Reducing Sintering Temperature While Optimizing Electrical Properties of BCZT-Based Lead-Free Ceramics by Adding MnO2 as Sintering Aid
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, F.; Qian, J.; Wang, S.; Zhai, J. Progress and outlook on lead-free ceramics for energy storage applications. Nano Energy 2024, 123, 109394. [Google Scholar] [CrossRef]
- Sahoo, B.; Thejas, T.; Politova, E.; Panda, P. Effect of dopants on electrical properties of BCT-BZT lead free piezo ceramics: A review. Ferroelectrics 2021, 582, 46–62. [Google Scholar] [CrossRef]
- Panda, P.; Sahoo, B.; Thejas, T.; Krishna, M. High d33 lead-free piezoceramics: A Review. J. Electron. Mater. 2022, 51, 938–952. [Google Scholar] [CrossRef]
- Li, Z.; Yu, J.; Hao, S.; Janolin, P.-E. Enhancing properties of lead-free ferroelectric BaTiO3 through doping. J. Eur. Ceram. Soc. 2022, 42, 4693–4701. [Google Scholar] [CrossRef]
- Verma, R.; Chauhan, A.; Batoo, K.; Jasrotia, R.; Sharma, A.; Kumar, R.; Hadi, M.; Raslan, E.; Labis, J.; Imran, A. Review—Modulation of Dielectric, Ferroelectric, and Piezoelectric Properties of Lead-Free BCZT Ceramics by Doping. ECS J. Solid State Sci. Technol. 2021, 10, 073004. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Thong, H.-C.; Zhu, Z.-X.; Nie, J.-K.; Liu, Y.-X.; Xu, Z.; Soon, P.-S.; Gong, W.; Wang, K. Hardening effect in lead-free piezoelectric ceramics. J. Mater. Res. 2021, 36, 996–1014. [Google Scholar] [CrossRef]
- Liu, W.; Ren, X. Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 2009, 103, 257602. [Google Scholar] [CrossRef]
- Coondoo, I.; Pullar, R.C.; Miranda, G. Multifunctional lead-free piezoelectric (Ba, Ca)(Zr, Ti)O3 compounds: From energy harvesting to electrocaloric cooling and energy storage applications. Mater. Res. Bull. 2024, 179, 112924. [Google Scholar] [CrossRef]
- Buatip, N.; Munthala, D.; Janphuang, P.; Pojprapai, S. Investigation of energy harvesting performance of BCZT piezoelectric ceramics under low frequency. Bull. Mater. Sci. 2024, 47, 25. [Google Scholar] [CrossRef]
- Thakur, N.; Gopalan, P.; Kolte, J. Structural, electrical, and dynamic scaling behavior of Ba0.85Ca0.15Zr0.10Ti0.90O3 nanoceramics synthesized at low temperature by sonochemical method. Ceram. Int. 2024, 50, 46718–46728. [Google Scholar] [CrossRef]
- Yang, P.; Zhao, L.; Shi, S.; Zheng, H.; Yu, S. Effects of multiple sintering additives on crystal structure, morphology and tunable mechanisms of BCZT ceramics. J. Mater. Sci. 2024, 59, 14482–14493. [Google Scholar] [CrossRef]
- Kumari, S.; Kumar, A.; Kumar, V.; Aggarwal, S.; Goyal, P.K.; Gaur, A.; Arya, A.; Kumar, A. Enhanced Curie temperature with a significant reduction in sintering temperature for Cu2+/Bi3+ co-doped BCZT lead-free ceramics. Mater. Sci. Eng. B 2023, 293, 116500. [Google Scholar] [CrossRef]
- Jaiban, P.; Theethuan, T.; Khumtrong, S.; Lokakaew, S.; Watcharapasorn, A. The effects of donor (Nb5+) and acceptor (Cu2+, Zn2+, Mn2+, Mg2+) doping at B-site on crystal structure, microstructure, and electrical properties of (Ba0.85Ca0.15)Zr0.1Ti0.9O3 ceramics. J. Alloys Compd. 2022, 899, 162909. [Google Scholar] [CrossRef]
- Ma, P.; Wang, J.; He, Y.; Duan, X. Dielectric and Ferroelectric Performances of Y, Mn Co-doped Barium Calcium Zirconate Titanate Based Lead-Free Piezoceramics. J. Mater. Eng. Perform. 2024, 33, 14329–14334. [Google Scholar] [CrossRef]
- Du, J.; Qiu, L.; Yang, C.; Zheng, H.; Zhu, K.; Wang, L. Structure and electrical properties in CuO-modified BCZT lead-free piezoelectric ceramics. J. Electroceram. 2022, 49, 125–134. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, W.; Zhen, Y.; Cen, Z.; Ji, A.; Wu, H.; Liang, S.; Xiong, S.; Wang, X. Influence of MnO2 addition on the dielectric properties of 0.95MgTiO3-0.05CaTiO3 ceramics sintered in a reducing atmosphere. J. Eur. Ceram. Soc. 2023, 43, 378–383. [Google Scholar] [CrossRef]
- Zheng, Y.; Shi, Y.; Ren, Z.; Zhang, B.; Feng, J.; Li, H.; Dang, S.; Yang, F.; Shang, J.; Yin, S. Preparation and electrical properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics by the doping of Mn ions. Physica B 2022, 643, 414140. [Google Scholar] [CrossRef]
- Kar, K.S.; Chandrasekhar, M.; Rao, L.T.; Harshavardhan, V.; Kumar, P. Effect of MnO2 addition on structure, electrical and optical properties of Ba(Fe0.5Nb0.5)O3 ceramics. Process. Appl. Ceram. 2024, 18, 323–329. [Google Scholar] [CrossRef]
- Peng, W.; Li, L.; Yu, S.; Yang, P.; Xu, K. Dielectric properties, microstructure and charge compensation of MnO2-doped BaTiO3-based ceramics in a reducing atmosphere. Ceram. Int. 2021, 47, 29191–29196. [Google Scholar] [CrossRef]
- Li, Z.; Xun, W.; Huang, X.; Wan, Y.; Liu, Y.; Gu, S.; He, W.; Yang, W.; Lin, Z.; Wang, B. Significant enhancement of ferroelectric performance in lead-free NaNbO3 ceramics. Ceram. Int. 2024, 50, 36487–36494. [Google Scholar] [CrossRef]
- Lin, J.; Qin, S.; Cui, B.; Cheng, J.; Chen, J. Reduced dielectric loss and improved electric thermal stability of BF–PT–BT ceramics by Mn additions. J. Mater. Sci. 2023, 58, 4031–4040. [Google Scholar] [CrossRef]
- Mekonnen, M.A.; Tadesse, M.Z. Low temperature sintering of (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free piezoceramic with the additive of MnO2. J. Electroceram. 2021, 46, 115–123. [Google Scholar] [CrossRef]
- Wang, R.; Cheng, Y.; Xu, S.; Zhang, G.; Zhang, H.; Li, W. Tb3+/Dy3+ doped glass ceramics containing Bi2Ti2O7 crystal phases for luminescence and temperature sensing. Ceram. Int. 2025, 51, 1143–1152. [Google Scholar] [CrossRef]
- Ke, L.; Ren, K.; Cai, X.; Zhang, Y. Energy transfer and color tunability in high-thermal-stability Dy3+/Tb3+ co-doped K3YF6 transparent oxyfluoride glass ceramics. J. Alloys Compd. 2024, 1004, 175808. [Google Scholar] [CrossRef]
- Kim, T.W.; Lee, G.; Ichimura, M.; Koh, J.-H. Enhanced soft piezoelectric properties of Sb2O3 doped 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 materials. J. Alloys Compd. 2024, 987, 174163. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Wang, L.; Zhou, C.; Zhang, Z.; Yao, Y.; Zhang, L.; Xue, D.; Lou, X.; Ren, X. Phase transitions and the piezoelectricity around morphotropic phase boundary in Ba (Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 lead-free solid solution. Appl. Phys. Lett. 2014, 105, 162908. [Google Scholar] [CrossRef]
- Acosta, M.; Khakpash, N.; Someya, T.; Novak, N.; Jo, W.; Nagata, H.; Rossetti Jr, G.A.; Rödel, J. Origin of the large piezoelectric activity in (1− x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics. Phys. Rev. B 2015, 91, 104108. [Google Scholar] [CrossRef]
- Coondoo, I.; Panwar, N.; Krylova, S.; Krylov, A.; Alikin, D.; Jakka, S.K.; Turygin, A.; Shur, V.Y.; Kholkin, A.L. Temperature-dependent Raman spectroscopy, domain morphology and photoluminescence studies in lead-free BCZT ceramic. Ceram. Int. 2021, 47, 2828–2838. [Google Scholar] [CrossRef]
- Dhifallah, N.; Hentati, M.A.; Khemakhem, H. Orthorhombic–tetragonal phase coexistence and enhanced piezoelectric properties at room temperature in Zn and Ta modified (Ba0.95Ca0.05)(Zr0.05Ti0.95)O3 ceramics through the synergistic effect of lattice distortion. RSC Adv. 2024, 14, 27042–27059. [Google Scholar] [CrossRef]
- Fang, Y.; Shui, A.; Yu, H.; Zhong, X. High energy storage performance in SrZrO3-modified quaternary relaxor ferroelectric ceramics. Ceram. Int. 2024, 50, 55639–55649. [Google Scholar] [CrossRef]
- Yan, G.; Sun, J.; Yan, J.; Deng, T.; Fang, B.; Hao, J.; Zhang, S.; Lu, X.; Zhao, X.; Ding, J. Pulse energy-storage performance and temperature stability of Bi2O3-added BaTiO3 based ceramics. Ceram. Int. 2023, 49, 33057–33072. [Google Scholar] [CrossRef]
- Kröger, F.A.; Vink, H.J. Relations between the concentrations of imperfections in crystalline solids. Solid State Phys. 1956, 3, 307–435. [Google Scholar]
- Yu, Y.; Zheng, T.; Zhang, N.; Wu, J. Review of Sintering Aids in Lead-Free (K, Na)NbO₃-Based Ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 3003–3012. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yin, Z.; Wang, D.; Wang, H.; Song, H.; Zhao, Z.; Zhang, G.; Qing, G.; Wu, H.; Jin, H. Effects of ternary sintering aids and sintering parameters on properties of alumina ceramics based on orthogonal test method. Mater. Chem. Phys. 2020, 241, 122453. [Google Scholar] [CrossRef]
- Ben, F.; Xu, D.; Zhou, X.; Yu, T.; Wei, J.; Zhao, W. Crystalline structure and dielectric relaxor behavior of MnO2-modified 0.8BaTiO3-0.2BiScO3 ceramics for energy storage application. Mater. Chem. Phys. 2025, 329, 130119. [Google Scholar] [CrossRef]
- Sun, J.; Yang, Y.; Fang, B.; Zhang, S.; Lu, X.; Ding, J. Improving multifunctional performance of Dy-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics via tailoring Dy-doping amount and ceramic processing. Ferroelectrics 2024, 618, 655–670. [Google Scholar] [CrossRef]
- Sun, M.; Du, J.; Chen, C.; Fu, P.; Li, P.; Hao, J.; Yue, Z.; Li, W. Enhanced piezoelectric properties in M (M = Co or Zn)-doped Ba0.99Ca0.01Ti0.98Zr0.02O3 ceramics. Ceram. Int. 2020, 46, 17351–17360. [Google Scholar] [CrossRef]
- Amorín, H.; Venet, M.; García, J.E.; Ochoa, D.A.; Ramos, P.; López-Sánchez, J.; Rubio-Zuazo, J.; Castro, A.; Algueró, M. Insights into the Early Size Effects of Lead-Free Piezoelectric Ba0.85Ca0.15Zr0.1Ti0.9O3. Adv. Electron. Mater. 2024, 10, 2300556. [Google Scholar] [CrossRef]
- Hao, J.; Bai, W.; Li, W.; Zhai, J. Correlation between the microstructure and electrical properties in high-performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 2012, 95, 1998–2006. [Google Scholar] [CrossRef]
- Shang, M.; Ren, P.; Wan, Y.; Lu, X. Tailoring Curie temperature and dielectric properties by changing the doping sites of Y ions in (Ba, Ca)(Zr, Ti)O3 ceramics. J. Eur. Ceram. Soc. 2023, 43, 2488–2497. [Google Scholar] [CrossRef]
- Wang, L.; Bai, W.; Zhao, X.; Ding, Y.; Wu, S.; Zheng, P.; Li, P.; Zhai, J. Influences of rare earth site engineering on piezoelectric and electromechanical response of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics. J. Mater. Sci. Mater. Electron. 2020, 31, 6560–6573. [Google Scholar] [CrossRef]
- Sun, J.; Yan, G.; Fang, B.; Zhang, S.; Lu, X.; Ding, J. Improving energy storage performance of BLLMT ceramic by doping BZT combining with defect engineering and film scraping process. J. Alloys Compd. 2024, 971, 172708. [Google Scholar] [CrossRef]
- Belkhadir, S.; Moumen, S.B.; Asbani, B.; Amjoud, M.; Mezzane, D.; Luk’Yanchuk, I.A.; Choukri, E.; Hajji, L.; Gagou, Y.; El Marssi, M. Impedance spectroscopy analysis of the diffuse phase transition in lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramic elaborated by sol-gel method. Superlattices Microstruct. 2019, 127, 71–79. [Google Scholar] [CrossRef]
- Wang, X.; Huan, Y.; Zhu, Y.; Zhang, P.; Yang, W.; Li, P.; Wei, T.; Li, L.; Wang, X. Defect engineering of BCZT-based piezoelectric ceramics with high piezoelectric properties. J. Adv. Ceram. 2022, 11, 184–195. [Google Scholar] [CrossRef]
Sample | Space Group | a (Å) | b (Å) | c (Å) | Phase Fraction (%) | Rwp (%) | χ2 (%) |
---|---|---|---|---|---|---|---|
x = 0.05 | Amm2 | 3.9962 | 5.6772 | 5.7035 | 68.5 | 7.55 | 2.452 |
R3m | 4.0149 | 4.0149 | 4.0149 | 13.4 | |||
P4mm | 3.9991 | 3.9991 | 4.0174 | 18.1 | |||
x = 0.2 | Amm2 | 3.9908 | 5.6906 | 5.7291 | 50.9 | 9.2 | 3.654 |
R3m | 4.0012 | 4.0012 | 4.0012 | 7.5 | |||
P4mm | 3.9994 | 3.9994 | 4.0152 | 41.6 | |||
x = 0.4 | Amm2 | 3.9957 | 5.6984 | 5.6742 | 41.7 | 9.28 | 3.502 |
R3m | 4.0197 | 4.0197 | 4.0197 | 14.1 | |||
P4mm | 3.9992 | 3.9992 | 4.0174 | 44.2 | |||
x = 0.6 | Amm2 | 3.9967 | 5.6848 | 5.6712 | 45.1 | 9.74 | 3.784 |
R3m | 4.0141 | 4.0141 | 4.0141 | 30.5 | |||
P4mm | 3.9952 | 3.9952 | 4.0297 | 24.4 | |||
x = 0.8 | Amm2 | 3.9834 | 5.7211 | 5.6771 | 54.2 | 9.99 | 4.643 |
R3m | 4.0111 | 4.0111 | 4.0111 | 34.2 | |||
P4mm | 3.9953 | 3.9953 | 4.0203 | 11.6 | |||
x = 1 | Amm2 | 3.9899 | 5.7178 | 5.6792 | 49.8 | 9.76 | 4.212 |
R3m | 4.019 | 4.019 | 4.019 | 8 | |||
P4mm | 3.9911 | 3.9911 | 4.0476 | 17.6 | |||
Pm3m | 4.0093 | 4.0093 | 4.0093 | 24.6 | |||
x = 1.5 | Amm2 | 3.9949 | 5.6664 | 5.721 | 65.4 | 9.98 | 4.357 |
R3m | 4.0051 | 4.0051 | 4.0051 | 12.8 | |||
P4mm | 3.9837 | 3.9837 | 4.0367 | 15.1 | |||
Pm3m | 4.0129 | 4.0129 | 4.0129 | 6.7 | |||
x = 3 | Amm2 | 3.988 | 5.7029 | 5.7409 | 68.1 | 9.99 | 4.135 |
R3m | 4.0051 | 4.0051 | 4.0051 | 9.2 | |||
P4mm | 3.9957 | 3.9957 | 4.0378 | 1 | |||
Pm3m | 4.0145 | 4.0145 | 4.0145 | 21.7 |
Sintering Temperature | Pmax (µC/cm2) | Pr (µC/cm2) | Ec (kV/cm) | Smax (%) | Hys (%) | d33* (pm/V) |
---|---|---|---|---|---|---|
1350 °C | 17.09 | 10.87 | 3.58 | 0.099 | 0.33 | 406.6 |
1375 °C | 17.42 | 11.00 | 3.19 | 0.105 | 1.90 | 429.5 |
1400 °C | 17.57 | 10.78 | 2.80 | 0.110 | 0.30 | 451.8 |
1425 °C | 17.68 | 10.64 | 2.59 | 0.118 | 2.66 | 480.9 |
1450 °C | 17.7 | 11.37 | 2.44 | 0.127 | 1.73 | 517.2 |
Sample | Pmax (µC/cm2) | Pr (µC/cm2) | Ec (kV/cm) | Smax (%) | Hys (%) | d33* (pm/V) |
---|---|---|---|---|---|---|
x = 0.05 | 15.27 | 8.92 | 3.18 | 0.115 | 1.07 | 468.1 |
x = 0.2 | 15.71 | 8.95 | 2.83 | 0.113 | 1.11 | 462.5 |
x = 0.6 | 16.79 | 8.64 | 2.45 | 0.121 | 0.97 | 495.1 |
x = 0.8 | 17.05 | 8.02 | 2.51 | 0.118 | 2.43 | 481.1 |
x = 1 | 14.39 | 4.82 | 1.91 | 0.082 | 8.06 | 335.0 |
x = 1.5 | 11.61 | 2.99 | 2.20 | 0.051 | 11.40 | 208.8 |
x = 3 | 10.92 | 3.00 | 4.22 | 0.034 | 15.40 | 140.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Fang, B.; Zhang, S.; Lu, X.; Ding, J. Reducing Sintering Temperature While Optimizing Electrical Properties of BCZT-Based Lead-Free Ceramics by Adding MnO2 as Sintering Aid. Materials 2025, 18, 1888. https://doi.org/10.3390/ma18081888
Yang X, Fang B, Zhang S, Lu X, Ding J. Reducing Sintering Temperature While Optimizing Electrical Properties of BCZT-Based Lead-Free Ceramics by Adding MnO2 as Sintering Aid. Materials. 2025; 18(8):1888. https://doi.org/10.3390/ma18081888
Chicago/Turabian StyleYang, Xinlin, Bijun Fang, Shuai Zhang, Xiaolong Lu, and Jianning Ding. 2025. "Reducing Sintering Temperature While Optimizing Electrical Properties of BCZT-Based Lead-Free Ceramics by Adding MnO2 as Sintering Aid" Materials 18, no. 8: 1888. https://doi.org/10.3390/ma18081888
APA StyleYang, X., Fang, B., Zhang, S., Lu, X., & Ding, J. (2025). Reducing Sintering Temperature While Optimizing Electrical Properties of BCZT-Based Lead-Free Ceramics by Adding MnO2 as Sintering Aid. Materials, 18(8), 1888. https://doi.org/10.3390/ma18081888