Nanotechnology in Dental Sciences: Moving towards a Finer Way of Doing Dentistry
Abstract
:1. Introduction
2. The Impact of Nanotechnologies
3. Dynamic View of Dental Tissues
3.1. The case of enamel
3.2. The case of dentin
3.3. What are we really bonding to?
4. “Small Is Beautiful” of Dental Science: Small Structures, Great Strength
5. Conclusion
Acknowledgement
References:
- Uskoković, V. Nanotechnologies: What we do not know. Technol. Soc. 2007, 29, 43–61. [Google Scholar] [CrossRef]
- Uskoković, V. Nanomaterials and nanotechnologies: Approaching the crest of this big wave. Curr. Nanosci. 2008, 4, 119–129. [Google Scholar] [CrossRef]
- Saunders, S.A. Current practicality of nanotechnology in dentistry. Part 1: Focus on nanocomposite restoratives and biomimetics. Clinic. Cosm. Invest. Dent. 2009, 1, 47–61. [Google Scholar] [CrossRef]
- Uskoković, V. On the light doves and learning on mistakes. Axiomathes 2009, 19, 17–50. [Google Scholar] [CrossRef]
- Uskoković, V. On science of metaphors and the nature of systemic reasoning. World Futures 2009, 65, 241–269. [Google Scholar] [CrossRef]
- Sano, H. Microtensile testing, nanoleakage, and biodegradation of resin-dentin bonds. J. Dent. Res. 2006, 85, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Bertassoni, L.E.; Habelitz, S.; Kinney, J.H.; Marshall, S.J.; Marshall, G.W. Biomechanical perspective on the remineralization of dentin. Caries Res. 2009, 43, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Hansma, P.; Yu, H.; Schultz, D.; Rodriguez, A.; Yurtsev, E.A.; Orr, J.; Tang, S.; Miller, J.; Wallace, J.; Zok, F.; Li, C.; Souza, R.; Proctor, A.; Brimer, D.; Nogues-Solan, X.; Mellbovsky, L.; Pena, M.J.; Diez-Ferrer, O.; Mathews, P.; Randall, C.; Kuo, A.; Chen, C.; Peters, M.; Kohn, D.; Buckley, J.; Li, X.; Pruitt, L.; Diez-Perez, A.; Alliston, T.; Weaver, V.; Lotz, J. The tissue diagnostic instrument. Rev. Sci. Instrum. 2009, 80, 054303. [Google Scholar] [CrossRef] [PubMed]
- Kinney, J.H.; Habelitz, S.; Marshall, S.J.; Marshall, G.W. The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin. J. Dent. Res. 2003, 82, 957–961. [Google Scholar] [CrossRef] [PubMed]
- Hansma, P.; Turner, P.; Drake, B.; Yurtsev, E.; Proctor, A.; Mathews, P.; Lulejian, J.; Randall, C.; Adams, J.; Jungmann, R.; Garza-de-Leon, F.; Fantner, G.; Mkrtchyan, H.; Pontin, M.; Weaver, A.; Brown, M.B.; Sahar, N.; Rossello, R.; Kohn, D. The bone diagnostic instrument II: Indentation distance increase. Rev. Sci. Instrum. 2008, 79, 064303. [Google Scholar] [CrossRef] [PubMed]
- Bertolami, C.J. The role and importance of research and scholarship in dental education and practice. Dent. Educ. 2002, 66, 918–924. [Google Scholar]
- McCoy, R.B. Majestic mediocrity. J. Oper. Dent. 1996, 21, 181. [Google Scholar]
- DePaola, D.P. The revitalization of U.S. dental education. J. Dent. Educ. 2008, 72, 28–42. [Google Scholar]
- Iacopino, A.M. The influence of "new science" on dental education: Current concepts, trends, and models for the future. J. Dent. Educ. 2007, 71, 450–462. [Google Scholar] [PubMed]
- Petrini, C; Vecchia, P. International statements and definitions of the precautionary principle. IEEE Tech. Soc. Mag. 2002/2003, 1, 4–7. [Google Scholar]
- Reynolds, G.H. Environmental regulation of nanotechnology: Some preliminary observations. Env. Law Rep. 2001, 31, 10681–10688. [Google Scholar]
- Mnyusiwalla, A.; Daar, A.S.; Singer, P.A. “Mind the gap”: Science and ethics in nanotechnology. Nanotechnology 2003, 14, R9–R13. [Google Scholar] [CrossRef]
- Smith, C.E. Cellular and chemical events during enamel maturation. Crit. Rev. Oral Biol. Med. 1998, 9, 128–161. [Google Scholar] [CrossRef] [PubMed]
- Habelitz, S.; Marshall, S.J.; Marshall, G.W.; Balooch, M. Mechanical properties of human dental enamel on the nanometer scale. Arch. Oral. Biol. 2001, 46, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Moradian-Oldak, J. Amelogenins: Assembly, processing and control of crystal morphology. Matrix Biol. 2001, 20, 293–305. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Li, W.; Habelitz, S. The cooperative self-assembly of 25 and 23 kDa amelogenins. J. Struct. Biol. 2008, 164, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Margolis, H.C.; Beniash, E.; Fowler, C.E. Role of macromolecular assembly of enamel matrix proteins in enamel formation. J. Dent. Res. 2006, 85, 775–793. [Google Scholar] [CrossRef] [PubMed]
- Petta, V.; Moradian-Oldak, J.; Yannopoulos, S.N.; Bouropoulos, N. Dynamic light scattering study of an amelogenin gel-like matrix in vitro. Eur. J. Oral. Sci. 2006, 114, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Uskoković, V.; Castiglione, Z.; Cubas, P.; Zhu, L.; Li, W.; Habelitz, S. Zeta-potential and particle size analysis of recombinant human amelogenins. J. Dent. Res. 2010, 89, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann-Bidlack, F.B.; Beniash, E.; Yamakoshi, Y.; Simmer, J.P.; Margolis, H.C. pH triggered self-assembly of native and recombinant amelogenins under physiological pH and temperature in vitro. J. Struct. Biol. 2007, 160, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Uskoković, V.; Kim, M.K.; Li, W.; Habelitz, S. Enzymatic processing of amelogenin during continuous crystallization of apatite. J. Mater. Res. 2008, 23, 3184–3195. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Smith, R.K.; Jun, Y.W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A.P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309–1312. [Google Scholar] [CrossRef] [PubMed]
- Scaramuzzo, F.A.; Salvati, R.; Paci, B.; Generosi, A.; Rossi-Albertini, V.; Latini, A.; Barteri, M. Nanoscale in situ morphological study of proteins immobilized on gold thin films. J. Phys. Chem. B 2009, 113, 15895–15899. [Google Scholar] [CrossRef] [PubMed]
- Kirkham, J.; Brookes, S.J.; Shore, R.C.; Wood, S.R.; Smith, D.A.; Zhang, J.; Chen, H.; Robinson, C. Physico-chemical properties of crystal surfaces in matrix-mineral interactions during mammalian biomineralisation. Curr. Opin. Coll. Inter. Sci. 2002, 7, 124–132. [Google Scholar] [CrossRef]
- He, L.H.; Swain, M.V. Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. J. Mech. Behav. Biomed. Mater. 2008, 1, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Stupp, S.I.; Braun, P.V. Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors. Science 1997, 277, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- White, S.N.; Luo, W.; Paine, M.L.; Fong, H.; Sarikaya, M.; Snead, M.L. Biological organization of hydroxyapatite crystallites into a fibrous continuum toughens and controls anisotropy in human enamel. J. Dent. Res. 2001, 80, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Wahl, D.A.; Czernuszka, J.T. Collagen-hydroxyapatite composites for hard tissue repair. Eur. Cell. Mater. 2006, 11, 43–56. [Google Scholar] [PubMed]
- Sachlos, E.; Czernuszka, J.T. Making tissue engineering scaffolds work review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cell. Mater. 2003, 5, 29–39. [Google Scholar] [PubMed]
- Dibdin, G.H. The water in human dental enamel and its diffusional exchange measured by clearance of tritiated water from enamel slabs of varying thickness. Caries Res. 1993, 27, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Weiner, S.; Traub, W. Bone structure: From angstroms to microns. FASEB J. 1992, 6, 879–885. [Google Scholar] [PubMed]
- Katz, E.P.; Li, S.T. Structure and function of bone collagen fibrils. J. Mol. Biol. 1973, 80, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Katz, E.P.; Wachtel, E.; Yamauchi, M.; Mechanic, G.L. The structure of mineralized collagen fibrils. Connect. Tissue Res. 1989, 21, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Landis, W.J. Mineral characterization in calcifying tissues: Atomic, molecular and macromolecular perspectives. Connect. Tissue Res. 1996, 34, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Landis, W.J.; Song, M.J.; Leith, A.; McEwen, L.; Mc-Ewen, B.F. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J. Struct. Biol. 1993, 110, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Balooch, M.; Habelitz, S.; Kinney, J.H.; Marshall, S.J.; Marshall, G.W. Mechanical properties of mineralized collagen fibrils as influenced by demineralization. J. Struct. Biol. 2008, 162, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Jager, I.; Fratzl, P. Mineralized collagen fibrils: A mechanical model with a staggered arrangement of mineral particles. Biophys. J. 2000, 79, 1737–1746. [Google Scholar] [CrossRef] [PubMed]
- Kinney, J.H.; Pople, J.A.; Driessen, C.H.; Breunig, T.M.; Marshall, G.W.; Marshall, S.J. Intranfibrillar mineral may be absent in dentinogenesis imperfecta type II (DI-II). J. Dent. Res. 2001, 80, 1555–1559. [Google Scholar] [CrossRef] [PubMed]
- Nalla, R.K.; Porter, A.E.; Daraio, C.; Minor, A.M.; Radmilovic, V.; Stach, E.A.; Tomsia, A.P.; Ritchie, R.O. Ultrastructural examination of dentin using focused ion beam cross-sectioning and transmission electron microscopy. Micron 2005, 36, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Boyde, A. Transmission electron microscopy of ion beam thinned dentine. Cell. Tissue Res. 1974, 152, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Lowenstam, H.A.; Weiner, S. On Biomineralization; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Nakabayashi, N.; Kojima, K.; Masuhara, E. The promotion of adhesion by the infiltration of monomers into tooth substrates. J. Biomed. Mater. Res. 1982, 16, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Sano, H.; Yoshiyama, M.; Ebisu, S.; Burrow, M.F.; Takatsu, T.; Ciucchi, B.; Carvalho, R.; Pashley, D.H. Comparative SEM and TEM observations of nanoleakage within the hybrid layer. Oper. Dent. 1995, 20, 160–167. [Google Scholar] [PubMed]
- Sano, H.; Takatsu, T.; Ciucchi, B.; Horner, J.A.; Matthews, W.G.; Pashley, D.H. Nano-leakage: Leakage within the hybrid layer. Oper. Dent. 1995, 20, 18–25. [Google Scholar] [PubMed]
- Tay, F.R.; Hashimoto, M.; Pashley, D.H.; Peters, M.C.; Lai, S.C.; Yiu, C.K.; Cheong, C. Aging affects two modes of nanoleakage expression in bonded dentin. J. Dent. Res. 2003, 82, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; De Munck, J.; Ito, S.; Sano, H.; Kaga, M.; Oguchi, H.; Van Meerbeek, B.; Pashley, D.H. In vitro effect of nanolekage expression on resin-dentin bond strengths analysed by microtensile bond test, SEM/EDX and TEM. Biomaterials 2004, 25, 5565–5574. [Google Scholar] [CrossRef] [PubMed]
- Lees, S. Considerations regarding the structure of the mammalian mineralized osteoid from viewpoint of the generalized packing model. Connect. Tissue Res. 1987, 16, 281–303. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, A.S.; Farghaly, A.M. Probing nano-scale adhesion force between AFM and acid demineralized intertubular dentin: Moist versus dry dentin. J. Dent. 2009, 37, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Hoffler, C.E.; Guo, X.E.; Zysset, P.K.; Goldstein, S.A. An application of nanoindentation technique to measure bone tissue lamellae properties. J. Biomech. Eng. 2005, 127, 1046–1053. [Google Scholar] [CrossRef] [PubMed]
- Bembey, A.K.; Bushby, A.J.; Boyde, A.; Ferguson, V.L.; Oyen, M.L. Hydration effects on the micro-mechanical properties of bone. J. Mat. Res. 2006, 21, 1962–1968. [Google Scholar] [CrossRef]
- Kishen, A.; Vedantam, S. Hydromechanics in dentine: Role of dentinal tubules and hydrostatic pressure on mechanical stress-strain distribution. Dent. Mat. 2007, 23, 1296–1306. [Google Scholar] [CrossRef]
- Cooper, A. Thermodynamics of protein folding and stability. In Protein: A Comprehensive Treatise; Allen, G., Ed.; JAI Press: Stamford, CN, USA, 1999; Volume 2, pp. 217–270. [Google Scholar]
- Marshall, G.W.; Marshall, S.J.; Kinney, J.H.; Balooch, M. The dentin substrate: Structure and properties related to bonding. J. Dent. 1997, 25, 441–458. [Google Scholar] [CrossRef] [PubMed]
- Hamvas, B. Scientia Sacra; Dereta: Belgrade, Serbia, 2002. [Google Scholar]
- Qin, C.; D’Souza, R.; Feng, J.Q. Dentin matrix protein 1(DMP1): New and important roles for biomineralization and phosphate homeostasis. J. Dent. Res. 2007, 86, 1134–1141. [Google Scholar] [CrossRef] [PubMed]
- Butler, W.T.; Brunn, J.C.; Qin, C. Dentin extracellular matrix (ECM) proteins: Comparison to bone ECM and contribution to dynamics of dentinogenesis. Connect. Tissue Res. 2003, 44, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, A.S.; Beniash, E. Bio-inspired synthesis of mineralized collagen fibrils. Cryst. Growth Des. 2008, 8, 3084–3090. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.D.; Ganss, B.; Goldber, M.; Moradian-Oldak, J.; Paine, M.L.; Snead, M.L.; Wen, X.; White, S.N.; Zhou, Y.L. Protein-protein interactions of the developing enamel matrix. Curr. Top. Dev. Biol. 2006, 74, 57–115. [Google Scholar] [PubMed]
- Gajjeraman, S.; He, G.; Narayanan, K.; George, A. Biological assemblies provide novel templates for the synthesis of hierarchical structures and facilitate cell adhesion. Adv. Funct. Mater. 2008, 18, 3972–3980. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, G.; Dickerson, M.B.; Church, B.C.; Cai, Y.; Jones, S.E.; Naik, R.R.; King, J.S.; Summers, C.J.; Kröger, N.; Sandhage, K.H. Rapid, room-temperature formation of crystalline calcium molybdate phosphor microparticles via peptide-induced precipitation. Adv. Mater. 2006, 18, 1759–1763. [Google Scholar] [CrossRef]
- Dickerson, M.B.; Naik, R.N.; Stone, M.O.; Cai, Y.; Sandhage, K.H. Identification of peptides that promote the rapid precipitation of germania nanoparticle networks via use of a peptide display library. Chem. Commun. 2004, 15, 1776–1777. [Google Scholar] [CrossRef]
- Marsh, P.D.; Percival, R.S. The oral microflora–friend or foe? Can we decide? Int. Dent. J. 2006, 56, 233–239. [Google Scholar] [PubMed]
- Ho, S.P.; Marshall, S.J.; Ryder, M.I.; Marshall, G.W. The tooth attachment mechanisms defined by structure, chemical composition and mechanical properties of collagen fibers in the periodontium. Biomaterials 2007, 28, 5238–5245. [Google Scholar] [CrossRef] [PubMed]
- Fantner, G.E.; Hassenkam, T.; Kindt, J.H.; Weaver, J.C.; Birkedal, H.; Pechenik, L.; Cutroni, J.A.; Cidade, G.A.; Stucky, G.D.; Morse, D.E.; Hansma, P.K. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat. Mater. 2005, 4, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Hansma, P.K.; Fantner, G.E.; Kindt, J.H.; Thurner, P.J.; Schitter, G.; Turner, P.J.; Udwin, S.F.; Finch, M.M. Sacrificial bonds in the interfibrillar matrix of bone. J. Musc. Neur. Inter. 2005, 5, 313–315. [Google Scholar]
- Adams, J.; Fantner, G.E.; Fisher, L.W.; Hansma, P.K. Molecular energy dissipation in nanoscale networks of dentin matrix protein 1 is strongly dependent on ion valence. Nanotechnology 2008, 19, 384008. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.H.; Moreau, J.L.; Sun, L.; Chow, L.C. Strength and fluoride release characteristics of a calcium fluoride based dental nanocomposite. Biomaterials 2008, 29, 4261–4267. [Google Scholar] [CrossRef] [PubMed]
- Rahiotis, C.; Vougiouklakis, G. Effect of a CPP-ACP agent on the demineralization and remineralization of dentine in vitro. J. Dent. 2007, 35, 695–698. [Google Scholar] [CrossRef] [PubMed]
- Gower, L.B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 2008, 108, 4551–4627. [Google Scholar] [CrossRef] [PubMed]
- Gebeshuber, I.C.; Gruber, P.; Drack, M. A gaze into the crystal ball—biomimetics in the year 2059. Proc. IMechE. C: J. Mech. Eng. Sci. 2009, 223, 2899–2918. [Google Scholar]
- Delehanty, J.B.; Boeneman, K.; Bradburne, C.E.; Robertson, K.; Medintz, I.L. Quantum dots: A powerful tool for understanding the intricacies of nanoparticle-mediated drug delivery. Expert Opin. Drug Deliv. 2009, 6, 1091–1112. [Google Scholar] [CrossRef] [PubMed]
- Pons, T.; Mattoussi, H. Investigating biological processes at the single molecule level using luminescent quantum dots. Ann. Biomed. Eng. 2009, 37, 1934–1959. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Manshian, B.; Jenkins, G.J.S.; Griffiths, S.M.; Williams, P.M.; Maffeis, T.G.G.; Wright, C.J.; Doak, S.H. NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials 2009, 30, 3891–3914. [Google Scholar] [CrossRef] [PubMed]
- Service, F. Nanomaterials show signs of toxicity. Science 2003, 300, 243. [Google Scholar] [CrossRef] [PubMed]
- Limbach, L.K.; Li, Y.; Grass, R.N.; Brunner, T.J.; Hintermann, M.A.; Muller, M.; Gunther, D.; Stark, W.J. Oxide nanoparticle uptake in human lung fibroblasts: Effect of particle size, agglomeration and diffusion at low concentration. Env. Sci. Tech. 2005, 39, 9370–9376. [Google Scholar] [CrossRef]
- Riehemann, K.; Schneider, S.W.; Luger, T.A.; Godin, B.; Ferrari, M.; Fuchs, H. Nanomedicine–challenge and perspectives. Angew. Chem. Int. Ed. Engl. 2009, 48, 872–897. [Google Scholar] [CrossRef] [PubMed]
- Coelho, P.G.; Lemons, J.E. Bio nano materials. In Proceedings of the Bio Nano Conference & Trade Show, Anaheim, CA, USA, 8–12 May 2005; pp. 316–319.
- Mendonca, G.; Mendonca, D.B.; Aragao, F.J.; Cooper, L.F. Advancing dental implant surface technology—from micron- to nanotopography. Biomaterials 2008, 29, 3822–3835. [Google Scholar] [CrossRef] [PubMed]
- Lacefield, W.R. Current status of ceramic coatings for dental implants. Implant Dent. 1998, 7, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Camata, R.P.; Vohra, Y.K.; Lacefield, W.R. Control of phase composition in hydroxyapatite/tetracalcium phosphate biphasic thin coatings for biomedical applications. J. Mater. Sci. Mater. Med. 2005, 16, 961–966. [Google Scholar] [CrossRef] [PubMed]
- Vercaigne, S.; Wolke, J.G.; Naert, I.; Jansen, J.A. A mechanical evaluation of TiO2-gritblasted and Ca-P magnetron sputter coated implants placed into the trabecular bone of the goat: Part 1. Clin. Oral Implants Res. 2000, 11, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Vercaigne, S.; Wolke, J.G.; Naert, I.; Jansen, J.A. A histological evaluation of TiO2-gritblasted and Ca-P magnetron sputter coated implants placed into the trabecular bone of the goat: Part 2. Clin. Oral Implants Res. 2000, 11, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Kim, K.H.; Ong, J.L. A review on calcium phosphate coatings produced using a sputtering process-An alternative to plasma spraying. Biomaterials 2005, 26, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.S.; Yi, K.Y.; Lee, I.S.; Han, C.H.; Jung, Y.C. The effects of ion beam-assisted deposition of hydroxyapatite on the grit-blasted surface of endosseous implants in rabbit tibiae. Int. J. Oral Maxil. Impl. 2005, 20, 31–38. [Google Scholar]
- Ong, J.L.; Carnes, D.L.; Bessho, K. Evaluation of titanium plasma-sprayed and plasma sprayed hydroxyapatite implants in vivo. Biomaterials 2004, 25, 4601–4606. [Google Scholar] [CrossRef] [PubMed]
- Mendes, V.C.; Moineddin, R.; Davies, J.E. The effect of discrete calcium phosphate nanocrystals on bone-bonding to titanium surfaces. Biomaterials 2007, 28, 4748–4755. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.E. Bone bonding at natural and biomaterial surfaces. Biomaterials 2007, 28, 5058–5067. [Google Scholar] [CrossRef] [PubMed]
- Orsini, G.; Piatelli, M.; Scarano, A.; Petrone, G.; Kenealy, J.; PIatelli, A.; Caputi, S. Histologic and ultrastructural analysis of regenerated bone in maxillary sinus augmentation using a porcine bone-derived biomaterial. J. Periodontol. 2006, 77, 1984–1990. [Google Scholar] [CrossRef] [PubMed]
- Coelho, P.G.; Granjeiro, J.M.; Romanos, G.E.; Suzuki, M.; Silva, N.R.; Cardaropoli, G.; Thompson, V.P.; Lemons, J.E. Basic research methods and current trends of dental implant surfaces. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 88, 579–596. [Google Scholar] [CrossRef] [PubMed]
- Filoche, S.; Wong, L.; Sissons, C.H. Oral Biofils: Emerging concepts in microbial ecology. J. Dent. Res. 2010, 89, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Hojo, K.; Nagaoka, S.; Ohshima, T.; Maeda, N. Bacterial interactions in dental biofilm development. J. Dent. Res. 2009, 88, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Loo, A.J.; Wong, D.T. Human saliva proteome analysis and disease biomarker discovery. Expert. Rev. Proteomics 2007, 4, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Choo-Smith, L.-P.; Dong, C.C.; Cleghorn, B.; Hewko, M. Shedding new light on early caries detection. J. Can. Dent. Assoc. 2008, 74, 913–918. [Google Scholar] [PubMed]
- Choo-Smith, L.-P.; Ko, A.C.-T.; Hewko, M.D.; Dong, C.C.S.; Cleghorn, B.M.; Sowa, M.G. Characterization of early dental caries by polarized Raman spectroscopy. In Lasers in Dentistry XII; Reichmann, P., Fried, D., Eds.; SPIE: Bellingham, WA, USA, 2006; Volume 6137, pp. 61–67. [Google Scholar]
- Hirasuna, K.; Fried, D.; Darling, C.L. Near-infrared imaging of developmental defects in dental enamel. J. Biomed. Opt. 2008, 13, 044011. [Google Scholar] [CrossRef]
- Fried, D.; Featherstone, J.D.; Darling, C.L.; Jones, R.S.; Ngaotheppitak, P.; Buhler, C.M. Early caries imaging and monitoring with near-infrared light. Dent. Clin. North Am. 2005, 49, 771–793. [Google Scholar] [CrossRef] [PubMed]
- Bigler, L.R.; Streckfus, C.F.; Dubinsky, W.P. Salivary biomarkers for the detection of malignant tumors that are remote from the oral cavity. Clin. Lab. Med. 2009, 29, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Edgar, W.M.; Higham, S.M. Role of saliva in caries models. Adv. Dent. Res. 1995, 9, 235–238. [Google Scholar] [PubMed]
- Lee, Y.H.; Wong, D.T. Saliva: An emerging biofluid for early detection of diseases. Am. J. Dent. 2009, 22, 241–248. [Google Scholar] [PubMed]
- Ligtenberg, A.J.; de Soet, J.J.; Veerman, E.C.; Amerongen, A.V. Oral diseases: From detection to diagnostics. Ann. N. Y. Acad. Sci. 2007, 1098, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Uskoković, V. Theoretical and practical aspects of colloid science and self-assembly phenomena revisited. Rev. Chem. Eng. 2007, 23, 301–372. [Google Scholar] [CrossRef]
- Tirrell, M.V.; Katz, A. Self-assembly in materials synthesis. MRS Bull. 2005, 30, 700–742. [Google Scholar]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Uskoković, V.; Bertassoni, L.E. Nanotechnology in Dental Sciences: Moving towards a Finer Way of Doing Dentistry. Materials 2010, 3, 1674-1691. https://doi.org/10.3390/ma3031674
Uskoković V, Bertassoni LE. Nanotechnology in Dental Sciences: Moving towards a Finer Way of Doing Dentistry. Materials. 2010; 3(3):1674-1691. https://doi.org/10.3390/ma3031674
Chicago/Turabian StyleUskoković, Vuk, and Luiz Eduardo Bertassoni. 2010. "Nanotechnology in Dental Sciences: Moving towards a Finer Way of Doing Dentistry" Materials 3, no. 3: 1674-1691. https://doi.org/10.3390/ma3031674
APA StyleUskoković, V., & Bertassoni, L. E. (2010). Nanotechnology in Dental Sciences: Moving towards a Finer Way of Doing Dentistry. Materials, 3(3), 1674-1691. https://doi.org/10.3390/ma3031674