Effect of Heat Treatment on the Grain Boundary Character Distribution and Bending Properties of Fine-Grained Phosphorus Bronze
Abstract
:1. Introduction
2. Experimental Materials and Methods
3. Results and Discussion
3.1. Effect of Annealing Temperature on Microstructure and the GBCD
3.2. Effect of GBCD Optimization on Bending Properties
4. Conclusions
- (1)
- The deformed phosphorus bronze strip begins to recrystallize when the annealing temperature is increased to 400 °C. Within the range of 400–450 °C, the grain size remains essentially unchanged. The grains grow as the annealing temperature is further increased. The grains grow rapidly when the temperature exceeds 600 °C;
- (2)
- When annealed at 400 °C, phosphorus bronze produces a large number of SBs, with the fSBs value reaching as high as 71.5% and the fΣ9+Σ27 value reaching a maximum of 7.1%. The average grain size is 1.6 μm. At 700 °C, the largest fSBs value of 75.6% is observed, but the Σ9 and Σ27 boundaries are almost nonexistent. Further, the Σ3ic boundaries are replaced to some extent by the Σ3c boundaries, which does not promote the GBCD optimization;
- (3)
- Compared to the unoptimized coarse-grained sample, the GBCD-optimized fine-grained sample exhibits smooth surfaces without orange peel when bent at 90° with R/t = 0 in the BW, demonstrating excellent bending workability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hatakeyama, K.; Hana, Y.; Narieda, H.; Sugawara, A. Evaluation Method of Bend Formability of Copper Alloy Strips for Spring Applications. Trans. Jpn. Soc. Spring Eng. 1999, 44, 17–23. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Bhuyan, P.; Mandal, S. Individual and synergistic influences of microstructural features on intergranular corrosion behavior in extra-low carbon type 304L austenitic stainless steel. Corros. Sci. 2018, 39, 319–332. [Google Scholar] [CrossRef]
- Kobayashi, S.; Kobayashi, R.; Watanabe, T. Control of grain boundary connectivity based on fractal analysis for improvement of intergranular corrosion resistance in SUS316L austenitic stainless steel. Acta Mater. 2016, 102, 397–405. [Google Scholar] [CrossRef]
- Kuang, W.; Was, G.S. The effect of grain boundary structure on the intergranular degradation behavior of solution annealed alloy 690 in high temperature, hydrogenated water. Acta Mater. 2020, 182, 120–130. [Google Scholar] [CrossRef]
- Telang, A.; Gill, A.S.; Kumar, M.; Teysseyre, S.; Qian, D.; Mannava, S.R.; Vasudevan, V.K. Iterative thermomechanical processing of alloy 600 for improved resistance to corrosion and stress corrosion cracking. Acta Mater. 2016, 113, 180–193. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, X.; Zhou, Q.; Wang, H.; Zhang, Y.; Yang, B. Grain boundary characteristics optimization of 90Cu-10Ni copper-nickel alloy for improving corrosion resistance. Corrosion 2018, 74, 819–828. [Google Scholar] [CrossRef]
- Shi, F.; Tian, P.C.; Jia, N.; Ye, Z.H.; Qi, Y.; Liu, C.M.; Li, X.W. Improving intergranular corrosion resistance in a nickel-free and manganese-bearing high-nitrogen austenitic stainless steel through grain boundary character distribution optimization. Corros. Sci. 2016, 107, 49–59. [Google Scholar] [CrossRef]
- Athreya, C.N.; Deepak, K.; Kim, D.I.; De Boer, B.; Mandal, S.; Sarma, V.S. Role of grain boundary engineered microstructure on high temperature steam oxidation behaviour of Ni based superalloy alloy 617. J. Alloy Compd. 2019, 778, 224–233. [Google Scholar] [CrossRef]
- Fu, H.; Chen, X.; Wang, W.; Pia, G.; Zhang, J.; Li, J. Statistical study on the effects of heterogeneous deformation and grain boundary character on hydrogen-induced crack initiation and propagation in twining-induced plasticity steels. Corros. Sci. 2021, 192, 109796. [Google Scholar] [CrossRef]
- Watanabe, T.; Tsurekawa, S. Toughening of brittle materials by grain boundary engineering. Mater. Sci. Eng. A. 2004, 387, 447–455. [Google Scholar] [CrossRef]
- Guan, X.J.; Shi, F.; Ji, H.M.; Li, X.W. Gain boundary character distribution optimization of Cu-16at.% Al alloy by thermomechanical process: Critical role of deformation microstructure. Mater. Sci. Eng. A. 2019, 765, 138299. [Google Scholar] [CrossRef]
- Zhuo, Z.; Xia, S.; Bai, Q.; Zhou, B. The effect of grain boundary character distribution on the mechanical properties at different strain rates of a 316L stainless steel. J. Mater. Sci. 2018, 53, 2844–2858. [Google Scholar] [CrossRef]
- Kumar, B.R.; Ghosh Chowdhury, S.; Narasaiah, N.; Mahato, B.; Das, S.K. Role of grain boundary character distribution on tensile properties of 304L stainless steel. Metall. Mater. Trans. A. 2007, 38, 1136–1143. [Google Scholar] [CrossRef]
- Watanabe, T.; Tsurekawa, S. The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering. Acta Mater. 1999, 47, 4171–4185. [Google Scholar] [CrossRef]
- Randle, V. Twinning-related grain boundary engineering. Acta Mater. 2004, 52, 4067–4081. [Google Scholar] [CrossRef]
- Randle, V. Grain boundary engineering: An overview after 25 years. Mater. Sci. Tech. 2010, 26, 253–261. [Google Scholar] [CrossRef]
- Detrois, M.; Goetz, R.L.; Helmink, R.C.; Tin, S. The role of texturing and recrystallization during grain boundary engineering of Ni-based superalloy RR1000. J. Mater. Sci. 2016, 51, 5122–5138. [Google Scholar] [CrossRef]
- Schuh, C.A.; Kumar, M.; King, W.E. Analysis of grain boundary networks and their evolution during grain boundary engineering. Acta Mater. 2003, 51, 687–700. [Google Scholar] [CrossRef]
- Watanabe, T. Grain boundary engineering: Historical perspective and future prospects. J. Mater. Sci. 2011, 46, 4095–4115. [Google Scholar] [CrossRef]
- Cayron, C. Quantification of multiple twinning in face centred cubic materials. Acta Mater. 2011, 59, 252–262. [Google Scholar] [CrossRef]
- Li, X.; Guan, X.; Jia, Z.; Chen, P.; Fan, C.; Shi, F. Twin-related grain boundary engineering and its influence on mechanical properties of face-centered cubic metals: A review. Metals 2023, 13, 155. [Google Scholar] [CrossRef]
- Li, J.; Ding, H.; Gao, W.; Wang, L. Microstructure and bending properties of Cu-Cr-Zr alloy subjected to heat treatment and rolling. J. Mater. Eng. Perform. 2021, 30, 5825–5833. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, Y.; Song, K.; Zhou, Y.; Zhou, F.; Liu, A. Effect of Low-Temperature Annealing on the Bending Properties of C19400 Copper Alloy Strips. J. Mater. Eng. Perform. 2024, 33, 5183–5192. [Google Scholar] [CrossRef]
- Oda, S.; Tanaka, S.I. Grain boundaries with high Σ value and strain in grain matrix induce crack initiation in extruded 6000 series aluminium alloys. Mater. Sci. Eng. A 2022, 834, 142630. [Google Scholar] [CrossRef]
- Brandon, D.G. The structure of high-angle grain boundaries. Acta Mater. 1966, 14, 1479–1484. [Google Scholar] [CrossRef]
- Randle, V. Special’boundaries and grain boundary plane engineering. Scr. Mater. 2006, 54, 1011–1015. [Google Scholar] [CrossRef]
- Sharma, N.K.; Shekhar, S. New insights into the evolution of twin boundaries during recrystallization and grain growth of low-SFE FCC alloys. Mater. Charact. 2020, 159, 110015. [Google Scholar] [CrossRef]
- ASTM B820-14; Standard Test Method for Bend Test for Determining the Formability of Copper and Copper Alloy Strip. ASTM: West Conshohocken, PA, USA, 2014.
- Han, W.Z.; Wu, S.D.; Li, S.X.; Zhang, Z.F. Origin of deformation twinning from grain boundary in copper. Appl. Phys. Lett. 2008, 92, 221909. [Google Scholar] [CrossRef]
- Huang, C.X.; Wang, K.; Wu, S.D.; Zhang, Z.F.; Li, G.Y.; Li, S.X. Deformation twinning in polycrystalline copper at room temperature and low strain rate. Acta Mater. 2006, 54, 655–665. [Google Scholar] [CrossRef]
- Lei, L.; Shen, Y.; Chen, X.; Qian, L.; Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 2004, 304, 422–426. [Google Scholar] [CrossRef]
- Kashihara, K.; Inoko, F. Effect of piled-up dislocations on strain induced boundary migration (SIBM) in deformed aluminum bicrystals with originally Σ3 twin boundary. Acta Mater. 2001, 49, 3051–3061. [Google Scholar] [CrossRef]
- Barr, C.M.; Leff, A.C.; Demott, R.W.; Doherty, R.D.; Taheri, M.L. Unraveling the origin of twin related domains and grain boundary evolution during grain boundary engineering. Acta Mater. 2018, 144, 281–291. [Google Scholar] [CrossRef]
- Randle, V.; Coleman, M. A study of low-strain and medium-strain grain boundary engineering. Acta Mater. 2009, 57, 3410–3421. [Google Scholar] [CrossRef]
- Yang, X.; Wang, P.; Huang, M. Grain boundary evolution during low-strain grain boundary engineering achieved by strain-induced boundary migration in pure copper. Mater. Sci. Eng. A. 2022, 833, 142532. [Google Scholar] [CrossRef]
- Chen, Z.P.; Yang, Y.; Lou, H.F.; Xiang, C.J.; Wang, H. Effect of thermomechanical processing on the grain boundary character distribution of phosphorus bronze. Mater. Charact. 2024, 217, 114401. [Google Scholar] [CrossRef]
- Humphreys, J.; Rohrer, G.S.; Rollett, A. Recrystallization and Related Annealing Phenomena, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Kumar, M.; Schwartz, A.J.; King, W.E. Microstructural evolution during grain boundary engineering of low to medium stacking fault energy fcc materials. Acta Mater. 2002, 50, 2599–2612. [Google Scholar] [CrossRef]
- Hou, G.; Luo, H.; Lv, J. Grain boundary character distribution and sensitisation behaviour of grain boundary engineered stable austenitic stainless steel (AISI 316L). J. Mater. Sci. Technol. 2014, 30, 1447–1452. [Google Scholar] [CrossRef]
- Fang, X.; Zhang, K.; Guo, H.; Wang, W.; Zhou, B. Twin-induced grain boundary engineering in 304 stainless steel. Mater. Sci. Eng. A. 2008, 487, 7–13. [Google Scholar] [CrossRef]
- Lin, P.; Palumbo, G.; Aust, K.T. Experimental assessment of the contribution of annealing twins to CSL distributions in FCC materials. Scr. Mater. 1997, 36, 1145–1149. [Google Scholar] [CrossRef]
- Pinto, A.L.; da Costa Viana, C.S.; de Almeida, L.H. Micromechanisms involved in grain boundary engineering of α-brass. Mater. Sci. Eng. A. 2007, 445, 14–19. [Google Scholar] [CrossRef]
- Randle, V.; Davies, H. Evolution of microstructure and properties in alpha-brass after iterative processing. Metall. Mater. Trans. A. 2002, 33, 1853–1857. [Google Scholar] [CrossRef]
- Randle, V.; Coleman, M. Grain Growth Control in Grain Boundary Engineered Microstructures. Mater. Sci. Forum. 2012, 715–716, 103–108. [Google Scholar] [CrossRef]
- Randle, V. A methodology for grain boundary plane assessment by single-section trace analysis. Scr. Mater. 2001, 44, 2789–2794. [Google Scholar] [CrossRef]
- Wright, S.I.; Larsen, R.J. Extracting twins from orientation imaging microscopy scan data. J. Microsc. 2002, 205, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Bobylev, S.V.; Ovid’Ko, I.A. Stress-driven migration of deformation-distorted grain boundaries in nanomaterials. Acta Mater. 2015, 88, 260–270. [Google Scholar] [CrossRef]
- Dash, S.; Brown, N. An investigation of the origin and growth of annealing twins. Acta Mater. 1963, 11, 1067–1075. [Google Scholar] [CrossRef]
- Gleiter, H. The formation of annealing twins. Acta Mater. 1969, 17, 1421–1428. [Google Scholar] [CrossRef]
- Lee, G.M.; Lee, J.U.; Park, S.H. Effects of post-heat treatment on microstructure, tensile properties, and bending properties of extruded AZ80 alloy. J. Mater. Red. Technol. 2021, 12, 1039–1050. [Google Scholar] [CrossRef]
- Dillamore, I.L.; Roberts, J.G.; Bush, A.C. Occurrence of shear bands in heavily rolled cubic metals. Met. Sci. 1979, 13, 73–77. [Google Scholar] [CrossRef]
- Kaneko, H.; Morikawa, T.; Tanaka, M.; Inoue, H.; Higashida, K. Recrystallization texture and shear band formation in bending. Mater. Trans. 2017, 58, 218–224. [Google Scholar] [CrossRef]
- Han, D.; Guan, X.J.; Yan, Y.; Shi, F.; Li, X.W. Anomalous recovery of work hardening rate in Cu-Mn alloys with high stacking fault energies under uniaxial compression. Mater. Sci. Eng. A 2019, 743, 745–754. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Zhu, Q.; Hong, Z.; Zhang, Z. Grain boundary dominated plasticity in metallic materials. Acta Met. Sin. 2022, 58, 726–745. [Google Scholar] [CrossRef]
- Lin, Y.; Han, L.; Wang, G. Relationship between Σ3 boundaries, dislocation slip, and plasticity in pure nickel. Materials 2023, 16, 2853. [Google Scholar] [CrossRef]
- Li, L.L.; Zhang, Z.J.; Zhang, P.; Zhang, Z.F. A review on the fatigue cracking of twin boundaries: Crystallographic orientation and stacking fault energy. Prog. Mater. Sci. 2023, 131, 101011. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Li, L.L.; Zhang, Z.J.; Zhang, P. Twin boundary: Controllable interface to fatigue cracking. J. Mater. Sci. Technol. 2017, 33, 603–606. [Google Scholar] [CrossRef]
- Shen, Z.; Wagoner, R.H.; Clark, W.A.T. Dislocation and grain boundary interactions in metals. Acta Mater. 1988, 36, 3231–3242. [Google Scholar] [CrossRef]
- Lu, K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat. Rev. Mater. 2016, 1, 16019. [Google Scholar] [CrossRef]
- Qu, S.; Zhang, P.; Wu, S.D.; Zang, Q.S.; Zhang, Z.F. Twin boundaries: Strong or weak? Scr. Mater. 2008, 59, 1131–1134. [Google Scholar] [CrossRef]
Element | Sn | P | Zn | Fe | Pb | Cu |
---|---|---|---|---|---|---|
Content | 8.0 | 0.14 | 0.01 | 0.01 | 0.001 | Bal. |
Sample | Σ3 | Σ9 | Σ27 | Low-ΣCSL | Grain Size |
---|---|---|---|---|---|
a | 62.1 | 4.7 | 2.4 | 71.5 | 1.60 |
b | 61.8 | 4.3 | 2.5 | 71.2 | 1.65 |
c | 63.2 | 4.8 | 2.5 | 72.8 | 1.55 |
d | 62.9 | 4.6 | 2.3 | 71.9 | 1.68 |
e | 63.4 | 5.0 | 2.5 | 73.1 | 1.53 |
Average | 62.7 | 4.7 | 2.4 | 72.1 | 1.60 |
Standard deviation | 0.57 | 0.21 | 0.07 | 0.67 | 0.05 |
Sample | As-Received | 300 °C | 350 °C | 400 °C | 450 °C | 500 °C | 550 °C | 600 °C | 650 °C | 700 °C |
---|---|---|---|---|---|---|---|---|---|---|
Fraction/% | 47.5 | 41.4 | 41.1 | 4.5 | 4.1 | 1.2 | 1.2 | 1.1 | 0.9 | 0.8 |
Sample | Σ3/% | Σ9 + Σ27/% | Other ΣCSL/% | Total Low ΣCSL/% | Grain Size/μm | Tensile Strength/MPa |
---|---|---|---|---|---|---|
GBCD-optimized fine-grained | 48.0 | 2.7 | 0.6 | 55.2 | 1.5 | 621 |
Unoptimized coarse-grained | 22.8 | 1.2 | 0.7 | 26.8 | 5.6 | 620 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Yang, Y.; Lou, H.; Wang, H. Effect of Heat Treatment on the Grain Boundary Character Distribution and Bending Properties of Fine-Grained Phosphorus Bronze. Materials 2025, 18, 1941. https://doi.org/10.3390/ma18091941
Chen Z, Yang Y, Lou H, Wang H. Effect of Heat Treatment on the Grain Boundary Character Distribution and Bending Properties of Fine-Grained Phosphorus Bronze. Materials. 2025; 18(9):1941. https://doi.org/10.3390/ma18091941
Chicago/Turabian StyleChen, Zhongping, Yang Yang, Huafen Lou, and Hu Wang. 2025. "Effect of Heat Treatment on the Grain Boundary Character Distribution and Bending Properties of Fine-Grained Phosphorus Bronze" Materials 18, no. 9: 1941. https://doi.org/10.3390/ma18091941
APA StyleChen, Z., Yang, Y., Lou, H., & Wang, H. (2025). Effect of Heat Treatment on the Grain Boundary Character Distribution and Bending Properties of Fine-Grained Phosphorus Bronze. Materials, 18(9), 1941. https://doi.org/10.3390/ma18091941