Accelerated Method for Simulating the Solidification Microstructure of Continuous Casting Billets on GPUs
Abstract
:1. Introduction
2. Model Description for Solidification in Continuous Casting
2.1. Heat and Mass Transfer Model
2.2. Phase Transition Model
2.3. Analysis of Computational Intense
3. GPU-Accelerated Method for CA-DCSA Model
3.1. Parallelization with Redesigned Algorithm
3.1.1. Porting to the Heterogenous Architecture
3.1.2. Redesigning the Capture Process
- (1)
- Growth kernel: Interface cells grow and update their growth-related parameters in global memory. No neighbor capture occurs at this stage, even if the capture condition is met.
- (2)
- Soliden kernel: Liquid cells read the growth-related parameters from neighboring interface cells, and judge which neighbor satisfies the capture condition based on them. An arbitration mechanism resolves conflicts when multiple neighbors satisfy the capture condition for the same liquid cell. Also, it is crucial to determine which corner touches the current cell because different corners have different capture positions, as shown in Figure 3 where both corners of the square in cell (0, 1) can touch cell (0, 0).
- (3)
- Soliden kernel: Liquid cells update their growth-related parameters based on the arbitration results from the soliden kernel.
3.2. Optimizations
3.2.1. Managing Memory Accessing
Algorithm 1. Two methods for solute redistribution at S/L interface. |
3.2.2. Avoiding Warp Divergency
Algorithm 2. Two methods for solute diffusion coefficient and interface normal angle. |
4. Results and Discussion
4.1. Validation with Industrial Experiment
4.2. Performance Analysis
5. Conclusions
- (1)
- Computational efficiency: A 1430× speedup over serial CPU implementations enables microstructure simulations within practical timeframes, overcoming previous computational bottlenecks.
- (2)
- Morphological accuracy: The model resolves crystal zones, dendrite orientations, and secondary dendrite arm spacing with unprecedented clarity, surpassing prior CA methods in geometric fidelity.
- (3)
- Industrial validation: Experimental validation on steels 65# and 60# demonstrate robust agreement with measurement, with relative errors < 2.5% for equiaxed crystal ratio, secondary arm spacing, and temperature deviations less than 1.8 °C.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liss, K.D.; Garbe, U.; Li, H.J.; Schambron, T.; Almer, J.D.; Yan, K. In Situ Observation of Dynamic Recrystallization in the Bulk of Zirconium Alloy. Adv. Eng. Mater. 2009, 11, 637–640. [Google Scholar] [CrossRef]
- Wang, T.M.; Wei, J.J.; Wang, X.D.; Yao, M. Progress and Application of Microstructure Simulation of Alloy Solidification. Acta Metall. Sin. 2018, 54, 193–203. [Google Scholar] [CrossRef]
- Domitner, J.; Kharicha, A.; Grasser, M.; Ludwig, A. Reconstruction of Three-Dimensional Dendritic Structures based on the Investigation of Microsegregation Patterns. Steel Res. Int. 2010, 81, 644–651. [Google Scholar] [CrossRef]
- Hashemi, S.; Kalidindi, S.R. A machine learning framework for the temporal evolution of microstructure during static recrystallization of polycrystalline materials simulated by cellular automaton. Comput. Mater. Sci. 2021, 188, 110132. [Google Scholar] [CrossRef]
- Dreelan, D.; Ivankovic, A.; Browne, D.J. Verification of a new cellular automata model of solidification using a case study on the columnar to equiaxed transition previously simulated using front tracking. Comput. Mater. Sci. 2022, 215, 111773. [Google Scholar] [CrossRef]
- Chen, Z.; Jin, Y.; Chen, H.; Hu, S.; Jiang, Y.; Wu, M.; Zhu, B.; Zhang, W.; Li, W. Cellular automata simulation of pitting corrosion of stainless steel in marine environments. Mater. Today Commun. 2024, 41, 110555. [Google Scholar] [CrossRef]
- Liu, A.; Chen, M.-S.; Chen, Q.; Lin, Y.C.; Wang, G.-Q.; Cai, H.-W.; Li, H.-B. A cellular automata model for recrystallization annealing of aged GH4169 superalloy and its application. Mater. Today Commun. 2025, 42, 111191. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Xu, D.; Teng, C.; Wang, H.; Yang, L.; Ju, H.; Xu, H.; Meng, Z.; Ma, Y.; et al. Phase field simulation of the stress-induced α microstructure in Ti–6Al–4 V alloy and its CPFEM properties evaluation. J. Mater. Sci. Technol. 2021, 90, 168–182. [Google Scholar] [CrossRef]
- Riyahi Khorasgani, A.; Steinbach, I.; Camin, B.; Kundin, J. A phase-field study to explore the nature of the morphological instability of Kirkendall voids in complex alloys. Sci. Rep. 2024, 14, 30489. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wen, J.; Li, K.; Chen, Q.; Wang, S. Modeling solid air dendrite growth solidification with thermosolutal diffusion using non-isothermal quantitative phase field method. Int. J. Therm. Sci. 2024, 199, 108929. [Google Scholar] [CrossRef]
- Zhang, Z.; Ge, P.; Li, J.Y.; Ren, D.X.; Wu, T. Monte Carlo simulations of solidification and solid-state phase transformation during directed energy deposition additive manufacturing. Prog. Addit. Manuf. 2022, 7, 671–682. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, M.; Qi, J.; Lei, N.; Guo, S.; Li, J.; Xiao, X.; Ouyang, L. Advanced Mg-based materials for energy storage: Fundamental, progresses, challenges and perspectives. Prog. Mater. Sci. 2025, 148, 101381. [Google Scholar] [CrossRef]
- Rodgers, T.M.; Moser, D.; Abdeljawad, F.; Jackson, O.D.U.; Carroll, J.D.; Jared, B.H.; Bolintineanu, D.S.; Mitchell, J.A.; Madison, J.D. Simulation of powder bed metal additive manufacturing microstructures with coupled finite difference-Monte Carlo method. Addit. Manuf. 2021, 41, 101953. [Google Scholar] [CrossRef]
- Luo, S.; Zhu, M.Y.; Louhenkilpi, S. Numerical simulation of solidification structure of high carbon steel in continuous casting using cellular automaton method. Isij. Int. 2012, 52, 823–830. [Google Scholar] [CrossRef]
- Li, J.; Wu, H.T.; Liu, Y.; Sun, Y.H. Solidification structure simulation and casting process optimization of GCr15 bloom alloy. China Foundry 2022, 19, 63–74. [Google Scholar] [CrossRef]
- Wang, J.J.; Meng, H.J.; Yang, J.; Xie, Z. A Fast Method based on GPU for Solidification Structure Simulation of Continuous Casting Billets. J. Comput. Sci. 2021, 48, 101265. [Google Scholar] [CrossRef]
- Wei, L.; Lin, X.; Wang, M.; Huang, W.D. A cellular automaton model for the solidification of a pure substance. Appl. Phys. A-Mater. 2011, 103, 123–133. [Google Scholar] [CrossRef]
- Beltran-Sanchez, L.; Stefanescu, D.M. Growth of solutal dendrites: A cellular automaton model and its quantitative capabilities. Met. Mater. Trans. A Phys. Met. Mater. Sci. 2003, 34, 367–382. [Google Scholar] [CrossRef]
- Wang, W.; Lee, P.D.; McLean, M. A model of solidification microstructures in nickel-based superalloys: Predicting primary dendrite spacing selection. Acta Mater. 2003, 51, 2971–2987. [Google Scholar] [CrossRef]
- Yuan, L.; Lee, P.D. Dendritic solidification under natural and forced convection in binary alloys: 2D versus 3D simulation. Model. Simul. Mater. Sc. 2010, 18, 055008. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, D.F.; Long, M.J.; Arif, T.T.; Qin, R.S. A Three-Dimensional Cellular Automata Model for Dendrite Growth with Various Crystallographic Orientations During Solidification. Met. Mater. Trans. B 2014, 45, 719–725. [Google Scholar] [CrossRef]
- Chen, R.; Xu, Q.Y.; Liu, B.C. A Modified Cellular Automaton Model for the Quantitative Prediction of Equiaxed and Columnar Dendritic Growth. J. Mater. Sci. Technol. 2014, 30, 1311–1320. [Google Scholar] [CrossRef]
- Wang, W.L.; Luo, S.; Zhu, M.Y. Development of a CA-FVM Model with Weakened Mesh Anisotropy and Application to Fe–C Alloy. Crystals 2016, 6, 147. [Google Scholar] [CrossRef]
- Feng, W.M.; Xu, Q.Y.; Liu, B.C. Microstructure simulation of aluminum alloy using parallel computing technique. ISIJ Int. 2002, 42, 702–707. [Google Scholar] [CrossRef]
- Jelinek, B.; Eshraghi, M.; Felicelli, S.; Peters, J.F. Large-scale parallel lattice Boltzmann-cellular automaton model of two-dimensional dendritic growth. Comput. Phys. Commun. 2014, 185, 939–947. [Google Scholar] [CrossRef]
- Bauer, M.; Hotzer, J.; Jainta, M.; Steinmetz, P.; Berghoff, M.; Schornbaum, F.; Godenschwager, C.; Kostler, H.; Nestler, B.; Rude, U. Massively Parallel Phase-Field Simulations for Ternary Eutectic Directional Solidification. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Austin, TX, USA, 15–20 November 2015. [Google Scholar] [CrossRef]
- George, W.L.; Warren, J.A. A parallel 3D dendritic growth simulator using the phase-field method. J. Comput. Phys. 2002, 177, 264–283. [Google Scholar] [CrossRef]
- Wei, L.; Lin, X.; Wang, M.; Huang, W.D. Orientation selection of equiaxed dendritic growth by three-dimensional cellular automaton model. Physical B 2012, 407, 2471–2475. [Google Scholar] [CrossRef]
- Provatas, N.; Greenwood, M.; Athreya, B.; Goldenfeld, N.; Dantzig, J. Multiscale modeling of solidification: Phase-field methods to adaptive mesh refinement. Int. J. Mod. Phys. B 2005, 19, 4525–4565. [Google Scholar] [CrossRef]
- Mattson, T.G.; He, Y.; Koniges, A.E. The OpenMP Common Core: Making OpenMP Simple Again; The MIT Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Hong, S.H.; Shu, J.I.; Ou, J.; Wang, Y. GPU-enabled microfluidic design automation for concentration gradient generators. Eng. Comput. 2022, 39, 1637–1652. [Google Scholar] [CrossRef]
- Ames, J.; Puleri, D.F.; Balogh, P.; Gounley, J.; Draeger, E.W.; Randles, A. Multi-GPU Immersed Boundary Method Hemodynamics Simulations. J. Comput. Sci. 2020, 44, 101153. [Google Scholar] [CrossRef]
- Fain, B.G.; Dobrovolny, H.M. GPU acceleration and data fitting: Agent-based models of viral infections can now be parameterized in hours. J. Comput. Sci. 2022, 61, 101662. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Xie, Z.; Yang, J.; Meng, H.-J.; Wu, Z.-Y. A faster than real-time heat transfer model for continuous steel casting. J. Mater. Res. Technol. 2022, 19, 4220–4232. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Xie, Z.; Yang, J.; Meng, H.-J. Accelerating phase-change heat conduction simulations on GPUs. Case Stud. Therm. Eng. 2022, 39, 102410. [Google Scholar] [CrossRef]
- Bandini, S.; Mauri, G.; Serra, R. Cellular automaton:From a theoretical parallel computational model to its application to complex system. Parallel Comput. 2001, 27, 539–553. [Google Scholar] [CrossRef]
- Campos, R.; Amorim, R.; de Oliveira, B.; Rocha, B.; Sundnes, J.; Barra, L.; Lobosco, M.; dos Santos, R. 3D Heart Modeling with Cellular Automata, Mass-Spring System and CUDA. Parallel Comput. Technol. 2013, 7979, 296–309. [Google Scholar] [CrossRef]
- Ferrando, N.; Gosálvez, M.A.; Cerdá, J.; Gadea, R.; Sato, K. Octree-based, GPU implementation of a continuous cellular automaton for the simulation of complex, evolving surfaces. Comput. Phys. Commun. 2011, 182, 628–640. [Google Scholar] [CrossRef]
- Blecic, I.; Cecchini, A.; Trunfio, G.A. Cellular automata simulation of urban dynamics through GPGPU. J. Supercomput. 2013, 65, 614–629. [Google Scholar] [CrossRef]
- Ntinas, V.G.; Moutafis, B.E.; Trunfio, G.A.; Sirakoulis, G.C. Parallel fuzzy cellular automata for data-driven simulation of wildfire spreading. J. Comput. Sci. 2017, 21, 469–485. [Google Scholar] [CrossRef]
- Yang, J.; Xie, Z.; Meng, H.J.; Liu, W.H.; Ji, Z.P. Multiple time steps optimization for real-time heat transfer model of continuous casting billets. Int. J. Heat Mass Transf. 2014, 76, 492–498. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, D.-F.; Zhang, C.-Q.; Wang, S.-G.; Hwang, W.-S. Dynamic spray cooling control model based on the tracking of velocity and superheat for the continuous casting steel. J. Mater. Process. Technol. 2016, 229, 651–658. [Google Scholar] [CrossRef]
- Xie, Z.; Yang, J. Calculation of Solidification-Related Thermophysical Properties of Steels Based on Fe-C Pseudobinary Phase Diagram. Steel Res. Int. 2015, 86, 766–774. [Google Scholar] [CrossRef]
- Savage, J.; Pritchard, W.H. The problem of rupture of the billet in the continuous casting of steel. J. Iron Steel Inst. 1954, 178, 269–277. [Google Scholar]
- Liu, D.R.; Wu, S.P. Computer Simulation of Microstructure in Solidification of Aluminium and Silicon Alloy. J. Harbin Univ. Sci. Technol. 2002, 7, 97–100. [Google Scholar]
- Cheng, J. CUDA execcution Model. In Professional CUDA C Programming; Wrox Press Ltd.: Hoboken, NJ, USA, 2014; pp. 68–133. [Google Scholar]
- Biscuola, V.; Martorano, M. Mechanical Blocking Mechanism for the Columnar to Equiaxed Transition. Met. Mater. Trans. A Phys. Met. Mater. Sci. 2008, 39, 2885–2895. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Billet size (-) | 160 mm × 160 mm |
Steel grade (-) | 65#, 60# |
Casting Speed (m/min) | 1.75 |
Effective mold length (m) | 0.9 |
Lengths of SCZ sections (m) | 0.37, 1.85, 2.20, 2.32 |
Liquidus temperatures (°C) | 1476 (65#), 1481 (60#) |
Solidus temperatures (°C) | 1382 (65#), 1383 (60#) |
Billets | Components | ||||
---|---|---|---|---|---|
C | Si | Mn | P | S | |
65# | 0.65 | 0.24 | 0.59 | 0.22 | 0.08 |
60# | 0.60 | 0.24 | 0.59 | 0.23 | 0.04 |
65# | 60# | ||||
---|---|---|---|---|---|
ECRS | ECRE | RE | ECRS | ECRE | RE |
45.4% | 44.3% | 2.5% | 48.3% | 47.3% | 2.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Liu, X.; Li, Y.; Mao, R. Accelerated Method for Simulating the Solidification Microstructure of Continuous Casting Billets on GPUs. Materials 2025, 18, 1955. https://doi.org/10.3390/ma18091955
Wang J, Liu X, Li Y, Mao R. Accelerated Method for Simulating the Solidification Microstructure of Continuous Casting Billets on GPUs. Materials. 2025; 18(9):1955. https://doi.org/10.3390/ma18091955
Chicago/Turabian StyleWang, Jingjing, Xiaoyu Liu, Yuxin Li, and Ruina Mao. 2025. "Accelerated Method for Simulating the Solidification Microstructure of Continuous Casting Billets on GPUs" Materials 18, no. 9: 1955. https://doi.org/10.3390/ma18091955
APA StyleWang, J., Liu, X., Li, Y., & Mao, R. (2025). Accelerated Method for Simulating the Solidification Microstructure of Continuous Casting Billets on GPUs. Materials, 18(9), 1955. https://doi.org/10.3390/ma18091955