan Films: Effect of the Type of Solvent Acid. LWT 2021, 135, 109984. [Google Scholar] [CrossRef]
- Adımcılar, V.; Kalaycıoğlu, Z.; Akın-Evingür, G.; Torlak, E.; Erim, F.B. Comparative Physical, Antioxidant, and Antimicrobial Properties of Films Prepared by Dissolving Chitosan in Bioactive Vinegar Varieties. Int. J. Biol. Macromol. 2023, 242, 124735. [Google Scholar] [CrossRef]
- Stefanowska, K.; Woźniak, M.; Majka, J.; Sip, A.; Mrówczyńska, L.; Waśkiewicz, A.; Kozak, W.; Dobrucka, R.; Ratajczak, I. A New Approach to Obtain Chitosan Films—Characteristics of Films Prepared with Tea and Coffee Kombucha as Natural Chitosan Solvents. Ind. Crops Prod. 2023, 197, 116634. [Google Scholar] [CrossRef]
- de Miranda, J.F.; Ruiz, L.F.; Silva, C.B.; Uekane, T.M.; Silva, K.A.; Gonzalez, A.G.M.; Fernandes, F.F.; Lima, A.R. Kombucha: A Review of Substrates, Regulations, Composition, and Biological Properties. J. Food Sci. 2022, 87, 503–527. [Google Scholar] [CrossRef] [PubMed]
- Soares, I.F.; de Lima, M.A.; Lucarini, M.; Durazzo, A.; Arcanjo, D.D.R.; Lima, S.K.R.; da Silva, R.A. The Kombucha Ingestion Benefits on the Intestinal Microbiota. Rend. Lincei Sci. Fis. Nat. 2023, 34, 833–841. [Google Scholar] [CrossRef]
- Massoud, R.; Khosravi, K.; Jafari-Dastjerdeh, R.; Naghavi, N.; Khosravi-Darani, K. All Aspects of Antioxidant Properties of Kombucha Drink. Biointerface Rep. Appl. Chem. 2022, 12, 4018–4027. [Google Scholar] [CrossRef]
- Wang, X.; Wang, D.; Wang, H.; Jiao, S.; Wu, J.; Hou, Y.; Sun, J.; Yuan, J. Chemical Profile and Antioxidant Capacity of Kombucha Tea by the Pure Cultured Kombucha. LWT 2022, 168, 113931. [Google Scholar] [CrossRef]
- Vohra, B.M.; Fazry, S.; Sairi, F.; Babul-Airianah, O. Effects of Medium Variation and Fermentation Time on the Antioxidant and Antimicrobial Properties of Kombucha. Malays. J. Fundam. Appl. Sci. 2018, 14, 298–302. [Google Scholar] [CrossRef]
- Stefanowska, K.; Woźniak, M.; Majka, J.; Sip, A.; Mrówczyńska, L.; Kozak, W.; Dobrucka, R.; Ratajczak, I. Chitosan Films with Caffeine and Propolis as Promising and Ecofriendly Packaging Materials. Appl. Sci. 2023, 13, 12351. [Google Scholar] [CrossRef]
- ISO 2528:2017; Sheet Materials—Determination of Water Vapour Transmission Rate (WVTR)—Gravimetric (Dish) Method. International Organization for Standardization: Geneva, Switzerland, 2017.
- ASTM D882-12; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2012. Available online: https://www.astm.org/d0882-12.html (accessed on 20 February 2024).
- Howard, L.A.; Wong, A.D.; Perry, A.K.; Klein, B.P. β-Carotene and Ascorbic Acid Retention in Fresh and Processed Vegetables. J. Food Sci. 1999, 64, 929–936. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- La Torre, C.; Fazio, A.; Caputo, P.; Plastina, P.; Caroleo, M.C.; Cannataro, R.; Cione, E. Effects of Long-Term Storage on Radical Scavenging Properties and Phenolic Content of Kombucha from Black Tea. Molecules 2021, 26, 5474. [Google Scholar] [CrossRef]
- Shahbazi, H.; Hashemi Gahruie, H.; Golmakani, M.T.; Eskandari, M.H.; Movahedi, M. Effect of Medicinal Plant Type and Concentration on Physicochemical, Antioxidant, Antimicrobial, and Sensorial Properties of Kombucha. Food Sci. Nutr. 2018, 6, 2568–2577. [Google Scholar] [CrossRef]
- Teixeira Oliveira, J.; Machado da Costa, F.; Gonçalvez da Silva, T.; Dotto Simões, G.; dos Santos Pereira, E.; Quevedo da Costa, P.; Andreazza, R.; Cavalheiro Schenkel, P.; Pieniz, S. Green Tea and Kombucha Characterization: Phenolic Composition, Antioxidant Capacity and Enzymatic Inhibition Potential. Food Chem. 2023, 408, 135206. [Google Scholar] [CrossRef] [PubMed]
- Ivanišová, E.; Meňhartová, K.; Terentjeva, M.; Godočíková, L.; Árvay, J.; Kačániová, M. Kombucha Tea Beverage: Microbiological Characteristic, Antioxidant Activity, and Phytochemical Composition. Acta Aliment. 2019, 48, 324–331. [Google Scholar] [CrossRef]
- Liu, L.; Wei, Y.; Shi, F.; Liu, C.; Liu, X.; Ji, S. Intermittent Warming Improves Postharvest Quality of Bell Peppers and Reduces Chilling Injury. Postharvest Biol. Technol. 2015, 101, 18–25. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Hallmann, E.; Sokołowska, O.; Rembiałkowska, E.; Kazimierczak, R.; Hallmann, E.; Sokołowska, O.; Rembiałkowska Sggw, E.; Nauk Żywieniu Człowieka Konsumpcji, W.; Żywności Ekologicznej, Z. Zawartość Związków Bioaktywnych w Roślinach Zielarskich z Uprawy Ekologicznej i Konwencjonalnej. J. Res. Appl. Agric. Eng. 2011, 56, 200–205. [Google Scholar]
- Kowalczyk, D.; Pikula, E. Wpływ Jadalnej Powłoki Białkowo-Woskowej Na Jakość Przechowalniczą Winogron (Vitis Vinifera L.). Żywność Nauka Technol. Jakość 2010, 17, 67–76. [Google Scholar]
- Nasrin, T.A.A.; Rahman, M.A.; Islam, M.N.; Arfin, M.S.; Akter, L. Effect of Edible Coating on Postharvest Quality of Bell Pepper at Ambient Storage. Bull. Inst. Trop. Agric. 2018, 41, 73–83. [Google Scholar] [CrossRef]
- Navarro, J.M.; Flores, P.; Garrido, C.; Martinez, V. Changes in the Contents of Antioxidant Compounds in Pepper Fruits at Different Ripening Stages, as Affected by Salinity. Food Chem. 2006, 96, 66–73. [Google Scholar] [CrossRef]
- Chilczuk, B.; Staszowska-Karkut, M.; Materska, M.; Michałojć, Z. Zmiany Zawartości Witaminy C w Owocach Czterech Odmian Papryki-Chłodzonych, Mrożonych i Liofilizowanych w Zależności Od Okresu Przechowywania. Żywność Nauka Technol. Jakość 2019, 26, 56–66. [Google Scholar] [CrossRef]
- Davey, M.; Van Montagu, M.; Inze, D.; Sanmartin, M.; Kanellis, A.; Smirnoff, N.; Benzie, I.J.J.; Strain, J.J.; Favell, D.; Fletcher, J. Plant L-Ascorbic Acid: Chemistry, Function, Metabolism, Bioavailability and Effects of Processing. J. Sci. Food Agric. 2000, 80, 825–860. [Google Scholar]
- Surma-Zadora, M.; Cieślik, E.; Grzych-Tuleja, E.; Bodzioch, A. Próba Znalezienia Współzależności Pomiędzy Zawartością Witaminy C a Barwą. Bromatol. Chem. Toksykol. 2011, 44, 17–24. [Google Scholar]
- Kumar, N.; Pratibha; Neeraj; Ojha, A.; Upadhyay, A.; Singh, R.; Kumar, S. Effect of Active Chitosan-Pullulan Composite Edible Coating Enrich with Pomegranate Peel Extract on the Storage Quality of Green Bell Pepper. LWT 2021, 138, 110435. [Google Scholar] [CrossRef]
- Sim, K.H.; Sil, H.Y. Antioxidant Activities of Red Pepper (Capsicum Annuum) Pericarp and Seed Extracts. Int. J. Food Sci. Technol. 2008, 43, 1813–1823. [Google Scholar] [CrossRef]
- Hamed, M.; Kalita, D.; Bartolo, M.E.; Jayanty, S.S. Capsaicinoids, Polyphenols and Antioxidant Activities of Capsicum Annuum: Comparative Study of the Effect of Ripening Stage and Cooking Methods. Antioxidants 2019, 8, 364. [Google Scholar] [CrossRef] [PubMed]
Symbols | Kombucha Solution | Symbols | Chitosan–Kombucha Solutions |
---|---|---|---|
C | Chamomile tea | CS | Chitosan–chamomile tea kombucha |
LB | Lemon balm tea | LBS | Chitosan–lemon balm kombucha |
B | Black tea | BS | Chitosan–black tea kombucha |
Symbol | TPC (µg GAeq/mL) | TFC (µg Qeq/mL) |
---|---|---|
C | 135.00 c ± 0.16 | 13.76 b ± 1.68 |
LB | 381.67 a ± 0.05 | 21.05 a ± 0.37 |
B | 377.90 b ± 0.08 | 14.28 b ± 0.11 |
Symbol | Gram-Positive Strain | Gram-Negative Strains | ||
---|---|---|---|---|
B. subtilis | E. coli | P. aeruginosa | S. enterica | |
CS | 12.97 ± 0.15 | 11.03 ± 0.15 | 12.06 ± 0.11 | st |
LBS | 13.13 ± 0.15 | 11.10 ± 0.10 | 12.00 ± 0.10 | 11.93 ± 0.06 |
BS | st | st | 10.13 ± 0.11 | st |
Day of Storage | CP | LBP |
---|---|---|
Skin Strength (N) | ||
1 | 8.55 a ± 0.8 | 11.3 c ± 1.2 |
5 | 10.3 b ± 0.9 | 9.8 b ± 0.7 |
10 | 7.63 a ± 0.7 | 9.9 b ± 1 |
15 | 10.5 b,c ± 0.9 | 10.7 b,c ± 0.9 |
Skin Elasticity * (mm) | ||
1 | 3.3 a ± 0.7 | 3.9 a,b ± 0.4 |
5 | 4.0 a,b ± 0.7 | 4.0 a,b ± 0.8 |
10 | 3.5 a ± 0.3 | 4.2 b,c ± 0.4 |
15 | 4.7 c,d ± 0.6 | 4.9 d ± 0.8 |
Day of Storage | CP | LBP |
---|---|---|
Desirability of Color | ||
1 | 9.8 c ± 0.4 | 9.4 b,c ± 0.8 |
5 | 9.8 c ± 0.4 | 9.1 a,b,c ± 1.0 |
10 | 8.4 a,b ± 0.8 | 9.2 a,b,c ± 0.8 |
15 | 8.0 a ± 0.8 | 8.4 a,b ± 0.9 |
Color Intensity | ||
1 | 9.6 c ± 0.5 | 9.8 c ± 0.4 |
5 | 9.6 c ± 0.9 | 9.6 c ± 0.5 |
10 | 8.8 a,b,c ± 0.4 | 9.2 b,c ± 0.4 |
15 | 7.8 a ± 0.9 | 8.2 a,b ± 0.4 |
Aroma | ||
1 | 9.2 c ± 0.8 | 5.2 a,b ± 0.7 |
5 | 8.6 c ± 1.0 | 3.8 a ± 0.8 |
10 | 8.8 c ± 0.9 | 5.8 b ± 0.8 |
15 | 8.0 c ± 1.0 | 6.0 b ± 0.9 |
Overall Appearance | ||
1 | 9.2 e ± 0.9 | 8.8 d,e ± 0.9 |
5 | 7.8 c,d,e ± 1.0 | 7.6 c,d ± 1.0 |
10 | 6.0 a,b ± 1.0 | 5.4 a,b ± 0.9 |
15 | 4.8 a ± 0.8 | 6.6 b,c± 0.8 |
Day of Storage | Ascorbic Acid Content (mg/100/g FM) | Antioxidant Activity (µmol of Trolox/g FM) | ||
---|---|---|---|---|
CP | LBP | CP | LBP | |
1 | 131.0 b ± 1.0 | 139.0 b,c,d ± 5.1 | 10.5 c,d ± 0.08 | 11.6 e ± 0.2 |
5 | 102.0 a ± 2.9 | 143.0 d ± 0.4 | 8.4 a ± 0.3 | 9.4 b ± 0.2 |
10 | 133.0 b,c ± 2.8 | 140.0 c,d ± 2.6 | 9.7 b,c ± 0.2 | 10.6 c,d ± 0.7 |
15 | 144.0 d ± 4.2 | 160.0 e ± 1.6 | 9.0 a,b ± 0.3 | 11.2 d,e ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanowska, K.; Woźniak, M.; Sip, A.; Biegańska-Marecik, R.; Dobrucka, R.; Ratajczak, I. Kombucha as a Solvent for Chitosan Coatings: A New Strategy to Extend Shelf Life of Red Peppers. Materials 2025, 18, 1605. https://doi.org/10.3390/ma18071605
Stefanowska K, Woźniak M, Sip A, Biegańska-Marecik R, Dobrucka R, Ratajczak I. Kombucha as a Solvent for Chitosan Coatings: A New Strategy to Extend Shelf Life of Red Peppers. Materials. 2025; 18(7):1605. https://doi.org/10.3390/ma18071605
Chicago/Turabian StyleStefanowska, Karolina, Magdalena Woźniak, Anna Sip, Róża Biegańska-Marecik, Renata Dobrucka, and Izabela Ratajczak. 2025. "Kombucha as a Solvent for Chitosan Coatings: A New Strategy to Extend Shelf Life of Red Peppers" Materials 18, no. 7: 1605. https://doi.org/10.3390/ma18071605
APA StyleStefanowska, K., Woźniak, M., Sip, A., Biegańska-Marecik, R., Dobrucka, R., & Ratajczak, I. (2025). Kombucha as a Solvent for Chitosan Coatings: A New Strategy to Extend Shelf Life of Red Peppers. Materials, 18(7), 1605. https://doi.org/10.3390/ma18071605