Gold-Coated Temperature Optical Fiber Sensor Based on a Mach–Zehnder Interferometer for Photovoltaic Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Principle
2.2. Sensor Fabrication
2.3. Experiment Setup and Method
3. Results
3.1. Bare Tapered Optical Fiber
3.2. Gold-Coated Tapered Optical Fiber
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TOF | Tapered Optical Fiber |
FBG | Fiber Bragg Grating |
PV | Photovoltaic |
MZI | Mach–Zehnder interferometer |
SPR | Surface Plasmon Resonance |
SEM | Scanning Electron Microscope |
EDS | Energy Dispersive X-ray Spectroscopy |
References
- Jafarishad, H.; Li, M.; Shen, Y.; Takher, P.; Liu, Y. Intensity-modulated optical fibre strain sensor for continuous measurements of below-the-surface food deformation during drying. Biosyst. Eng. 2024, 238, 115–127. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Tang, M. Optical fiber Fabry-Perot strain sensor based on metal welding. Opt. Fiber Technol. 2024, 82, 103629. [Google Scholar] [CrossRef]
- Liu, C.; Chen, H.; Chen, Q.; Gao, Z.; Wu, B.; Fan, X.; Ma, M. Sagnac interferometer-based optical fiber strain sensor with exceeding free spectral measurement range and high sensitivity. Opt. Laser Technol. 2023, 159, 108935. [Google Scholar] [CrossRef]
- Zawisza, R.; Jaroszewicz, L.R.; Mikulic, P.; Bock, W.J. An interferometric structure with a dual-resonance long period grating for strain sensing. Opto-Electron. Rev. 2018, 26, 325–328. [Google Scholar] [CrossRef]
- Aime, L.F.J.; Kissinger, T.; James, S.W.; Chehura, E.; Varzeletti, A.; Tatam, R.P. High sensitivity pressure measurement using optical fibre sensors mounted on a composite diaphragm. Opt. Express 2021, 29, 4105–4123. [Google Scholar] [CrossRef]
- Korec, J.; Stasiewicz, K.A.; Jaroszewicz, L.R.; Piecek, W.; Kula, P. Temperature and voltage sensing based on a tapered optical fiber device with the liquid crystal cladding. Opt. Fiber Technol. 2020, 56, 102190. [Google Scholar] [CrossRef]
- Leal-Junior, A.; Blanc, W. Temperature-insensitive and cost-effective distributed NP-Doped optical fiber sensors. Opt. Fiber Technol. 2024, 88, 103995. [Google Scholar] [CrossRef]
- Hu, D.J.J.; Lim, J.L.; Jiang, M.; Wang, Y.; Luan, F.; Shum, P.P.; Huifeng, W.; Tong, W. Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index. Opt. Lett. 2012, 37, 2283–2285. [Google Scholar]
- Yang, Y.; Tian, D.; Chen, K.; Zhou, X.; Gong, Z.; Yu, Q. A Fiber-Optic Displacement Sensor Using the Spectral Demodulation Method. J. Light. Technol. 2018, 36, 3666–3671. [Google Scholar] [CrossRef]
- Wu, J.; Miao, Y.; Song, B.; Lin, W.; Zhang, K.; Zhang, H.; Liu, B.; Yao, J. Simultaneous measurement of displacement and temperature based on thin-core fiber modal interferometer. Opt. Commun. 2015, 340, 136–140. [Google Scholar] [CrossRef]
- Eftimov, T.; Janik, M.; Koba, M.; Śmietana, M.; Mikulic, P.; Bock, W. Long-Period Gratings and Microcavity In-Line Mach Zehnder Interferometers as Highly Sensitive Optical Fiber Platforms for Bacteria Sensing. Sensors 2020, 20, 3772. [Google Scholar] [CrossRef]
- Nurlankyzy, M.; Kantoreyeva, K.; Myrkhiyeva, Z.; Ashikbayeva, Z.; Baiken, Y.; Kanayeva, D.; Tosi, D.; Bekmurzayeva, A. Label-free optical fiber biosensor for the detection of CD44-expressing breast cancer cells. Sens. Bio-Sens. Res. 2024, 44, 100661. [Google Scholar] [CrossRef]
- Zhang, W.; Ni, X.; Wang, J.; Ai, F.; Luo, Y.; Yan, Z.; Liu, D.; Sun, Q. Microstructured Optical Fiber Based Distributed Sensor for In Vivo Pressure Detection. J. Light. Technol. 2019, 37, 1865–1872. [Google Scholar] [CrossRef]
- Yue, Y.; Chen, G.; Long, J.; Ren, L.; Zhou, K.; Li, X.; Xu, Y.; Tang, Y. Characterization of a Raman-based distributed fiber optical temperature sensor in liquid nitrogen. Superconductivity 2022, 4, 100028. [Google Scholar] [CrossRef]
- Manoj, K.S.; Sharma, R.K.; Kumar, S.; Kishore, J.; Nathwani, R.K.; Gupta, A.M.; Kumar, A.; Kumar, A.; Bhatnagar, V.K.; Prakash, O.; et al. Studies on thermal profile measurement and fire detection in a power supply cable of a synchrotron radiation source by Raman optical fiber distributed temperature sensor system. Opt. Fiber Technol. 2022, 73, 103020. [Google Scholar]
- Ren, Y.; Song, H.; Cai, Q.; Cai, Z.; Liu, Y.; Wang, B. Modeling analysis and experimental study on epoxy packaged FBG sensor for cryogenic temperature measurement. Opt. Fiber Technol. 2024, 84, 103710. [Google Scholar] [CrossRef]
- Ju, S.; Watekar, P.R.; Han, W.-T. Enhanced Sensitivity of the FBG Temperature Sensor Based on the PbO-GeO2-SiO2 Glass Optical Fiber. J. Light. Technol. 2010, 28, 2697–2700. [Google Scholar] [CrossRef]
- Rahaman, M.A.; Chambers, T.L.; Fekih, A.; Wiecheteck, G.; Carranza, G.; Possetti, G.R.C. Floating photovoltaic module temperature estimation: Modeling and comparison. Renew. Energy 2023, 208, 162–180. [Google Scholar] [CrossRef]
- Ye, Z.; Nobre, A.; Reindl, T.; Luther, J.; Reise, C. On PV module temperatures in tropical regions. Sol. Energy. 2013, 88, 80–87. [Google Scholar] [CrossRef]
- Jeong, H.; Kwon, G.-R.; Lee, S.-W. Deterioration Diagnosis of Solar Module Using Thermal and Visible Image Processing. Energies 2020, 13, 2856. [Google Scholar] [CrossRef]
- Chiang, W.-H.; Wu, H.-S.; Wu, J.-S.; Lin, S.-J. A Method for Estimating On-Field Photovoltaics System Efficiency Using Thermal Imaging and Weather Instrument Data and an Unmanned Aerial Vehicle. Energies 2022, 15, 5835. [Google Scholar] [CrossRef]
- Dhanalakshmi, S.; Chakravartula, V.; Narayanamoorthi, R.; Kumar, R.; Dooly, G.; Duraibabu, D.B.; Senthil, R. Thermal management of solar photovoltaic panels using a fibre Bragg grating sensor-based temperature monitoring. Case Stud. Therm. Eng. 2022, 31, 101834. [Google Scholar] [CrossRef]
- Gui, X.; Li, Z.; Fu, X.; Guo, H.; Wang, Y.; Wang, C.; Wang, J.; Jiang, D. Distributed Optical Fiber Sensing and Applications Based on Large-Scale Fiber Bragg Grating Array: Review. J. Light. Technol. 2023, 41, 4187–4200. [Google Scholar] [CrossRef]
- Yu, T.; Ren, C.; Jia, Y.; Li, J.; Zhang, J.; Xu, Y.; Yan, B.; Zhang, M.; Qiao, L.; Wang, T.; et al. Photovoltaic Panel Temperature Monitoring and Prediction by Raman Distributed Temperature Sensor With Fuzzy Temperature Difference Threshold Method. IEEE Sens. J. 2021, 21, 373–380. [Google Scholar] [CrossRef]
- Nivelle, P.; Maes, L.; Poortmans, J.; Daenen, M. In situ quantification of temperature and strain within photovoltaic modules through optical sensing. Prog. Photovolt. Res. Appl. 2023, 31, 173–179. [Google Scholar] [CrossRef]
- Santolin, E.A.; Lourenço Junior, I.D.; Corte, V.D.; Silva, J.C.C.D.; Oliveira, V.D. Thermal Monitoring of Photovoltaic module using Optical Fiber Sensors. J. Microw. Optoelectron. Electromagn. Appl. 2016, 15, 333–348. [Google Scholar] [CrossRef]
- Alonso-Murias, M.; Monzón-Hernández, D.; Antonio-Lopez, E.; Schülzgen, A.; Amezcua-Correa, R.; Villatoro, J. Hybrid optical fiber Fabry-Perot interferometer for nano-displacement sensing. Opt. Laser Technol. 2022, 155, 108426. [Google Scholar] [CrossRef]
- Tong, R.; Zhao, Y.; Hu, H.; Qu, J. Large measurement range and high sensitivity temperature sensor with FBG cascaded Mach-Zehnder interferometer. Opt. Laser Technol. 2020, 125, 106034. [Google Scholar] [CrossRef]
- Monteiro, C.S.; Ferreira, M.; Mendes, J.P.; Coelho, L.C.C.; Silva, S.O.; Frazão, O. Optical fiber flowmeter based on graphene oxide coated michelson interferometer. Sens. Actuators A Phys. 2023, 363, 114775. [Google Scholar] [CrossRef]
- Domínguez-Cruz, R. Temperature sensor based on an asymmetric two-hole fiber using a Sagnac interferometer. J. Sens. 2018, 2018, 7595106. [Google Scholar] [CrossRef]
- Gabler, T.; Janik, M.; Liao, C.; Myśliwiec, A.; Koba, M.; Jönsson-Niedziółka, M.; Wang, Y.; Śmietana, M. Investigation of liquids with microcavity in-line Mach-Zehnder interferometers—Impact of the microcavity shape on the sensing performance. Opt. Fiber Technol. 2022, 73, 103059. [Google Scholar] [CrossRef]
- Janik, M.; Sosnowska, M.; Gabler, T.; Koba, M.; Myśliwiec, A.; Kutwin, M.; Sawosz-Chwalibóg, E.; Śmietana, M. Life in an optical fiber: Monitoring of cell cultures with microcavity in-line Mach-Zehnder interferometer. Biosens. Bioelectron. 2022, 217, 114718. [Google Scholar] [CrossRef] [PubMed]
- Janik, M.; Eftimov, T.; Koba, M.; Śmietana, M.; Bock, W.J. Tailoring Properties of Microcavity In-Line Mach-Zehnder Interferometer by the Microcavity Enlargement Using Femtosecond Laser. J. Light. Technol. 2019, 37, 4501–4506. [Google Scholar] [CrossRef]
- Bilsel, M.; Navruz, I. Tapered Optical Fiber Sensor for Discrimination of Strain and Temperature. Adv. Electr. Electron. Eng. 2020, 18, 50–56. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Kishor, K.; Sharma, A.C. Tapered optical fiber geometries and sensing applications based on Mach-Zehnder Interferometer: A review. Opt. Fiber Technol. 2020, 58, 102302. [Google Scholar] [CrossRef]
- Guzowski, B.; Łakomski, M. Temperature Sensor Based on Periodically Tapered Optical Fibers. Sensors 2021, 21, 8358. [Google Scholar] [CrossRef]
- Łakomski, M.; Guzowski, B.; Wozniak, A. Fabrication of ultra-long tapered optical fibers. Microelectron. Eng. 2020, 221, 111193. [Google Scholar] [CrossRef]
- Karimi-Alavijeh, H.; Taslimi, A.; Maghsoudian, M.H.; Poorghadiri, M.H.; Kazemzadeh, M. Fabrication of low-loss adiabatic optical microfibers using an attainable arc-discharge fiber tapering setup. Opt. Commun. 2022, 522, 128669. [Google Scholar] [CrossRef]
- Miao, Y.; He, Y.; Ma, X.; Zhang, H.; Song, B.; Yang, X.; Xue, L.; Liu, B.; Yao, J. Low-Temperature Cross-Sensitivity Refractive Index Sensor Based on Single-Mode Fiber with Periodically Modulated Taper. IEEE Sens. J. 2016, 16, 2442–2446. [Google Scholar] [CrossRef]
- Tian, Z.; Yam, S.S.-H. In-Line Abrupt Taper Optical Fiber Mach–Zehnder Interferometric Strain Sensor. IEEE Photonics Technol. Lett. 2009, 21, 161–163. [Google Scholar] [CrossRef]
- Yadav, T.K.; Narayanaswamy, R.; Bakar, M.H.A.; Kamil, Y.M.; Mahdi, M.A. Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing. Opt. Express 2014, 22, 22802–22807. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Yam, S.S.-H.; Barnes, J.; Bock, W.; Greig, P.; Fraser, J.M.; Loock, H.-P.; Oleschuk, R.D. Refractive Index Sensing with Mach–Zehnder Interferometer Based on Concatenating Two Single-Mode Fiber Tapers. IEEE Photonics Technol. Lett. 2008, 20, 626–628. [Google Scholar] [CrossRef]
- Wen, Z.; Guan, Z.; Dong, J.; Li, H.; Cai, Y.; Gao, S. A Review of Sensitivity Enhancement in Interferometer-Based Fiber Sensors. Sensors 2022, 22, 2506. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Paek, U.-C.; Lee, B.H. Measurement of refractive-index variation with temperature by use of long-period fiber gratings. Opt. Lett. 2002, 27, 1297–1299. [Google Scholar] [CrossRef]
- Yang, N.; Qiu, Q.; Su, J.; Shi, S.-j. Research on the temperature characteristics of optical fiber refractive index. Optik 2004, 125, 5813–5815. [Google Scholar] [CrossRef]
- Al-Qazwini, Y.; Noor, A.S.M.; Yaacob, M.H.; Harun, S.W.; Mahdi, M.A. Experimental realization and performance evaluation of refractive index SPR sensor based on unmasked short tapered multimode-fiber operating in aqueous environments. Sens. Actuators A Phys. 2015, 236, 38–43. [Google Scholar] [CrossRef]
- Luo, W.; Meng, J.; Li, X.; Xie, Q.; Yi, D.; Wang, Y.; Hong, X. Temperature effects on surface plasmon resonance sensor based on side-polished D-shaped photonic crystal fiber. Measurement 2021, 181, 109504. [Google Scholar] [CrossRef]
- Li, W.; Cheng, S.; Zhang, H.; Yi, Z.; Tang, B.; Ma, C.; Wu, P.; Zeng, Q.; Raza, R. Multi-functional metasurface: Ultra-wideband/multi-band absorption switching by adjusting guided-mode resonance and local surface plasmon resonance effects. Commun. Theor. Phys. 2024, 76, 065701. [Google Scholar] [CrossRef]
- Ibrahim, J.; Al Masri, M.; Verrier, I.; Kampfe, T.; Veillas, C.; Celle, F.; Cioulachtjian, S.; Lefèvre, F.; Jourlin, Y. Surface Plasmon Resonance Based Temperature Sensors in Liquid Environment. Sensors 2019, 19, 3354. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.; Zhu, X.; Shi, Y. Surface plasmon resonance temperature sensor with tunable detection range based on a silver-coated multi-hole optical fiber. Opt. Express 2022, 30, 48091–48102. [Google Scholar] [CrossRef]
- Su, Y.; Du, Y.; Wang, W.; Xu, L.; Dai, S.; Zhang, P. S-shaped tellurite optical fiber surface plasmon resonance sensor for temperature and refractive index measurement. Opt. Laser Technol. 2024, 179, 111385. [Google Scholar] [CrossRef]
- Jing, J.; Liu, K.; Jiang, J.; Xu, T.; Wang, S.; Liu, T. Highly sensitive and stable probe refractometer based on configurable plasmonic resonance with nano-modified fiber core. Opto-Electron. Adv. 2023, 6, 220072. [Google Scholar] [CrossRef]
- Wieduwilt, T.; Bartelt, H.; Willsch, R. Gold-coated optical fiber-micro-tapers for sensor applications based on the surface plasmon resonance effect. Proc. SPIE 2012, 8439, 84390H. [Google Scholar]
- Korec, J.; Stasiewicz, K.A.; Jaroszewicz, L.R. SPR Sensor Based on a Tapered Optical Fiber with a Low Refractive Index Liquid Crystal Cladding and Bimetallic Ag–Au Layers. Sensors 2022, 22, 7192. [Google Scholar] [CrossRef] [PubMed]
- Korec, J.; Stasiewicz, K.A.; Garbat, K.; Jaroszewicz, L.R. Enhancement of the SPR Effect in an Optical Fiber Device Utilizing a Thin Ag Layer and a 3092A Liquid Crystal Mixture. Molecules 2021, 26, 7553. [Google Scholar] [CrossRef]
- Lv, H.; Zhang, K.; Ma, X.; Zhong, W.; Wang, Y.; Gao, X. Optimum design of the surface plasmon resonance sensor based on polymethyl methacrylate fiber. Phys. Open 2021, 6, 100054. [Google Scholar] [CrossRef]
- Korec, J.; Stasiewicz, K.A.; Jaroszewicz, L.R.; Garbat, K. SPR Effect Controlled by an Electric Field in a Tapered Optical Fiber Surrounded by a Low Refractive Index Nematic Liquid Crystal. Materials 2020, 13, 4942. [Google Scholar] [CrossRef]
- Arcas, A.S.; Dutra, F.S.; Allil, R.C.S.B.; Werneck, M.M. Surface Plasmon Resonance and Bending Loss-Based U-Shaped Plastic Optical Fiber Biosensors. Sensors 2018, 18, 648. [Google Scholar] [CrossRef]
- Kumar, S.; Yadav, G.C.; Sharma, G.; Singh, V. Study of surface plasmon resonance sensors based on silver–gold nanostructure alloy film coated tapered optical fibers. Appl. Phys. A 2018, 124, 695. [Google Scholar] [CrossRef]
- Nguyen, T.N.H.; Nguyen, T.L.T.; Luong, T.T.T.; Nguyen, C.M.T.; Nguyen, T.P.P. Synthesis of gold nanorods with a longitudinal surface plasmon resonance peak of around 1250 nm. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 015006. [Google Scholar] [CrossRef]
- Hang, Y.; Wang, A.; Wu, N. Plasmonic silver and gold nanoparticles: Shape- and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy. Chem. Soc. Rev. 2024, 53, 2932–2971. [Google Scholar] [CrossRef]
- Jasim, A.A.; Harun, S.W.; Arof, H.; Ahmad, H. Inline Microfiber Mach–Zehnder Interferometer for High Temperature Sensing. IEEE Sens. J. 2013, 13, 626–628. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, Y.; Wang, Y.; Fu, G.; Jin, W.; Bi, W. A temperature sensor based on tapered few mode fiber long-period grating induced by CO2 laser and fusion tapering. Opt. Laser Technol. 2020, 121, 105825. [Google Scholar] [CrossRef]
- Yue, C.; Ding, H.; Ding, W.; Xu, C. Weakly-coupled multicore optical fiber taper-based high-temperature sensor. Sens. Actuators A 2018, 280, 139–144. [Google Scholar]
- Yang, W.; Li, C.; Wang, M.; Yu, X.; Fan, J.; Xiong, Y.; Yang, Y.; Li, L. The Polydimethylsiloxane Coated Fiber Optic for All Fiber Temperature Sensing Based on the Multithin–Multifiber Structure. IEEE Sens. J. 2021, 21, 51–56. [Google Scholar] [CrossRef]
- Gong, J.; Shen, C.; Xiao, Y.; Liu, S.; Zhang, C.; Ding, Z.; Deng, H.; Fang, J.; Lang, T.; Zhao, C.; et al. High sensitivity fiber temperature sensor based PDMS film on Mach-Zehnder interferometer. Opt. Fiber Technol. 2019, 53, 102029. [Google Scholar] [CrossRef]
- González-Roque, A.A.; Toral-Acosta, D.; Martínez-Ríos, A.; Selvas-Aguilar, R.; Anzueto-Sánchez, G.; Rico-Méndez, M.A.; Guzmán-Ramos, V. Two-mode fiber Mach-Zehnder interferometric temperature sensor in the 50 °C–650 °C range. Opt. Fiber Technol. 2023, 81, 103568. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, C.; Shen, Z.; Ren, Y.; Wen, J.; Feng, Y. Multi-tapered polarization-maintaining fiber-optic sensor for refractive index and temperature measurements. Opt. Fiber Technol. 2023, 81, 103569. [Google Scholar] [CrossRef]
- Li, J.; Gan, W.; Li, H.; Xu, M.; Liu, J.; Zhou, A. Temperature compensated highly sensitive refractive index sensor based on Mach-Zehnder interferometer and FBG. Optik 2021, 241, 166838. [Google Scholar] [CrossRef]
- Han, X.-P.; Zhang, Y.-D.; Hasi, W.; Lin, S.-Y.; Wang, F.; Wei, Y.; Zhao, Z. Simultaneous sensing of strain and temperature based on the inline-MZI embedded point-shaped taper structure with low crosstalk. Opt. Express 2023, 31, 27462–27481. [Google Scholar] [CrossRef]
- Song, Q.; Xiao, Y.; Huang, Z.; Sun, K.; Wu, Q. Investigation of temperature dependence of tapered optical fibers. Infrared Phys. Technol. 2025, 145, 105725. [Google Scholar] [CrossRef]
Parc [mW]/tarc [s] | Waist Diameter d [µm] | Waist Length l [cm] | Space lS [cm] |
---|---|---|---|
20/1.4 | 46 ± 1 | 0.74 | 2.4 |
30/1.4 | 33 ± 1 | 0.70 | |
20/1.6 | 42 ± 1 | 0.65 | |
30/1.6 | 26 ± 1 | 0.60 |
Band | ∆neff | L [cm] | λ [nm] | Theoretical FSR [nm] | Experimental Avg. FSR [nm] |
---|---|---|---|---|---|
O-band | 0.0047 | 3.2 | 1312 | 11.3 | 10.8 |
S+C+L-band | 0.0042 | 3.2 | 1583 | 18.6 | 19.2 |
Type of Sensor | Sensitivity | Ref. |
---|---|---|
Two tapers in series made on SMF | 13.4 pm/°C | [62] |
Tapered multicore fiber between two SMF | 39.3 pm/°C | [63] |
Tapered few modes fiber between two SMF | 36.8 pm/°C | [64] |
Tapered Multi-thin Multi-mode Fiber | 75.04 pm/°C | [65] |
MZI coated with polydimethylsiloxane | 101 pm/°C | [66] |
Two-mode fiber MZI | 70 pm/°C | [67] |
Multi-tapered PMF | 78 pm/°C | [68] |
MZI & FBG | 35.18 pm/°C | [69] |
Inline-MZI embedded point-shaped taper | 73 pm/°C and 169 pm/°C | [70] |
SMTMS | 145.8 pm/°C | [71] |
Gold-coated TOF on SMF | 60 pm/°C (O-band) 55 pm/°C (S+C+L-bands) | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzowski, B.; Lakomski, M.; Peczek, K.; Ruta, L.; Sibinski, M. Gold-Coated Temperature Optical Fiber Sensor Based on a Mach–Zehnder Interferometer for Photovoltaic Monitoring. Materials 2025, 18, 1818. https://doi.org/10.3390/ma18081818
Guzowski B, Lakomski M, Peczek K, Ruta L, Sibinski M. Gold-Coated Temperature Optical Fiber Sensor Based on a Mach–Zehnder Interferometer for Photovoltaic Monitoring. Materials. 2025; 18(8):1818. https://doi.org/10.3390/ma18081818
Chicago/Turabian StyleGuzowski, Bartlomiej, Mateusz Lakomski, Krzysztof Peczek, Lukasz Ruta, and Maciej Sibinski. 2025. "Gold-Coated Temperature Optical Fiber Sensor Based on a Mach–Zehnder Interferometer for Photovoltaic Monitoring" Materials 18, no. 8: 1818. https://doi.org/10.3390/ma18081818
APA StyleGuzowski, B., Lakomski, M., Peczek, K., Ruta, L., & Sibinski, M. (2025). Gold-Coated Temperature Optical Fiber Sensor Based on a Mach–Zehnder Interferometer for Photovoltaic Monitoring. Materials, 18(8), 1818. https://doi.org/10.3390/ma18081818