Aqueous ZrO2 and YSZ Colloidal Systems through Microwave Assisted Hydrothermal Synthesis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of ZrO2 Particles
Temperature (°C) | Duration (min) | Particles size [a] (nm) | Crystalline | Present phase | Crystallite size (nm) |
---|---|---|---|---|---|
140 | 5 | 37 | No | – | – |
140 | 60 | 47 | Yes | Monoclinic ZrO2 | 3.13 ± 0.11 |
150 | 5 | 45 | Yes | Monoclinic ZrO2 | 2.64 ± 0.11 |
150 | 30 | 52 | Yes | Monoclinic ZrO2 | 3.37 ± 0.10 |
160 | 5 | 50 | Yes | Monoclinic ZrO2 | 3.35 ± 0.10 |
2.2. Interparticle Route towards YSZ
2.3. Intraparticle Route towards YSZ
3. Experimental Section
4. Conclusions
Conflicts of Interest
Acknowledgments
References
- Brus, L. Eectronic wave-functions in semiconductor clusters—Experiment and theory. J. Phys. Chem. 1986, 90, 2555–2560. [Google Scholar]
- Hofmann, H. Ceramic particles and layers for functional application. J. Eur. Ceram. Soc. 2009, 29, 1235–1243. [Google Scholar] [CrossRef]
- Kumar, K.N.P.; Keizer, K.; Burggraaf, A.J.; Okubo, T.; Nagamoto, H.; Morooka, S. Densification of nanostructured titania assisted by a phase-transformation. Nature 1992, 358, 48–51. [Google Scholar] [CrossRef]
- Okubo, T.; Nagamoto, H. Low-temperature preparation of nanostructured zirconia and YSZ by sol-gel processing. J. Mater. Sci. 1995, 30, 749–757. [Google Scholar] [CrossRef]
- Arin, M.; Lommens, P.; Hopkins, S.C.; Pollefeyt, G.; Van der Eycken, J.; Ricart, S.; Granados, X.; Glowacki, B.A.; Van Driessche, I. Deposition of photocatalytically active TiO2 films by inkjet printing of TiO2 nanoparticle suspensions obtained from microwave-assisted hydrothermal synthesis. Nanotechnology 2012, 23. [Google Scholar] [CrossRef]
- Gil, M.C.; Van Driessche, I.; Van Gils, S.; Lommens, P.; Castelein, P.; de Buysser, K. High-throughput analysis for preparation, processing and analysis of TiO2 coatings on steel by chemical solution deposition. J. Alloys Comp. 2012, 540, 170–178. [Google Scholar] [CrossRef]
- Gressel-Michel, E.; Chaumont, D.; Stuerga, D. From a microwave flash-synthesized TiO2 colloidal suspension to TiO2 thin films. J. Colloid Interf. Sci. 2005, 285, 674–679. [Google Scholar] [CrossRef]
- Witz, G.; Shklover, V.; Steurer, W.; Bachegowda, S.; Bossmann, H.P. Phase evolution in yttria-stabilized zirconia thermal barrier coatings studied by rietveld refinement of X-ray powder diffraction patterns. J. Am. Ceram. Soc. 2007, 90, 2935–2940. [Google Scholar] [CrossRef]
- Ormerod, R.M. Solid oxide fuel cells. Chem. Soc. Rev. 2003, 32, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Matsubara, T.; Sei, T.; Tsuchiya, T. Preparation and properties of YO3-doped ZrO2 thin films by the sol-gel process. J. Mater. Sci. 1997, 32, 5249–5256. [Google Scholar] [CrossRef]
- Pawlewicz, W.T.; Hays, D.D. Microstructure control for sputter-deposited ZrO2, ZrO2·CaO and ZrO2·Y2O3. Thin Solid Films 1982, 94, 31–45. [Google Scholar] [CrossRef]
- Tcheliebou, F.; Boulouz, M.; Boyer, A. Electrical behaviour of thin ZrO2 films containing some ceramic oxides. Mater. Sci. Eng. B 1996, 38, 90–95. [Google Scholar] [CrossRef]
- Schlichting, K.W.; Padture, N.P.; Klemens, P.G. Thermal conductivity of dense and porous yttria-stabilized zirconia. J. Mater. Sci. 2001, 36, 3003–3010. [Google Scholar] [CrossRef]
- Inyu, P.; Jungmin, A.; Jongmo, I.; Jinyi, C.; Dongwook, S. Influence of rheological characteristics of YSZ suspension on the morphology of YSZ films deposited by electrostatic spray deposition. Ceram. Int. 2012, 38, S481–S484. [Google Scholar] [CrossRef]
- Lenormand, P.; Caravaca, D.; Laberty-Robert, C.; Ansart, F. Thick films of YSZ electrolytes by dip-coating process. J. Eur. Ceram. Soc. 2005, 25, 2643–2646. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.D.; Hyun, S.H.; Moon, J.; Kim, J.H.; Song, R.H. Fabrication and characterization of anode-supported electrolyte thin films for intermediate temperature solid oxide fuel cells. J. Power Sources 2005, 139, 67–72. [Google Scholar] [CrossRef]
- Minh, N.Q. Solid oxide fuel cell technology-features and applications. Solid State Ion. 2004, 174, 271–277. [Google Scholar] [CrossRef]
- Xu, X.Y.; Xia, C.R.; Huang, S.G.; Peng, D.K. YSZ thin films deposited by spin-coating for IT-SOFCs. Ceram. Int. 2005, 31, 1061–1064. [Google Scholar] [CrossRef]
- Van Driessche, I.; Hopkins, S.; Lommens, P.; Granados, X.; Andreouli, D.; Glowacki, B.; Arabatzis, I.M.; Arin, M.; Ricart, S.; Fasaki, I.; et al. Efficient and environmentally friendly nk-jet printing of ceramic thin films. Nanosci. Nanotechnol. Lett. 2013, 5, 466–474. [Google Scholar]
- Ekberg, C.; Kallvenius, G.; Albinsson, Y.; Brown, P.L. Studies on the hydrolytic behavior of zirconium (IV). J. Solut. Chem. 2004, 33, 47–79. [Google Scholar] [CrossRef]
- Dufour, F.; Cassaignon, S.; Durupthy, O.; Colbeau-Justin, C.; Chaneac, C. Do TiO2 nanoparticles really taste better when cooked in a microwave oven? Eur. J. Inorg. Chem. 2012, 2707–2715. [Google Scholar]
- Gerbec, J.A.; Magana, D.; Washington, A.; Strouse, G.F. Microwave-enhanced reaction rates for nanoparticle synthesis. J. Am. Chem. Soc. 2005, 127, 15791–15800. [Google Scholar] [CrossRef] [PubMed]
- Galema, S.A. Microwave chemistry. Chem. Soc. Rev. 1997, 26, 233–238. [Google Scholar] [CrossRef]
- Baghbanzadeh, M.; Carbone, L.; Cozzoli, P.D.; Kappe, C.O. Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 11312–11359. [Google Scholar] [CrossRef]
- Hu, X.L.; Gong, J.M.; Zhang, L.Z.; Yu, J.C. Continuous size tuning of monodisperse ZnO colloidal nanocrystal clusters by a microwave-polyol process and their application for humidity sensing. Adv. Mater. 2008, 20, 4845–4850. [Google Scholar] [CrossRef]
- Livage, J. Sol-gel synthesis of heterogeneous catalysts from aqueous solutions. Catal. Today 1998, 41, 3–19. [Google Scholar] [CrossRef]
- Matsui, K.; Ohgai, M. Formation mechanism of hydrous zirconia particles produced by the hydrolysis of ZrOCl2 solutions: III. Kinetics study for the nucleation and crystal-growth processes of primary particles. J. Am. Ceram. Soc. 2001, 84, 2303–2312. [Google Scholar] [CrossRef]
- Coelho, A. TOPAS-Academic; Version 4.1; Coelho Software: Brisbane, Austrilia, 2007. [Google Scholar]
- Vernieuwe, K.; Lommens, P.; Van den Broeck, F.; Martins, J.C.; Van Driessche, I. Microwave synthesis of ZrO2-YSZ particles from aqueous precursor solutions. In MRS Spring Meeting, San Francisco, CA, USA, 9–13 April 2012; Materials Research Society: Warrendale, PA, USA, 2012. [Google Scholar] [CrossRef] [Green Version]
- Fritzinger, B.; Moreels, I.; Lommens, P.; Koole, R.; Hens, Z.; Martins, J.C. In situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 2009, 131, 3024–3032. [Google Scholar] [CrossRef] [PubMed]
- Hens, Z.; Martins, J.C. A solution NMR toolbox for characterizing the surface chemistry of colloidal nanocrystals. Chem. Mater. 2013, 25, 1211–1221. [Google Scholar] [CrossRef]
- Gibson, I.R.; Irvine, J.T.S. Qualitative X-ray diffraction analysis of metastable tetragonal (t') zirconia. J. Am. Ceram. Soc. 2001, 84, 615–618. [Google Scholar] [CrossRef]
- Kuwabara, A.; Tohei, T.; Yamamoto, T.; Tanaka, I. Ab initio lattice dynamics and phase transformations of ZrO2. Phys. Rev. B 2005, 71. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Vanderbilt, D. Phonons and lattice dielectric properties of zirconia. Phys. Rev. B 2002, 65. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Vernieuwe, K.; Lommens, P.; Martins, J.C.; Van Den Broeck, F.; Van Driessche, I.; De Buysser, K. Aqueous ZrO2 and YSZ Colloidal Systems through Microwave Assisted Hydrothermal Synthesis. Materials 2013, 6, 4082-4095. https://doi.org/10.3390/ma6094082
Vernieuwe K, Lommens P, Martins JC, Van Den Broeck F, Van Driessche I, De Buysser K. Aqueous ZrO2 and YSZ Colloidal Systems through Microwave Assisted Hydrothermal Synthesis. Materials. 2013; 6(9):4082-4095. https://doi.org/10.3390/ma6094082
Chicago/Turabian StyleVernieuwe, Kenny, Petra Lommens, José C. Martins, Freya Van Den Broeck, Isabel Van Driessche, and Klaartje De Buysser. 2013. "Aqueous ZrO2 and YSZ Colloidal Systems through Microwave Assisted Hydrothermal Synthesis" Materials 6, no. 9: 4082-4095. https://doi.org/10.3390/ma6094082
APA StyleVernieuwe, K., Lommens, P., Martins, J. C., Van Den Broeck, F., Van Driessche, I., & De Buysser, K. (2013). Aqueous ZrO2 and YSZ Colloidal Systems through Microwave Assisted Hydrothermal Synthesis. Materials, 6(9), 4082-4095. https://doi.org/10.3390/ma6094082