Recent Use of Hyaluronic Acid in Dental Medicine
Abstract
:1. Introduction
- Periodontal Therapy: HA contributes to periodontal regeneration through multiple mechanisms, including its anti-inflammatory and bacteriostatic properties, promotion of fibroblast proliferation, and modulation of cytokine activity. It also plays a critical role in the stabilization of the blood clot and supports extracellular matrix (ECM) remodeling through interaction with CD44 and RHAMM receptors.
- Oral Surgery (e.g., post-extraction healing, frenectomy): HA facilitates wound healing by creating a moist environment, reducing edema, and promoting angiogenesis and epithelial migration. Its viscoelastic nature also helps to maintain tissue space and supports cellular migration.
- TMJ Disorders: Intra-articular injections of HA improve joint lubrication, reduce friction, and modulate inflammatory responses via TLR2/4 and CD44 receptor pathways, which leads to pain relief and enhanced joint mobility.
- Bone Regeneration and Grafting: In bone regeneration, HA serves as a scaffold that improves osteoconductivity, promotes mesenchymal stem cell adhesion and differentiation, and enhances neovascularization—key elements in bone tissue remodeling.
- Oral Lesions (e.g., aphthous ulcers, mucositis): HA accelerates epithelial repair and reduces oxidative stress through antioxidant mechanisms and the downregulation of inflammatory mediators, thereby relieving pain and enhancing mucosal healing.
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. PICo Framework and Research Question
- Population (P): Patients undergoing treatment for oral and maxillofacial conditions, including temporomandibular joint (TMJ) disorders, periodontal disease, and oral surgical procedures.
- Interest (I): The use of hyaluronic acid (HA) as a therapeutic agent, either as a standalone treatment or in combination with other interventions, aimed at enhancing outcomes such as pain relief, tissue regeneration, and functional recovery.
- Context (Co): Clinical and surgical settings within dentistry and oral medicine, emphasizing HA’s effectiveness compared to standard treatments or placebo.
2.4. Data Extraction and Analysis
3. Results
3.1. Selection and Characteristics of the Study
3.2. Quality Assessment and Risk of Bias of Included Articles
4. Discussion
4.1. HA in TemporoTMJ Disorders
4.2. HA in Periodontal Treatment
4.3. HA in Clinical Dental Applications Beyond Periodontics
5. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Full Name | Function/Context |
BOP | Bleeding on Probing | Indicator of gingival inflammation in periodontal assessments |
CAL | Clinical Attachment Level | Measure of periodontal tissue attachment loss |
CBC | Complete Blood Count | A blood test that measures various components of the blood, such as red blood cells, white blood cells, hemoglobin, and platelets. |
CBCT | Computed Tomography | Advanced imaging technique used in dentistry and medicine |
CD44 | Cluster of Differentiation 44 | HA receptor involved in cell adhesion, migration, and immune response |
ECM | Extracellular Matrix | Structural support network in tissues |
EMD | Enamel Matrix Derivatives | Biomaterial used in periodontal regeneration |
HA | Hyaluronic Acid | Glycosaminoglycan with regenerative and anti-inflammatory properties |
HARE | Hyaluronan Receptor for Endocytosis | Receptor involved in HA clearance and ECM regulation |
OA | Osteoarthritis | Degenerative joint disease affecting cartilage |
OFD | Open Flap Debridement | Surgical periodontal procedure for deep cleaning and regeneration |
PD | Probing Depth | Measure of periodontal pocket depth in periodontal exams |
PN | Polynucleotides | Biomolecules used in regenerative medicine |
PRP | Platelet-Rich Plasma | Autologous blood-derived product used in tissue regeneration |
RHAMM | Receptor for Hyaluronan-Mediated Motility | HA receptor involved in cell motility and wound healing |
SRP | Scaling and Root Planing | Non-surgical periodontal therapy for plaque and tartar removal |
TMJ | Temporomandibular Joint | Joint connecting the jawbone to the skull |
xHyA | Cross-Linked Hyaluronic Acid | Modified HA with enhanced stability for medical applications |
References
- Doğan, S.S.A.; Karakan, N.C.; Doğan, Ö. Effects of Topically Administered 0.6% Hyaluronic Acid on the Healing of Labial Frenectomy in Conventional and 940-Nm Indium Gallium Arsenide Phosphide (InGaAsP) Diode Laser Techniques in Pediatric Patients: A Randomized, Placebo-Controlled Clinical Study. Lasers Med. Sci. 2024, 39, 48. [Google Scholar] [CrossRef] [PubMed]
- Trovato, F.; Ceccarelli, S.; Michelini, S.; Vespasiani, G.; Guida, S.; Galadari, H.I.; Nisticò, S.P.; Colonna, L.; Pellacani, G. Advancements in Regenerative Medicine for Aesthetic Dermatology: A Comprehensive Review and Future Trends. Cosmetics 2024, 11, 49. [Google Scholar] [CrossRef]
- Al-Khateeb, R.; Prpic, J. Hyaluronic Acid: The Reason for Its Variety of Physiological and Biochemical Functional Properties. Appl. Clin. Res. Clin. Trials Regul. Aff. 2019, 6, 112–159. [Google Scholar] [CrossRef]
- Pilloni, A.; Rojas, M.A.; Marini, L.; Russo, P.; Shirakata, Y.; Sculean, A.; Iacono, R. Healing of Intrabony Defects Following Regenerative Surgery by Means of Single-Flap Approach in Conjunction with Either Hyaluronic Acid or an Enamel Matrix Derivative: A 24-Month Randomized Controlled Clinical Trial. Clin. Oral Investig. 2021, 25, 5095–5107. [Google Scholar] [CrossRef] [PubMed]
- Vela, O.C.; Boariu, M.; Rusu, D.; Iorio-Siciliano, V.; Ramaglia, L.; Boia, S.; Radulescu, V.; Ilyes, I.; Stratul, S.-I. Healing of Periodontal Suprabony Defects Following Treatment with Open Flap Debridement with or without Hyaluronic Acid (HA) Application. Medicina 2024, 60, 829. [Google Scholar] [CrossRef]
- Awadalla, A.; Hamam, E.T.; Mostafa, S.A.; Mahmoud, S.A.; Elazab, K.M.; El Nakib, A.M.; Eldesoqui, M.; El-Sherbiny, M.; Ammar, O.A.; Al-Serwi, R.H.; et al. Hepatoprotective Effects of Hyaluronic Acid-Preconditioned Bone Marrow Mesenchymal Stem Cells against Liver Toxicity via the Inhibition of Apoptosis and the Wnt/β-Catenin Signaling Pathway. Cells 2023, 12, 1526. [Google Scholar] [CrossRef]
- Raguraman, M.; Zhou, X.; Mickymaray, S.; Alothaim, A.S.; Rajan, M. Hesperidin Guided Injured Spinal Cord Neural Regeneration with a Combination of MWCNT-Collagen-Hyaluronic Acid Composite: In-Vitro Analysis. Int. J. Pharm. 2024, 650, 123609. [Google Scholar] [CrossRef]
- Tenger, K.; Komori, K.; Maehara, A.; Miyazaki, K.; Marukawa, E.; Yoshii, T.; Tsuji, K. High Molecular Weight Hyaluronic Acid Alleviates Ovariectomy-Induced Bone Loss in Mice. BMC Musculoskelet. Disord. 2024, 25, 1048. [Google Scholar] [CrossRef]
- Mehta, V.; Sarode, G.S.; Obulareddy, V.T.; Sharma, T.; Kokane, S.; Cicciù, M.; Minervini, G. Clinicopathologic Profile, Management and Outcome of Sinonasal Ameloblastoma-A Systematic Review. J. Clin. Med. 2023, 12, 381. [Google Scholar] [CrossRef]
- Combination of Metformin and Laser Against Head and Neck Cancer Cells In Vitro. Available online: https://opendentistryjournal.com/VOLUME/17/ELOCATOR/e18742106276363/FULLTEXT/?doi=10.1126/sciadv.adg2248 (accessed on 2 February 2025).
- Inchingolo, F.; Tatullo, M.; Marrelli, M.; Inchingolo, A.M.; Tarullo, A.; Inchingolo, A.D.; Dipalma, G.; Podo Brunetti, S.; Tarullo, A.; Cagiano, R. Combined Occlusal and Pharmacological Therapy in the Treatment of Temporo-Mandibular Disorders. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 1296–1300. [Google Scholar]
- Ballini, A.; Cantore, S.; Fotopoulou, E.A.; Georgakopoulos, I.P.; Athanasiou, E.; Bellos, D.; Paduanelli, G.; Saini, R.; Dipalma, G.; Inchingolo, F. Combined Sea Salt-Based Oral Rinse with Xylitol in Orthodontic Patients: Clinical and Microbiological Study. J. Biol. Regul. Homeost. Agents 2019, 33, 263–268. [Google Scholar] [PubMed]
- Dellino, M.; Cascardi, E.; Tomasone, V.; Zaccaro, R.; Maggipinto, K.; Giacomino, M.E.; De Nicolò, M.; De Summa, S.; Cazzato, G.; Scacco, S.; et al. Communications Is Time for Care: An Italian Monocentric Survey on Human Papillomavirus (HPV) Risk Information as Part of Cervical Cancer Screening. J. Pers. Med. 2022, 12, 1387. [Google Scholar] [CrossRef] [PubMed]
- Bambini, F.; Memè, L.; Pellecchia, M.; Sabatucci, A.; Selvaggio, R. Comparative Analysis of Deformation of Two Implant/Abutment Connection Systems During Implant Insertion. An In Vitro Study. Minerva Stomatol. 2005, 54, 129–138. [Google Scholar] [PubMed]
- Bambini, F.; Giannetti, L.; Memè, L.; Pellecchia, M.; Selvaggio, R. Comparative Analysis of Direct and Indirect Implant Impression Techniques an In Vitro Study. An In Vitro Study. Minerva Stomatol. 2005, 54, 395–402. [Google Scholar]
- Bektas, I.; Hazar Yoruc, A.B.; Cinel, L.; Ekinci, M.; Horoz, S.E.; Turet, D.M.; Mentes, A. Histological Evaluation of Different Concentrations of Hyaluronic-Acid-Added Zinc Oxide Eugenol on Rat Molar Pulp. Odontology 2025, 113, 283–295. [Google Scholar] [CrossRef]
- AlHowaish, N.A.; AlSudani, D.I.; Khounganian, R.; AlMuraikhi, N. Histological Evaluation of Restylane Lyft Used as a Scaffold for Dental Pulp Regeneration in Non-Infected Immature Teeth in Dogs. Materials 2022, 15, 4095. [Google Scholar] [CrossRef]
- Abdelsalam, M.S.; Elgendy, A.A.; Abu-Seida, A.M.; Abdelaziz, T.M.; Issa, M.H.; El-Haddad, K.E. Histological Evaluation of the Regenerative Potential of Injectable Hyaluronic Acid Hydrogel or Collagen with Blood Clot as Scaffolds during Revascularization of Immature Necrotic Dog’s Teeth. Open Vet. J. 2024, 14, 3004–3016. [Google Scholar] [CrossRef]
- Hong, G.-W.; Hu, H.; Wan, J.; Chang, K.; Park, Y.; Vitale, M.; Damiani, G.; Yi, K.-H. How Should We Use Hyaluronidase for Dissolving Hyaluronic Acid Fillers? J. Cosmet. Dermatol. 2025, 24, e16783. [Google Scholar] [CrossRef]
- Ansari, S.; Diniz, I.M.; Chen, C.; Sarrion, P.; Tamayol, A.; Wu, B.M.; Moshaverinia, A. Human Periodontal Ligament- and Gingiva-Derived Mesenchymal Stem Cells Promote Nerve Regeneration When Encapsulated in Alginate/Hyaluronic Acid 3D Scaffold. Adv. Healthc. Mater. 2017, 6, 1700670. [Google Scholar] [CrossRef]
- Seki, Y.; Ohkuma, R.C.; Miyakawa, Y.; Karakida, T.; Yamamoto, R.; Yamakoshi, Y. Hyaluronan and Chondroitin Sulfate in Chicken-Vegetable Bone Broth Delay Osteoporosis Progression. J. Food Sci. 2024, 89, 1791–1803. [Google Scholar] [CrossRef]
- Avenoso, A.; Bruschetta, G.; D Ascola, A.; Scuruchi, M.; Mandraffino, G.; Saitta, A.; Campo, S.; Campo, G.M. Hyaluronan Fragmentation During Inflammatory Pathologies: A Signal That Empowers Tissue Damage. Mini Rev. Med. Chem. 2020, 20, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Avenoso, A.; Bruschetta, G.; D’Ascola, A.; Scuruchi, M.; Mandraffino, G.; Gullace, R.; Saitta, A.; Campo, S.; Campo, G.M. Hyaluronan Fragments Produced during Tissue Injury: A Signal Amplifying the Inflammatory Response. Arch. Biochem. Biophys. 2019, 663, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Avenoso, A.; D’Ascola, A.; Scuruchi, M.; Mandraffino, G.; Calatroni, A.; Saitta, A.; Campo, S.; Campo, G.M. Hyaluronan in Experimental Injured/Inflamed Cartilage: In Vivo Studies. Life Sci. 2018, 193, 132–140. [Google Scholar] [CrossRef]
- Avenoso, A.; D’Ascola, A.; Scuruchi, M.; Mandraffino, G.; Calatroni, A.; Saitta, A.; Campo, S.; Campo, G.M. Hyaluronan in the Experimental Injury of the Cartilage: Biochemical Action and Protective Effects. Inflamm. Res. 2018, 67, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Vigetti, D.; Karousou, E.; Viola, M.; Deleonibus, S.; De Luca, G.; Passi, A. Hyaluronan: Biosynthesis and Signaling. Biochim. Biophys. Acta 2014, 1840, 2452–2459. [Google Scholar] [CrossRef]
- Contaldo, M.; Fusco, A.; Stiuso, P.; Lama, S.; Gravina, A.G.; Itro, A.; Federico, A.; Itro, A.; Dipalma, G.; Inchingolo, F.; et al. Oral Microbiota and Salivary Levels of Oral Pathogens in Gastro-Intestinal Diseases: Current Knowledge and Exploratory Study. Microorganisms 2021, 9, 1064. [Google Scholar] [CrossRef]
- Cazzato, G.; Massaro, A.; Colagrande, A.; Lettini, T.; Cicco, S.; Parente, P.; Nacchiero, E.; Lospalluti, L.; Cascardi, E.; Giudice, G.; et al. Dermatopathology of Malignant Melanoma in the Era of Artificial Intelligence: A Single Institutional Experience. Diagnostics 2022, 12, 1972. [Google Scholar] [CrossRef]
- Inchingolo, F.; Tatullo, M.; Abenavoli, F.M.; Marrelli, M.; Inchingolo, A.D.; Villabruna, B.; Inchingolo, A.M.; Dipalma, G. Severe Anisocoria after Oral Surgery under General Anesthesia. Int. J. Med. Sci. 2010, 7, 314–318. [Google Scholar] [CrossRef]
- Jiang, D.; Liang, J.; Noble, P.W. Hyaluronan in Tissue Injury and Repair. Annu. Rev. Cell Dev. Biol. 2007, 23, 435–461. [Google Scholar] [CrossRef]
- Vigetti, D.; Viola, M.; Karousou, E.; De Luca, G.; Passi, A. Metabolic Control of Hyaluronan Synthases. Matrix Biol. 2014, 35, 8–13. [Google Scholar] [CrossRef]
- Inchingolo, F.; Tatullo, M.; Abenavoli, F.M.; Inchingolo, A.D.; Inchingolo, A.M.; Dipalma, G. Fish-Hook Injuries: A Risk for Fishermen. Head. Face Med. 2010, 6, 28. [Google Scholar] [CrossRef]
- Santacroce, L.; Di Cosola, M.; Bottalico, L.; Topi, S.; Charitos, I.A.; Ballini, A.; Inchingolo, F.; Cazzolla, A.P.; Dipalma, G. Focus on HPV Infection and the Molecular Mechanisms of Oral Carcinogenesis. Viruses 2021, 13, 559. [Google Scholar] [CrossRef] [PubMed]
- Dipalma, G.; Inchingolo, A.D.; Inchingolo, F.; Charitos, I.A.; Di Cosola, M.; Cazzolla, A.P. Focus on the Cariogenic Process: Microbial and Biochemical Interactions with Teeth and Oral Environment. J. Biol. Regul. Homeost. Agents 2021, 35, 20–747. [Google Scholar] [CrossRef]
- Lo Giudice, A.; Ronsivalle, V.; Spampinato, C.; Leonardi, R. Fully Automatic Segmentation of the Mandible Based on Convolutional Neural Networks (CNNs). Orthod. Craniofacial Res. 2021, 24, 100–107. [Google Scholar] [CrossRef]
- Minervini, G.; Franco, R.; Marrapodi, M.M.; Mehta, V.; Fiorillo, L.; Badnjević, A.; Cervino, G.; Cicciù, M. Gaucher: A Systematic Review on Oral and Radiological Aspects. Medicina 2023, 59, 670. [Google Scholar] [CrossRef]
- Pacifici, L.; Santacroce, L.; Dipalma, G.; Haxhirexha, K.; Topi, S.; Cantore, S.; Altini, V.; Pacifici, A.; De Vito, D.; Pettini, F.; et al. Gender Medicine: The Impact of Probiotics on Male Patients. Clin. Ter. 2021, 171, e8–e15. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, A.D.; Patano, A.; Coloccia, G.; Ceci, S.; Inchingolo, A.M.; Marinelli, G.; Malcangi, G.; Montenegro, V.; Laudadio, C.; Palmieri, G.; et al. Genetic Pattern, Orthodontic and Surgical Management of Multiple Supplementary Impacted Teeth in a Rare, Cleidocranial Dysplasia Patient: A Case Report. Medicina 2021, 57, 1350. [Google Scholar] [CrossRef] [PubMed]
- Frencken, J.E.; Sharma, P.; Stenhouse, L.; Green, D.; Laverty, D.; Dietrich, T. Global Epidemiology of Dental Caries and Severe Periodontitis—A Comprehensive Review. J. Clin. Periodontol. 2017, 44 (Suppl. S18), S94–S105. [Google Scholar] [CrossRef]
- Malcangi, G.; Patano, A.; Ciocia, A.M.; Netti, A.; Viapiano, F.; Palumbo, I.; Trilli, I.; Guglielmo, M.; Inchingolo, A.D.; Dipalma, G.; et al. Benefits of Natural Antioxidants on Oral Health. Antioxidants 2023, 12, 1309. [Google Scholar] [CrossRef]
- Inchingolo, A.M.; Patano, A.; De Santis, M.; Del Vecchio, G.; Ferrante, L.; Morolla, R.; Pezzolla, C.; Sardano, R.; Dongiovanni, L.; Inchingolo, F.; et al. Comparison of Different Types of Palatal Expanders: Scoping Review. Children 2023, 10, 1258. [Google Scholar] [CrossRef]
- Reitano, E.; de’Angelis, N.; Bianchi, G.; Laera, L.; Spiliopoulos, S.; Calbi, R.; Memeo, R.; Inchingolo, R. Current Trends and Perspectives in Interventional Radiology for Gastrointestinal Cancers. World J. Radiol. 2021, 13, 314–326. [Google Scholar] [CrossRef]
- Dipalma, G.; Inchingolo, A.D.; Piras, F.; Palmieri, G.; Pede, C.D.; Ciocia, A.M.; Siciliani, R.A.; Olio, F.D.; Inchingolo, A.M.; Palermo, A.; et al. Efficacy of Guided Autofluorescence Laser Therapy in MRONJ: A Systematic Review. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 11817–11831. [Google Scholar] [CrossRef]
- Patano, A.; Malcangi, G.; Inchingolo, A.D.; Garofoli, G.; De Leonardis, N.; Azzollini, D.; Latini, G.; Mancini, A.; Carpentiere, V.; Laudadio, C.; et al. Mandibular Crowding: Diagnosis and Management-A Scoping Review. J. Pers. Med. 2023, 13, 774. [Google Scholar] [CrossRef]
- Ballini, A.; Cantore, S.; Farronato, D.; Cirulli, N.; Inchingolo, F.; Papa, F.; Malcangi, G.; Inchingolo, A.D.; Dipalma, G.; Sardaro, N.; et al. Periodontal Disease and Bone Pathogenesis: The Crosstalk between Cytokines and Porphyromonas Gingivalis. J. Biol. Regul. Homeost. Agents 2015, 29, 273–281. [Google Scholar]
- Fahmy-Garcia, S.; Mumcuoglu, D.; de Miguel, L.; Dieleman, V.; Witte-Bouma, J.; van der Eerden, B.C.J.; van Driel, M.; Eglin, D.; Verhaar, J.A.N.; Kluijtmans, S.G.J.M.; et al. Novel In Situ Gelling Hydrogels Loaded with Recombinant Collagen Peptide Microspheres as a Slow-Release System Induce Ectopic Bone Formation. Adv. Healthc. Mater. 2018, 7, e1800507. [Google Scholar] [CrossRef]
- Li, X.; Xu, M.; Geng, Z.; Xu, X.; Han, X.; Chen, L.; Ji, P.; Liu, Y. Novel pH-Responsive CaO(2)@ZIF-67-HA-ADH Coating That Efficiently Enhances the Antimicrobial, Osteogenic, and Angiogenic Properties of Titanium Implants. ACS Appl. Mater. Interfaces 2023, 15, 42965–42980. [Google Scholar] [CrossRef]
- Murasawa, Y.; Furuta, K.; Noda, Y.; Nakamura, H.; Fujii, S.; Isogai, Z. Ointment Vehicles Regulate the Wound-Healing Process by Modifying the Hyaluronan-Rich Matrix. Wound Repair. Regen. 2018, 26, 437–445. [Google Scholar] [CrossRef]
- Ku, J.-K.; Lee, K.-G.; Ghim, M.-S.; Kim, Y.-K.; Park, S.-H.; Park, Y.; Cho, Y.-S.; Lee, B.-K. Onlay-Graft of 3D Printed Kagome-Structure PCL Scaffold Incorporated with rhBMP-2 Based on Hyaluronic Acid Hydrogel. Biomed. Mater. 2021, 16, 055004. [Google Scholar] [CrossRef]
- Rincic Mlinaric, M.; Karlovic, S.; Ciganj, Z.; Acev, D.P.; Pavlic, A.; Spalj, S. Oral Antiseptics and Nickel-Titanium Alloys: Mechanical and Chemical Effects of Interaction. Odontology 2019, 107, 150–157. [Google Scholar] [CrossRef]
- Taufiq, S.; Astekar, M.; Gv, S.; Bs, M.; Saxena, S. Oral Focal Mucinosis in Adolesence: A Sparingly Diagnosed Clinicopathologic Entity. J. Exp. Ther. Oncol. 2019, 13, 49–53. [Google Scholar]
- Sowmya, G.V.; Manjunatha, B.S.; Nahar, P.; Aggarwal, H. Oral Focal Mucinosis: A Rare Case with Literature Review. BMJ Case Rep. 2015, 2015, bcr2014208321. [Google Scholar] [CrossRef] [PubMed]
- Nota, A.; Tecco, S.; Caruso, S.; Severino, M.; Gatto, R.; Baldini, A. Analysis of Errors in Following the Rapid Maxillary Expansion Activation Protocol: An Observational Study. Eur. J. Paediatr. Dent. 2019, 20, 116–118. [Google Scholar] [CrossRef]
- Iorio-Siciliano, V.; Blasi, A.; Mauriello, L.; Salvi, G.E.; Ramaglia, L.; Sculean, A. Non-Surgical Treatment of Moderate Periodontal Intrabony Defects With Adjunctive Cross-Linked Hyaluronic Acid: A Single-Blinded Randomized Controlled Clinical Trial. J. Clin. Periodontol. 2025, 52, 310–322. [Google Scholar] [CrossRef]
- Pilloni, A.; Zeza, B.; Kuis, D.; Vrazic, D.; Domic, T.; Olszewska-Czyz, I.; Popova, C.; Kotsilkov, K.; Firkova, E.; Dermendzieva, Y.; et al. Treatment of Residual Periodontal Pockets Using a Hyaluronic Acid-Based Gel: A 12 Month Multicenter Randomized Triple-Blinded Clinical Trial. Antibiotics 2021, 10, 924. [Google Scholar] [CrossRef] [PubMed]
- Pilloni, A.; Rojas, M.A.; Trezza, C.; Carere, M.; De Filippis, A.; Marsala, R.L.; Marini, L. Clinical effects of the adjunctive use of a polynucleotide and hyaluronic acid-based gel in the subgingival re-instrumentation of residual periodontal pockets: A randomized, split-mouth clinical trial. J. Periodontol. 2023, 94, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Gamal, A.Y.; Mailhot, J.M. A Novel Marginal Periosteal Pedicle Graft as an Autogenous Guided Tissue Membrane for the Treatment of Intrabony Periodontal Defects. J. Int. Acad. Periodontol. 2008, 10, 106–117. [Google Scholar]
- Bhandare, J.; Mahale, S.A.; Abullais, S.S.; Katkurwar, A.; AlQahtani, S.M.; Algarni, Y.A.; Asif, S.M. Appraising and Comparing the Role of Autogenous Periosteal Graft as a Barrier Membrane in the Treatment of Intrabony Defects in Chronic Periodontitis Cases: A Systematic Review and Meta-Analysis. Int. J. Med. Sci. 2024, 21, 253–264. [Google Scholar] [CrossRef]
- Li, H.; Xia, T.; Zeng, H.; Qiu, Y.; Wei, Y.; Cheng, Y.; Wang, Y.; Zhang, X.; Ke, J.; Miron, R.; et al. Liquid Platelet-Rich Fibrin Produced via Horizontal Centrifugation Decreases the Inflammatory Response and Promotes Chondrocyte Regeneration In Vitro. Front. Bioeng. Biotechnol. 2023, 11, 1301430. [Google Scholar] [CrossRef]
- Ugamura, A.; Chu, P.-S.; Nakamoto, N.; Taniki, N.; Ojiro, K.; Hibi, T.; Shinoda, M.; Obara, H.; Masugi, Y.; Yamaguchi, A.; et al. Liver Fibrosis Markers Improve Prediction of Outcome in Non-Acetaminophen-Associated Acute Liver Failure. Hepatol. Commun. 2018, 2, 1331–1343. [Google Scholar] [CrossRef]
- Song, Y.; Ma, A.; Ning, J.; Zhong, X.; Zhang, Q.; Zhang, X.; Hong, G.; Li, Y.; Sasaki, K.; Li, C. Loading Icariin on Titanium Surfaces by Phase-Transited Lysozyme Priming and Layer-by-Layer Self-Assembly of Hyaluronic Acid/Chitosan to Improve Surface Osteogenesis Ability. Int. J. Nanomed. 2018, 13, 6751–6767. [Google Scholar] [CrossRef]
- Fawzy El-Sayed, K.M.; Dahaba, M.A.; Aboul-Ela, S.; Darhous, M.S. Local Application of Hyaluronan Gel in Conjunction with Periodontal Surgery: A Randomized Controlled Trial. Clin. Oral Investig. 2012, 16, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.-T.; Wang, C.-C.; Lu, D.-H.; Lu, K.-J.; Chang, Y.-C.; Yang, K.-C. Lovastatin Impairs Cellular Proliferation and Enhances Hyaluronic Acid Production in Fibroblast-like Synoviocytes. Toxicol. Vitr. 2024, 97, 105806. [Google Scholar] [CrossRef]
- Schmidt, J.; Pilbauerova, N.; Soukup, T.; Suchankova-Kleplova, T.; Suchanek, J. Low Molecular Weight Hyaluronic Acid Effect on Dental Pulp Stem Cells In Vitro. Biomolecules 2020, 11, 22. [Google Scholar] [CrossRef]
- Schmidt, J.; Pavlík, V.; Suchánek, J.; Nešporová, K.; Soukup, T.; Kapitán, M.; Pilbauerová, N. Low, Medium, and High Molecular Weight Hyaluronic Acid Effects on Human Dental Pulp Stem Cells In Vitro. Int. J. Biol. Macromol. 2023, 253, 127220. [Google Scholar] [CrossRef]
- Chen, K.; Zhao, Y.; Zhao, W.; Mao, X.; Li, D.; Wang, Y.; Shang, S.; Zhang, H. Lubricating Microneedles System with Multistage Sustained Drug Delivery for the Treatment of Osteoarthritis. Small 2024, 20, e2307281. [Google Scholar] [CrossRef]
- Opzoomer, J.W.; Anstee, J.E.; Dean, I.; Hill, E.J.; Bouybayoune, I.; Caron, J.; Muliaditan, T.; Gordon, P.; Sosnowska, D.; Nuamah, R.; et al. Macrophages Orchestrate the Expansion of a Proangiogenic Perivascular Niche during Cancer Progression. Sci. Adv. 2021, 7, eabg9518. [Google Scholar] [CrossRef]
- Busse, J.W.; Casassus, R.; Carrasco-Labra, A.; Durham, J.; Mock, D.; Zakrzewska, J.M.; Palmer, C.; Samer, C.F.; Coen, M.; Guevremont, B.; et al. Management of Chronic Pain Associated with Temporomandibular Disorders: A Clinical Practice Guideline. BMJ 2023, 383, e076227. [Google Scholar] [CrossRef] [PubMed]
- Körkkö, J.; Kuivaniemi, H.; Paassilta, P.; Zhuang, J.; Tromp, G.; DePaepe, A.; Prockop, D.J.; Ala-Kokko, L. Two New Recurrent Nucleotide Mutations in the COL1A1 Gene in Four Patients with Osteogenesis Imperfecta: About One-Fifth Are Recurrent. Hum. Mutat. 1997, 9, 148–156. [Google Scholar] [CrossRef]
- Arshid, S.; Ullah, S.E.; Imran, J.; Syed, M.A.; Choradia, A.; Gousy, N.; Boparai, S.; Shoaib, M.; Shah, B.B.; Netha, A. The Effectiveness of Hyaluronic Acid in Reducing Adverse Effects Associated with Inhaled Hypertonic Saline Therapy in Patients with Cystic Fibrosis: A Systematic Review and Meta-Analysis. Can. J. Respir. Ther. 2023, 59, 214–222. [Google Scholar] [CrossRef]
- Chowdhuri, S.; Ghosh, M.; Adler-Abramovich, L.; Das, D. The Effects of a Short Self-Assembling Peptide on the Physical and Biological Properties of Biopolymer Hydrogels. Pharmaceutics 2021, 13, 1602. [Google Scholar] [CrossRef]
- Bogović, A.; Nižetić, J.; Galić, N.; Zelježić, D.; Micek, V.; Mladinić, M. The Effects of Hyaluronic Acid, Calcium Hydroxide, and Dentin Adhesive on Rat Odontoblasts and Fibroblasts. Arh. Hig. Rada Toksikol. 2011, 62, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Emam, H.A.; Behiri, G.; El-Alaily, M.; Sharawy, M. The Efficacy of a Tissue-Engineered Xenograft in Conjunction with Sodium Hyaluronate Carrier in Maxillary Sinus Augmentation: A Clinical Study. Int. J. Oral Maxillofac. Surg. 2015, 44, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Shetty, R.R.; Burde, K.N.; Guttal, K.S. The Efficacy of Topical Hyaluronic Acid 0.2% in the Management of Symptomatic Oral Lichen Planus. J. Clin. Diagn. Res. 2016, 10, ZC46–ZC50. [Google Scholar] [CrossRef] [PubMed]
- Nolan, A.; Badminton, J.; Maguire, J.; Seymour, R.A. The Efficacy of Topical Hyaluronic Acid in the Management of Oral Lichen Planus. J. Oral Pathol. Med. 2009, 38, 299–303. [Google Scholar] [CrossRef]
- Li, R.; Sun, Y.; Chen, Z.; Zheng, M.; Shan, Y.; Ying, X.; Weng, M.; Chen, Z. The Fibroblast Growth Factor 9 (Fgf9) Participates in Palatogenesis by Promoting Palatal Growth and Elevation. Front. Physiol. 2021, 12, 653040. [Google Scholar] [CrossRef]
- Putri, N.T.; Ridho, F.; Wahyuni, I.S. The Improvement of Xerostomia and Reduction of Anxiety Score in a Patient with Generalized Anxiety Disorder and Recalcitrant Geographic Tongue: A Case Report and Literature Review. Int. Med. Case Rep. J. 2024, 17, 869–877. [Google Scholar] [CrossRef]
- Hall, R.; Embery, G.; Waddington, R.; Gilmour, A. The Influence of Fluoride on the Adsorption of Proteoglycans and Glycosaminoglycans to Hydroxyapatite. Calcif. Tissue Int. 1995, 56, 236–239. [Google Scholar] [CrossRef]
- Favia, G.; Mariggio, M.A.; Maiorano, F.; Cassano, A.; Capodiferro, S.; Ribatti, D. Accelerated Wound Healing of Oral Soft Tissues and Angiogenic Effect Induced by a Pool of Aminoacids Combined to Sodium Hyaluronate (AMINOGAM). J. Biol. Regul. Homeost. Agents 2008, 22, 109–116. [Google Scholar] [PubMed]
- Boccalari, E.; Khijmatgar, S.; Occhipinti, C.; Del Fabbro, M.; Inchingolo, F.; Tartaglia, G.M. Effect of Hydrogen Peroxide and Hyaluronic Acid in Mouth Rinse after Third Molar Extraction: A Triple-Blind Parallel Randomized Controlled Clinical Trial. Eur. Rev. Med. Pharmacol. Sci. 2024, 28, 3946–3957. [Google Scholar] [CrossRef]
- Lanzaretti, G.; Bizzoca, M.E.; Pilati, F.; Fuin, M.; Matteazzi, G.; Lo Muzio, E.; Zotti, F. Esthetic Smile Rehabilitation with Direct Composite Veneers: A Narrative Review with a Practical Explanation of the Technique. Minerva Dent. Oral Sci. 2025. [Google Scholar] [CrossRef]
- Yuce, E.; Komerik, N. Comparison of the Efficiacy of Intra-Articular Injection of Liquid Platelet-Rich Fibrin and Hyaluronic Acid After in Conjunction with Arthrocentesis for the Treatment of Internal Temporomandibular Joint Derangements. J. Craniofac. Surg. 2020, 31, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Chęciński, M.; Chęcińska, K.; Turosz, N.; Brzozowska, A.; Chlubek, D.; Sikora, M. Current Clinical Research Directions on Temporomandibular Joint Intra-Articular Injections: A Mapping Review. J. Clin. Med. 2023, 12, 4655. [Google Scholar] [CrossRef] [PubMed]
- Cirulli, N.; Inchingolo, A.D.; Patano, A.; Ceci, S.; Marinelli, G.; Malcangi, G.; Coloccia, G.; Montenegro, V.; Di Pede, C.; Ciocia, A.M.; et al. Innovative Application of Diathermy in Orthodontics: A Case Report. Int. J. Environ. Res. Public Health 2022, 19, 7448. [Google Scholar] [CrossRef] [PubMed]
- Vena, F.; D’Amico, G.; Cardarelli, F.; Cianetti, S.; Severino, M. Interceptive Orthodontic Treatment with Elastodontic Appliance for Open Bite in Early Childhood: A Case Series. Oral Implantol. A J. Innov. Adv. Tech. Oral Health 2024, 16, 25–28. [Google Scholar] [CrossRef]
- Hajishengallis, G. Interconnection of Periodontal Disease and Comorbidities: Evidence, Mechanisms, and Implications. Periodontology 2000 2022, 89, 9–18. [Google Scholar] [CrossRef]
- Hu, L.; Zeng, X.; Wei, X.; Wang, H.; Wu, Y.; Gu, W.; Shi, L.; Zhu, C. Interface Engineering for Enhancing Electrocatalytic Oxygen Evolution of NiFe LDH/NiTe Heterostructures. Appl. Catal. B Environ. 2020, 273, 119014. [Google Scholar] [CrossRef]
- Jolly, S.S.; Rattan, V.; Rai, S.K. Intraoral Management of Displaced Root into Submandibular Space under Local Anaesthesia –A Case Report and Review of Literature. Saudi Dent. J. 2014, 26, 181–184. [Google Scholar] [CrossRef]
- Narciso, F.; Cardoso, S.; Monge, N.; Lourenço, M.; Martin, V.; Duarte, N.; Santos, C.; Gomes, P.; Bettencourt, A.; Ribeiro, I.A.C. 3D-Printed Biosurfactant-Chitosan Antibacterial Coating for the Prevention of Silicone-Based Associated Infections. Colloids Surf. B Biointerfaces 2023, 230, 113486. [Google Scholar] [CrossRef]
- Shen, S.; Zhang, Y.; Zhang, S.; Wang, B.; Shang, L.; Shao, J.; Lin, M.; Cui, Y.; Sun, S.; Ge, S. 6-Bromoindirubin-3’-Oxime Promotes Osteogenic Differentiation of Periodontal Ligament Stem Cells and Facilitates Bone Regeneration in a Mouse Periodontitis Model. ACS Biomater. Sci. Eng. 2021, 7, 232–241. [Google Scholar] [CrossRef]
- Scuruchi, M.; D’Ascola, A.; Avenoso, A.; Campana, S.; Abusamra, Y.A.; Spina, E.; Calatroni, A.; Campo, G.M.; Campo, S. 6-Mer Hyaluronan Oligosaccharides Modulate Neuroinflammation and α-Synuclein Expression in Neuron-Like SH-SY5Y Cells. J. Cell Biochem. 2016, 117, 2835–2843. [Google Scholar] [CrossRef]
- Heydenrych, I.; Kapoor, K.M.; De Boulle, K.; Goodman, G.; Swift, A.; Kumar, N.; Rahman, E. A 10-Point Plan for Avoiding Hyaluronic Acid Dermal Filler-Related Complications during Facial Aesthetic Procedures and Algorithms for Management. Clin. Cosmet. Investig. Dermatol. 2018, 11, 603–611. [Google Scholar] [CrossRef]
- Xu, X.; Sui, B.; Liu, X.; Sun, J. A Bioinspired and High-Strengthed Hydrogel for Regeneration of Perforated Temporomandibular Joint Disc: Construction and Pleiotropic Immunomodulatory Effects. Bioact. Mater. 2023, 25, 701–715. [Google Scholar] [CrossRef] [PubMed]
- La Gatta, A.; D’Agostino, A.; Schiraldi, C.; Colella, G.; Cirillo, N. A Biophysically-Defined Hyaluronic Acid-Based Compound Accelerates Migration and Stimulates the Production of Keratinocyte-Derived Neuromodulators. Cell Adh. Migr. 2019, 13, 23–32. [Google Scholar] [CrossRef]
- Supachawaroj, N.; Damrongrungruang, T.; Limsitthichaikoon, S. Formulation Development and Evaluation of Lidocaine Hydrochloride Loaded in Chitosan-Pectin-Hyaluronic Acid Polyelectrolyte Complex for Dry Socket Treatment. Saudi Pharm. J. 2021, 29, 1070–1081. [Google Scholar] [CrossRef] [PubMed]
- Bonet, I.J.M.; Araldi, D.; Khomula, E.V.; Bogen, O.; Green, P.G.; Levine, J.D. G-Protein-Coupled Estrogen Receptor 30 Regulation of Signaling Downstream of Protein Kinase Cε Mediates Sex Dimorphism in Hyaluronan-Induced Antihyperalgesia. Pain 2025, 166, 539–556. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-C.; Huang, K.-Y.; Lew, W.-Z.; Fan, K.-H.; Chang, W.-J.; Huang, H.-M. Gamma-Irradiation-Prepared Low Molecular Weight Hyaluronic Acid Promotes Skin Wound Healing. Polymers 2019, 11, 1214. [Google Scholar] [CrossRef]
- Derwich, M.; Lassmann, L.; Machut, K.; Zoltowska, A.; Pawlowska, E. General Characteristics, Biomedical and Dental Application, and Usage of Chitosan in the Treatment of Temporomandibular Joint Disorders: A Narrative Review. Pharmaceutics 2022, 14, 305. [Google Scholar] [CrossRef]
- Alaohali, A.; Salzlechner, C.; Zaugg, L.K.; Suzano, F.; Martinez, A.; Gentleman, E.; Sharpe, P.T. GSK3 Inhibitor-Induced Dentinogenesis Using a Hydrogel. J. Dent. Res. 2022, 101, 46–53. [Google Scholar] [CrossRef]
- Cho, Y.-D.; Kim, K.-H.; Lee, Y.-M.; Ku, Y.; Seol, Y.-J. Periodontal Wound Healing and Tissue Regeneration: A Narrative Review. Pharmaceutics 2021, 14, 456. [Google Scholar] [CrossRef]
- Hill, W.S.; Dohnalek, M.H.; Ha, Y.; Kim, S.-J.; Jung, J.-C.; Kang, S.-B. A Multicenter, Randomized, Double-Blinded, Placebo-Controlled Clinical Trial to Evaluate the Efficacy and Safety of a Krill Oil, Astaxanthin, and Oral Hyaluronic Acid Complex on Joint Health in People with Mild Osteoarthritis. Nutrients 2023, 15, 3769. [Google Scholar] [CrossRef]
- Cömert Kiliç, S.; Güngörmüş, M. Is Arthrocentesis plus Platelet-Rich Plasma Superior to Arthrocentesis plus Hyaluronic Acid for the Treatment of Temporomandibular Joint Osteoarthritis: A Randomized Clinical Trial. Int. J. Oral Maxillofac. Surg. 2016, 45, 1538–1544. [Google Scholar] [CrossRef] [PubMed]
- Castaño-Joaqui, O.G.; Cano-Sánchez, J.; Campo-Trapero, J.; Muñoz-Guerra, M.F. TMJ Arthroscopy with Hyaluronic Acid: A 12-Month Randomized Clinical Trial. Oral Dis. 2021, 27, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Cömert Kılıç, S. Does Glucosamine, Chondroitin Sulfate, and Methylsulfonylmethane Supplementation Improve the Outcome of Temporomandibular Joint Osteoarthritis Management with Arthrocentesis plus Intraarticular Hyaluronic Acid Injection. A Randomized Clinical Trial. J. Craniomaxillofac. Surg. 2021, 49, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Ozdamar, S.M.; Alev, B.; Yarat, A. The Impact of Arthrocentesis with and without Hyaluronic Acid Injection in the Prognosis and Synovial Fluid Myeloperoxidase Levels of Patients with Painful Symptomatic Internal Derangement of Temporomandibular Joint: A Randomised Controlled Clinical Trial. J. Oral Rehabil. 2017, 44, 73–80. [Google Scholar] [CrossRef]
- Yilmaz, O.; Korkmaz, Y.T.; Tuzuner, T. Comparison of Treatment Efficacy between Hyaluronic Acid and Arthrocentesis plus Hyaluronic Acid in Internal Derangements of Temporomandibular Joint. J. Craniomaxillofac. Surg. 2019, 47, 1720–1727. [Google Scholar] [CrossRef]
- Gokçe Kutuk, S.; Gökçe, G.; Arslan, M.; Özkan, Y.; Kütük, M.; Kursat Arikan, O. Clinical and Radiological Comparison of Effects of Platelet-Rich Plasma, Hyaluronic Acid, and Corticosteroid Injections on Temporomandibular Joint Osteoarthritis. J. Craniofac. Surg. 2019, 30, 1144–1148. [Google Scholar] [CrossRef]
- Vela, O.-C.; Boariu, M.; Rusu, D.; Iorio-Siciliano, V.; Sculean, A.; Stratul, S.-I. Clinical and Radiographic Evaluation of Intrabony Periodontal Defects Treated with Hyaluronic Acid or Enamel Matrix Proteins: A 6-Month Prospective Study. Oral Health Prev. Dent. 2024, 22, 257–270. [Google Scholar] [CrossRef]
- Mamajiwala, A.S.; Sethi, K.S.; Raut, C.P.; Karde, P.A.; Mamajiwala, B.S. Clinical and Radiographic Evaluation of 0.8% Hyaluronic Acid as an Adjunct to Open Flap Debridement in the Treatment of Periodontal Intrabony Defects: Randomized Controlled Clinical Trial. Clin. Oral Investig. 2021, 25, 5257–5271. [Google Scholar] [CrossRef]
- Ramanauskaite, E.; Machiulskiene Visockiene, V.; Shirakata, Y.; Friedmann, A.; Pereckaite, L.; Balciunaite, A.; Dvyliene, U.M.; Vitkauskiene, A.; Baseviciene, N.; Sculean, A. Microbiological Effects of Sodium Hypochlorite/-Amino Acids and Cross-Linked Hyaluronic Acid Adjunctive to Non-Surgical Periodontal Treatment. Oral Health Prev. Dent. 2024, 22, 171–180. [Google Scholar] [CrossRef]
- Benyei, L.; Friedmann, A.; Ostermann, T.; Diehl, D. Non-Surgical Treatment of Residual Periodontal Pockets Using Sodium Hypochlorite/Amino Acid Gel and Cross-Linked Hyaluronic Acid-a 9-Month Pilot Randomized Controlled Clinical Trial. Clin. Oral Investig. 2024, 28, 513. [Google Scholar] [CrossRef]
- Aydinyurt, H.S.; Akbal, D.; Altindal, D.; Bozoglan, A.; Ertugrul, A.S.; Demir, H. Evaluation of Biochemical and Clinical Effects of Hyaluronic Acid on Non-Surgical Periodontal Treatment: A Randomized Controlled Trial. Ir. J. Med. Sci. 2020, 189, 1485–1494. [Google Scholar] [CrossRef] [PubMed]
- Eeckhout, C.; Ackerman, J.; Glibert, M.; Cosyn, J. A Randomized Controlled Trial Evaluating Hyaluronic Acid Gel as Wound Healing Agent in Alveolar Ridge Preservation. J. Clin. Periodontol. 2022, 49, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Elkady, O.; Sweedan, O.; Amer, T. Effect of Intra-Socket Application of Hyaluronic Acid Gel on Soft and Hard Tissue Healing Following Impacted Mandibular Third Molars Extraction (a Randomized Controlled Clinical Trial). BMC Oral Health 2025, 25, 214. [Google Scholar] [CrossRef] [PubMed]
- Gurbuz, E.; Dursun, E.; Vatansever, A.; Caglayan, F. Microcomputed Tomographic Analysis of Bone Microarchitecture after Sinus Augmentation with Hyaluronic Matrix: A Case-Control Study. Oral Maxillofac. Surg. 2022, 26, 431–437. [Google Scholar] [CrossRef]
- Yakout, B.K.; Kamel, F.R.; Khadr, M.A.E.-A.A.; Heikal, L.A.H.; El-Kimary, G.I. Efficacy of Hyaluronic Acid Gel and Photobiomodulation Therapy on Wound Healing after Surgical Gingivectomy: A Randomized Controlled Clinical Trial. BMC Oral Health 2023, 23, 805. [Google Scholar] [CrossRef]
- Pilloni, A.; Marini, L.; Gagliano, N.; Canciani, E.; Dellavia, C.; Cornaghi, L.B.; Costa, E.; Rojas, M.A. Clinical, Histological, Immunohistochemical, and Biomolecular Analysis of Hyaluronic Acid in Early Wound Healing of Human Gingival Tissues: A Randomized, Split-Mouth Trial. J. Periodontol. 2023, 94, 868–881. [Google Scholar] [CrossRef]
- Tadakamadla, S.K.; Bharathwaj, V.V.; Duraiswamy, P.; Sforza, C.; Tartaglia, G.M. Clinical Efficacy of a New Cetylpyridinium Chloride-Hyaluronic Acid-Based Mouthrinse Compared to Chlorhexidine and Placebo Mouthrinses-A 21-Day Randomized Clinical Trial. Int. J. Dent. Hyg. 2020, 18, 116–123. [Google Scholar] [CrossRef]
- Husseini, B.; Friedmann, A.; Wak, R.; Ghosn, N.; Khoury, G.; El Ghoul, T.; Abboud, C.K.; Younes, R. Clinical and Radiographic Assessment of Cross-Linked Hyaluronic Acid Addition in Demineralized Bovine Bone Based Alveolar Ridge Preservation: A Human Randomized Split-Mouth Pilot Study. J. Stomatol. Oral Maxillofac. Surg. 2023, 124, 101426. [Google Scholar] [CrossRef]
- Gartlehner, G.; Hansen, R.A.; Nissman, D.; Lohr, K.N.; Carey, T.S. Introduction. In Criteria for Distinguishing Effectiveness from Efficacy Trials in Systematic Reviews; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2006. [Google Scholar]
- Beaulieu, M.; Tremblay, J.; Baudry, C.; Pearson, J.; Bertrand, K. A Systematic Review and Meta-Analysis of the Efficacy of the Long-Term Treatment and Support of Substance Use Disorders. Soc. Sci. Med. 2021, 285, 114289. [Google Scholar] [CrossRef]
Application Area | Description | Key Benefits |
---|---|---|
Post-surgical healing | Applied after extractions, frenectomy, and gum surgery. | Reduces pain, swelling, and accelerates healing. |
Periodontal therapy | Treats gingivitis and periodontitis. | Decreases plaque, bleeding, and pocket depth. |
Oral lesion treatment | Used for aphthous ulcers, mucositis, and trauma lesions. | Soothes, protects, and promotes tissue repair. |
Bone regeneration | Mixed with bone grafts in Guided Bone Regeneration (GBR). | Enhances osteoconductivity and supports bone healing. |
TMJ disorders | Injected into the temporomandibular joint (TMJ). | Relieves pain, reduces inflammation, improves joint function. |
Antibacterial effect | Supports healing by reducing bacterial growth. | Lowers infection risk and promotes clean wound environments. |
Authors and Years | Type of Study | Aim of the Study and Patients | Materials | Outcomes |
---|---|---|---|---|
Hill W.S. et al. (2023) [101] | Multicenter, Randomized, Double-Blinded, Placebo-Controlled Clinical Trial | To evaluate the efficacy and safety of a Krill Oil, Astaxanthin, and Oral HA Complex on joint health in people with mild OA. 100 patients (57.0 ± 10.28) | FlexPro MD® (Krill Oil, Astaxanthin, and Oral HA; Placebo | Significant reduction in joint pain, improvement in joint function, and better patient-reported joint improvement compared to placebo. Lower incidence of adverse events in the treatment group. |
Cömert Kiliç, S. et al. (2016) [102] | Randomized Clinical Trial | To compare the effectiveness of arthrocentesis plus platelet-rich plasma (PRP) versus arthrocentesis plus HA in the treatment of TMJ OA. 31 patients (30.48 ± 13.04) | 49 TMJ OA joints in 31 patients; PRP group (arthrocentesis plus PRP injections) vs. HA group (arthrocentesis plus HA injection). | Both treatments led to significant clinical improvements. However, no statistically significant differences were found between the two groups, suggesting that PRP is not superior to HA for TMJ OA treatment. HA injection appears to be more acceptable. |
Castaño-Joaqui, O.G. et al. (2021) [103] | Randomized Clinical Trial | To evaluate the effect of HA as an adjunct to TMJ arthroscopy in patients with Wilkes stage-III and stage-IV internal derangement. 51 patients (18–76 years) | 51 patients: 25 underwent TMJ arthroscopy alone, 26 received TMJ arthroscopy plus HA injections. Outcomes measured included joint pain, maximum mouth opening and oral health-related quality of life. | Both groups showed improvement in pain, maximum mouth opening, and quality of life, but no statistically significant differences were observed between groups, indicating that HA provided no additional benefit as an adjunct to arthroscopy. |
Cömert Kılıç, S. et al. (2021) [104] | Randomized Clinical Trial | To assess whether glucosamine, chondroitin sulfate and methylsulfonylmethane supplementation improves the outcome of TMJ OA management with arthrocentesis plus intraarticular HA injection. 26 patients (28.35 ± 10.85 years) | 31 participants with TMJ OA; Control group received a single-session arthrocentesis plus intraarticular HA injection, while the study group received the same treatment followed by 3 months of methylsulfonylmethane supplementation. | Both groups showed significant clinical improvements, but there were no statistically significant differences between them. Methylsulfonylmethane supplementation did not provide additional clinical benefits over HA injection alone. |
Ozdamar, S.M. et al. (2017) [105] | Randomized Controlled Clinical Trial | To evaluate the impact of arthrocentesis with and without HA injection on prognosis and synovial fluid myeloperoxidase levels in patients with symptomatic TMJ internal derangement. 24 patients (26.87 ± 7.92) | 24 patients with TMJ internal derangement; Group 1 received arthrocentesis with HA, while Group 2 received arthrocentesis with saline solution. Synovial fluid myeloperoxidase levels, pain and maximum mouth opening were measured. | Both groups showed pain reduction and improved maximum mouth opening over time, with no significant differences between them. HA significantly reduced myeloperoxidase levels, suggesting an anti-inflammatory effect, while SS did not. |
Yilmaz, O. et al. (2019) [106] | Randomized Clinical Trial | To compare the effectiveness of HA injection alone versus arthrocentesis plus HA injection in treating internal derangements of the TMJ. 90 patients (15–82 years) | 90 patients (116 TMJs) with TMJ disc displacement; Divided into groups receiving HA injection alone or arthrocentesis plus HA. Evaluations included pain, mouth opening, chewing efficiency, TMJ sounds, and quality of life over 6 months. | Both treatments improved symptoms, but arthrocentesis plus HA was superior in improving chewing efficiency and quality of life, suggesting that combined treatment is more effective than HA alone. |
Gokçe Kutuk, S. et al. (2019) [107] | Randomized Clinical Trial | To compare the clinical effects of intra-articular PRP, HA, and corticosteroid injections in patients with TMJ OA. 60 patients (33.7 ± 10.4 years) | 60 TMJ OA patients divided into 3 groups receiving either PRP, HA, or CS injections. Pain, crepitation, loss of function, and loss of strength were evaluated for 3 months. | PRP showed the greatest reduction in TMJ palpation pain compared to HA and CS. PRP also improved joint function and reduced symptoms more effectively, supporting its use as a promising treatment option. |
Vela O.C. et al. (2024) [108] | Randomised prospective single-blind clinical study | To compare the regenerative clinical and radiographic effects of xHyA with EMD at six months after regenerative treatment of periodontal intrabony defects. 60 (age no specified) | xHyA, EMD, Periodontal probes, Radiographic imaging software, Various periodontal surgical tools | Both EMD and xHyA produced statistically significant clinical and radiographical improvements after six months when compared with baseline. No significant difference was found between the two treatment modalities. |
Pilloni, A (2023) [56] | Randomized, split-mouth clinical trial | To evaluate the clinical effects of PN and HA-based gel as an adjunctive treatment in subgingival re-instrumentation of residual periodontal pockets. 50 patient (age no specified) | PN and HA-based gel, periodontal probes, subgingival instrumentation tools, ultrasonic devices, chlorhexidine mouth rinse. | Both test and control groups showed significant periodontal improvements. The test group (PN + HA gel) exhibited slightly better clinical outcomes, particularly in deep residual pockets, but differences were not statistically significant. |
Mamajiwala, A.S (2021) [109] | Randomized controlled clinical trial | To evaluate and compare the clinical and radiographic efficacy of 0.8% HA gel as an adjunct to open flap debridement (OFD) versus OFD alone in the treatment of periodontal intrabony defects. 20 (age no specified) | 0.8% HA gel, periodontal probes, cone beam computed tomography (CBCT) imaging, surgical instruments for OFD. | After 12 months, the test group (HA + OFD) showed significantly greater clinical attachment level (CAL) gain, PD reduction, and bone defect fill compared to the control group (OFD alone). HA gel improved clinical and radiographic outcomes in periodontal intrabony defect treatment. |
Ramanauskaite E. et al. (2024) [110] | Randomized controlled clinical trial | To investigate the microbiological effects of adjunctive sodium hypochlorite/amino acids and xHyA in non-surgical periodontal treatment. 48 (age no specified) | Sodium hypochlorite/amino acid gel, cross-linked HA gel, subgingival debridement tools, multiplex polymerase chain reaction for bacterial analysis. | The adjunctive application of sodium hypochlorite/amino acids and xHyA led to significant reductions in periopathogenic bacteria after 6 months compared to subgingival debridement alone, supporting its use in periodontal therapy. |
Benyei et al., 2024 [111] | Pilot RCT | Assess adjunctive sodium hypochlorite/amino acids + xHyA in residual pockets. 52 patients (mean 58.4 years) | Subgingival instrumentation ± adjuncts, evaluated at 3 and 9 months | Adjuncts improved PD and CAL, especially in deep pockets. No significant bleeding on probing (BOP) difference |
Aydinyurt H.S. et al. (2020) [112] | Randomized controlled clinical trial | To evaluate the early-term biochemical and clinical effects of HA as an adjunct to scaling and root planing (SRP) in the treatment of periodontitis. 24 (age no specified) | HA gel, HA mouth rinse, periodontal probes, SRP instruments, spectrophotometric analysis tools for biochemical assessments. | All treatment groups showed significant improvements in clinical parameters and periodontal inflamed surface area after four weeks. Biochemically, groups using HA gel exhibited significant changes in adenosine deaminase, catalase and glutathione levels, suggesting an antioxidant and anti-inflammatory effect of HA. However, no significant clinical differences were observed between the groups. |
Eeckhout et al., 2022 [113] | RCT | Evaluate HA gel in alveolar ridge preservation. 38 patients (±53 years) | Collagen graft ± 0.8% HA gel, measured wound dimensions and outcomes for 4 months | No improvement in healing; more bone loss with HA. Not recommended for ARP. |
Altintepe Doğan et al., 2024 [1] | Randomized clinical study | Assess 0.6% HA effects on healing after frenectomy. 96 patients (8–14 years) | Conventional/diode laser frenectomy ± HA, assessed at baseline, 1 & 3 months | HA + laser improved healing, reduced inflammation, and enhanced comfort |
Elkady et al., 2025 [114] | Randomized controlled trial | Evaluate the effect of 0.8% HA gel on healing after mandibular third molar extraction. 30 patients (21–36 years) | 15 patients received HA in the socket, 15 did not. Soft tissue healing assessed on days 3, 7, and 14; bone healing evaluated via CBCT at baseline and after 2 months | HA significantly improved soft tissue healing, increased bone density, and accelerated socket closure compared to controls |
Gurbuz et al., 2022 [115] | Case-control study | To assess the effect of hyaluronic matrix on bone microarchitecture after sinus augmentation. 13 patients (33–69 years) | Bilateral maxillary sinus augmentation; test group: hyaluronic matrix + xenograft, control group: xenograft only; MicroCT analysis after 4 months | Hyaluronic matrix increased bone surface density (BS/TV), suggesting improved bone quality, but further research is needed for confirmation. |
Yakout et al., 2023 [116] | RCT | Assess HA gel + PBMT on gingivectomy healing 26 patients (18–40 years) | Test: PBMT + 2% HA gel Control: PBMT only Landry’s index at days 3, 7, 14, 21 | HA gel improved healing (100% excellent by day 21 vs. 38.5%, |
Pilloni et al., 2023 [117] | RCT, split-mouth | Assess HA gel on gingival healing. 8 patients(18–50 years) | HA vs. no treatment; EHS, histological & molecular analysis at 24 h, 1 week | HA improved EHS at 24 h, enhanced ECM remodeling, no effect on angiogenesis |
Tadakamadla et al., 2020 [118] | RCT | Compare Complete Blood Count (CBC)-HA mouthrinse with CHX and placebo. 75 patients (age no specified) | 21-day, double-blind, three-arm study | CPC-HA and CHX were similarly effective in reducing plaque; CPC-HA did not cause staining. |
Husseini et al., 2023 [119] | Randomized split-mouth pilot study | Assess xHyA + DBBM in ridge preservation. 7 patients (mean age 52.65) | Test: DBBM + xHyA, Control: DBBM alone. CBCT at baseline and 4 months. Histology at implant placement. | xHyA reduced bone resorption (p = 0.018) but did not affect grafting needs. Improved DBBM integration. |
Authors and Year | Randomization | Blinding | Completeness of Data | Conflict of Interest | Selection Bias | Overall Risk of Bias |
---|---|---|---|---|---|---|
Hill W.S. et al. (2023) [101] | ||||||
Cömert Kiliç, S. et al. (2016) [101] | ||||||
Castaño-Joaqui, O.G. et al. (2021) [102] | ||||||
Cömert Kılıç, S. et al. (2021) [103] | ||||||
Ozdamar, S.M. et al. (2017) [104] | ||||||
Yilmaz, O. et al. (2019) [105] | ||||||
Gokçe Kutuk, S. et al. (2019) [106] | ||||||
Vela O.C. et al. (2024) [107] | ||||||
Pilloni, A (2023) [108] | ||||||
Mamajiwala, A.S (2021) [56] | ||||||
Ramanauskaite E. et al. (2024) [109] | ||||||
Aydinyurt H.S. et al. (2020) [111] | ||||||
Eeckhout et al. (2022) [112] | ||||||
Altintepe Doğan et al. (2024) [1] | ||||||
Elkady et al. (2025) [113] | ||||||
Gurbuz et al. (2022) [114] | ||||||
Yakout et al. (2023) [115] | ||||||
Pilloni et al. (2023) [116] | ||||||
Tadakamadla et al. (2020) [117] | ||||||
Husseini et al. (2023) [118] | ||||||
Benyei et al. (2024) [110] | ||||||
Domains: | Judgement: | |||||
D1: Bias due to confounding. | ||||||
D2: Bias arising from the measurement of the exposure. | Hight | |||||
D3: Bias in the selection of participants in the study (or into the analysis). | Some Concerns | |||||
D4: Bias due to post-exposure interventions. | Low | |||||
D5: Bias due to missing data. | ||||||
D6: Bias arising from measurement of the outcome. |
Product Name | Composition | Formulation | Clinical Indications | Application |
---|---|---|---|---|
Gengigel® | 0.2% High-molecular weight HA | Gel, mouth rinse | Gingivitis, periodontitis, post-surgical healing | Topical |
Aftamed® | 0.8% HA | Gel, spray | Aphthous ulcers, mucosal lesions | Topical/oral mucosa |
Hyadent BG® | Cross-linked HA | Injectable gel | Periodontal regeneration, surgical defects | Subgingival injection |
Xylmelts® | HA + Xylitol | Oral discs | Xerostomia, mucosal protection | Buccal slow-release |
Bonyf® HA Dental Gel | HA + natural anti-inflammatory agents | Gel | Periodontal support, mucosal healing | Topical after SRP or surgery |
Hyalograft 3D® | Cross-linked HA + collagen scaffold | Membrane | Bone grafting, regenerative procedures | Surgical placement |
GUM AftaClear® | HA + Aloe vera | Gel, rinse | Oral ulcers, mucosal inflammation | Topical/oral cavity |
Curasept® ADS DNA HA | HA + DNA + ADS system | Mouth rinse | Periodontal and peri-implant mucositis | Daily rinse |
Amminogam® Gel | HA + Amino acids (glycine, leucine, lysine, proline) | Gel | Post-surgical healing, mucosal repair, aphthae | Topical (oral mucosa) |
Plakgel Active® | HA + Lactoferrin + Zinc + Aloe vera | Gel | Gingival inflammation, biofilm control | Topical on gingiva or periodontal pockets |
Euclorina Gengiva Gel® | Sodium hypochlorite + HA | Gel | Gingivitis, mucositis, oral hygiene support | Topical (gingival margin) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malcangi, G.; Inchingolo, A.D.; Trilli, I.; Ferrante, L.; Casamassima, L.; Nardelli, P.; Inchingolo, F.; Palermo, A.; Severino, M.; Inchingolo, A.M.; et al. Recent Use of Hyaluronic Acid in Dental Medicine. Materials 2025, 18, 1863. https://doi.org/10.3390/ma18081863
Malcangi G, Inchingolo AD, Trilli I, Ferrante L, Casamassima L, Nardelli P, Inchingolo F, Palermo A, Severino M, Inchingolo AM, et al. Recent Use of Hyaluronic Acid in Dental Medicine. Materials. 2025; 18(8):1863. https://doi.org/10.3390/ma18081863
Chicago/Turabian StyleMalcangi, Giuseppina, Alessio Danilo Inchingolo, Irma Trilli, Laura Ferrante, Lucia Casamassima, Paola Nardelli, Francesco Inchingolo, Andrea Palermo, Marco Severino, Angelo Michele Inchingolo, and et al. 2025. "Recent Use of Hyaluronic Acid in Dental Medicine" Materials 18, no. 8: 1863. https://doi.org/10.3390/ma18081863
APA StyleMalcangi, G., Inchingolo, A. D., Trilli, I., Ferrante, L., Casamassima, L., Nardelli, P., Inchingolo, F., Palermo, A., Severino, M., Inchingolo, A. M., & Dipalma, G. (2025). Recent Use of Hyaluronic Acid in Dental Medicine. Materials, 18(8), 1863. https://doi.org/10.3390/ma18081863