Photocatalytic H2 Production Using Pt-TiO2 in the Presence of Oxalic Acid: Influence of the Noble Metal Size and the Carrier Gas Flow Rate
Abstract
:1. Introduction
2. Experimental Section
2.1. Catalyst Preparation
2.1.1. Chemical Reduction Method
2.1.2. Photoreduction Procedure
2.2. Characterization of the Catalysts
2.2.1. Spectrophotometry
2.2.2. Transmission Electron Microscopy (TEM)
2.2.3. ICP Measurements
2.3. H2 Production Measurements
2.4. UV Decomposition of Oxalic Acid
2.5. Adsorption of Oxalic Acid on the Catalyst
3. Results and Discussion
3.1. Reduction of Pt(IV)
3.2. Size of the Pt Particles on TiO2
3.3. Effect of Surface Pt Nanoparticles on the Oxalic Acid Adsorption
3.4. Photocatalytic Experiments
3.4.1. H2 Production from Oxalic Acid Solution
Irradiation time (min) | cPt (ppb) |
---|---|
0 | 1.87 |
10 | 0.60 |
20 | 0.67 |
40 | 0.42 |
60 | 0.25 |
80 | 0.38 |
120 | 0.34 |
3.4.2. Effect of Pt Particle Size on Photocatalytic H2 Generation
Sample | DPt (nm) | rH2, steady (μmol/min) | AQY | rH2, max (μmol/min) |
---|---|---|---|---|
2.50 × 10−4 M citrate-Pt-TiO2 CRIS | 2.6 | 5.40 | 1.88% | 50.50 |
1.88 × 10−4 M citrate-Pt-TiO2 CRIS | 3.0 | 6.64 | 2.32% | 73.54 |
1.25 × 10−4 M citrate-Pt-TiO2 CRIS | 3.2 | 7.21 | 2.52% | 63.67 |
0.63 × 10−4 M citrate-Pt-TiO2 CRIS | 3.8 | 5.00 | 1.75% | 39.60 |
2.50 × 10−4 M citrate-Pt-TiO2 CRSIM | 2.5 | 4.26 | 1.49% | 59.54 |
1.88 × 10−4 M citrate-Pt-TiO2 CRSIM | 3.5 | 4.78 | 1.67% | 60.25 |
1.25 × 10−4 M citrate-Pt-TiO2 CRSIM | 3.7 | 4.29 | 1.50% | 57.24 |
0.63 × 10−4 M citrate-Pt-TiO2 CRSIM | 4.0 | 2.31 | 0.81% | 21.04 |
Photoreduced Pt-TiO2 PROA | 4.5 | 2.11 | 0.74% | 12.50 |
3.4.3. Decomposition of Oxalic Acid under Anaerobic Conditions
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Carp, O.; Huisman, C.L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32, 33–177. [Google Scholar] [CrossRef]
- Bolton, J.R. Solar photoreduction of hydrogen: A review. Sol. Energy 1996, 57, 37–50. [Google Scholar] [CrossRef]
- Rosseler, O.; Shankar, M.V.; Du, M.K.-L.; Schmidlin, L.; Keller, N.; Keller, V. Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2(anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion. J. Catal. 2010, 269, 179–190. [Google Scholar] [CrossRef]
- Yang, Y.; Chang, C.; Idriss, H. Photo-catalytic production of hydrogen form ethanol over M/TiO2 catalysts (M = Pd, Pt or Rh). Appl. Catal. B 2006, 67, 217–222. [Google Scholar] [CrossRef]
- Sakthivel, S.; Shankar, M.V.; Palanichamy, M.; Arabindoo, B.; Bahnemann, D.W.; Murugesan, V. Enhancement of photocatalytic activity by metal deposition: Characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res. 2004, 38, 3001–3008. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Feng, Z.; Wu, G.; Shi, J.; Ma, G.; Ying, P.; Li, C. Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ fourier transform IR and time-resolved IR spectroscopy. J. Phys. Chem. C 2007, 111, 8005–8014. [Google Scholar] [CrossRef]
- Patsoura, A.; Kondarides, D.I.; Verykios, X.E. Enhancement of photoinduced hydrogen production from irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes. Appl. Catal. B 2006, 64, 171–179. [Google Scholar]
- Kim, W.; Tachikawa, T.; Kim, H.; Lakshminarasimhan, N.; Murugan, P.; Park, H.; Majima, T.; Choi, W. Visible light photocatalytic activities of nitrogen and platinum-doped TiO2: Synergistic effects of co-dopants. Appl. Catal. B 2014, 147, 642–650. [Google Scholar]
- Nada, A.; Barakat, M.; Hamed, H.; Mohamed, N.; Veziroglu, T. Studies on the photocatalytic hydrogen production using suspended modified photocatalysts. Int. J. Hydrog. Energy 2005, 30, 687–691. [Google Scholar] [CrossRef]
- Wu, G.; Chen, T.; Su, W.; Zhou, G.; Zong, X.; Lei, Z.; Li, C. H2 production with ultra-low CO selectivity via photocatalytic reforming of methanol on Au/TiO2 catalyst. Int. J. Hydrog. Energy 2008, 33, 1243–1251. [Google Scholar] [CrossRef]
- Dawson, A.; Kamat, P.V. Semiconductor-metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/gold) nanoparticles. J. Phys. Chem. B 2001, 105, 960–966. [Google Scholar]
- Park, J.; Kang, M. Synthesis and characterization of AgxOAgxO, and hydrogen production from methanol photodecomposition over the mixture of AgxOAgxO and TiO2TiO2. Int. J. Hydrog. Energy 2007, 32, 4840–4846. [Google Scholar] [CrossRef]
- Mizukoshi, Y.; Makise, Y.; Shuto, T.; Hu, J.; Tominaga, A.; Shironita, S.; Tanabe, S. Immobilization of noble metal nanoparticles on the surface of TiO2 by the sonochemical method: Photocatalytic production of hydrogen from an aqueous solution of ethanol. Ultrason. Sonochem. 2007, 14, 387–392. [Google Scholar]
- Yang, J.C.; Kim, Y.C.; Shul, Y.G.; Shin, C.H.; Lee, T.K. Characterization of photoreduced Pt/TiO2 and decomposition of dichloroacetic acid over photoreduced Pt/TiO2 catalysts. Appl. Surf. Sci. 1997, 121, 525–529. [Google Scholar]
- Szabó-Bárdos, E.; Czili, H.; Horváth, A. Photocatalytic oxidation of oxalic acid enhanced by silver deposition on a TiO2 surface. J. Photochem. Photobiol. A 2003, 154, 195–201. [Google Scholar] [CrossRef]
- Mogyorósi, K.; Kmetykó, Á.; Czirbus, N.; Veréb, G.; Sipos, P.; Dombi, A. Comparison of the substrate dependent performance of Pt-, Au- and Ag-doped TiO2 photocatalysts in H2-production and in decomposition of various organics. React. Kinet. Catal. Lett. 2009, 98, 215–225. [Google Scholar] [CrossRef]
- Wojcieszak, R.; Zielinski, M.; Monteverdi, S.; Bettahar, M. Study of nickel nanoparticles supported on activated carbon prepared by aqueous hydrazine reduction. J. Colloid Interface Sci. 2006, 299, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.P.; Lim, L.L. Key factors in chemical reduction by hydrazine for recovery of precious metals. Chemosphere 2002, 49, 363–370. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Zhu, X. Phospholipid-assisted synthesis of size-controlled gold nanoparticles. Mater. Res. Bull. 2007, 42, 1310–1315. [Google Scholar] [CrossRef]
- Singh, S.K.; Iizuka, Y.; Xu, Q. Nickel-palladium nanoparticle catalyzed hydrogen generation from hydrous hydrazine for chemical hydrogen storage. Int. J. Hydrog. Energy 2011, 36, 11794–11801. [Google Scholar] [CrossRef]
- Sadeghi, M.; Liu, W.; Zhang, T.-G.; Stavropoulos, P.; Levy, B. Role of photoinduced charge carrier separation distance in heterogeneous photocatalysis: Oxidative degradation of CH3OH vapor in contact with Pt/TiO2 and cofumed TiO2-Fe2O3. J. Phys. Chem. 1996, 100, 19466–19474. [Google Scholar] [CrossRef]
- Yi, H.; Peng, T.; Ke, D.; Ke, D.; Zan, L.; Yan, C. Photocatalytic H2 production from methanol aqueous solution over titania nanoparticles with mesostructures. Int. J. Hydrog. Energy 2008, 33, 672–678. [Google Scholar] [CrossRef]
- Zheng, X.-J.; Wei, L.-F.; Zhang, Z.-H.; Jiang, Q.-J.; Wei, Y.-J.; Xie, B.; Wei, M.-B. Research on photocatalytic H2 production from acetic acid solution by Pt/TiO2 nanoparticles under UV irradiation. Int. J. Hydrog. Energy 2009, 34, 9033–9041. [Google Scholar] [CrossRef]
- Iliev, V.; Tomova, D.; Bilyarska, L.; Tyuliev, G. Influence of the size of gold nanoparticles deposited on TiO2 upon the photocatalytic destruction of oxalic acid. J. Mol. Catal. A Chem. 2007, 263, 32–38. [Google Scholar] [CrossRef]
- Iliev, V.; Tomova, D.; Todorovska, R.; Oliver, D.; Petrov, L.; Todorovsky, D.; Uzunova-Bujnova, M. Photocatalytic properties of TiO2 modified with gold nanoparticles in the degradation of oxalic acid in aqueous solution. Appl. Catal. A 2006, 313, 115–121. [Google Scholar]
- Ikuma, Y.; Bessho, H. Effect of Pt concentration on the production of hydrogen by a TiO2TiO2 photocatalyst. Int. J. Hydrog. Energy 2007, 32, 2689–2692. [Google Scholar] [CrossRef]
- Teoh, W.; Madler, L.; Beydoun, D.; Pratsinis, S.; Amal, R. Direct (one-step) synthesis of and nanoparticles for photocatalytic mineralisation of sucrose. Chem. Eng. Sci. 2005, 60, 5852–5861. [Google Scholar] [CrossRef]
- Kim, C.; Lee, H. Shape effect of Pt nanocrystals on electrocatalytic hydrogenation. Catal. Commun. 2009, 11, 7–10. [Google Scholar] [CrossRef]
- Lin, C.-S.; Khan, M.R.; Lin, S.D. The preparation of Pt nanoparticles by methanol and citrate. J. Colloid Interface Sci. 2006, 299, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Bamwenda, G.R.; Tsubota, S.; Nakamura, T.; Haruta, M. Photoassisted hydrogen production from a water-ethanol solution: A comparison of activities of Au-TiO2 and Pt-TiO2. J. Photochem. Photobiol. A 1995, 89, 177–189. [Google Scholar] [CrossRef]
- Chiarello, G.L.; Aguirre, M.H.; Selli, E. Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2. J. Catal. 2010, 273, 182–190. [Google Scholar] [CrossRef]
- Sreethawong, T.; Suzuki, Y.; Yoshikawa, S. Platinum-loaded mesoporous titania by single-step sol-gel process with surfactant template: Photocatalytic activity for hydrogen evolution. C. R. Chim. 2006, 9, 307–314. [Google Scholar] [CrossRef]
- Choi, H.; Kang, M. Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2TiO2. Int. J. Hydrog. Energy 2007, 32, 3841–3848. [Google Scholar] [CrossRef]
- Chen, T.; Wu, G.; Feng, Z.; Hu, G.; Su, W.; Ying, P.; Li, C. In situ FT-IR study of photocatalytic decomposition of formic acid to hydrogen on Pt/TiO2 catalyst. Chin. J. Catal. 2008, 29, 105–107. [Google Scholar]
- Li, Y.; Xie, Y.; Peng, S.; Lu, G.; Li, S. Photocatalytic hydrogen generation in the presence of chloroacetic acids over Pt/TiO2. Chemosphere 2006, 63, 1312–1318. [Google Scholar]
- Naldoni, A.; D’Arienzo, M.; Altomare, M.; Marelli, M.; Scotti, R.; Morazzoni, F.; Selli, E.; Dal Santo, V. Pt and Au/TiO2 photocatalysts for methanol reforming: Role of metal nanoparticles in tuning charge trapping properties and photoefficiency. Appl. Catal. B 2013, 130–131, 239–248. [Google Scholar]
- Tang, Z.; Geng, D.; Lu, G. Size-controlled synthesis of colloidal platinum nanoparticles and their activity for the electrocatalytic oxidation of carbon monoxide. J. Colloid Interface Sci. 2005, 287, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Roncaroli, F.; Blesa, M.A. Kinetics of adsorption of oxalic acid on different titanium dioxide samples. J. Colloid Interface Sci. 2011, 356, 227–233. [Google Scholar] [CrossRef] [PubMed]
- De Luca, L.; Donato, A.; Santangelo, S.; Faggio, G.; Messina, G.; Donato, N.; Neri, G. Hydrogen sensing characteristics of Pt/TiO2/MWCNTs composites. Int. J. Hydrog. Energy 2012, 37, 1842–1851. [Google Scholar]
- Chang, F.-W.; Yu, H.-Y.; Selva Roselin, L.; Yang, H.-C. Production of hydrogen via partial oxidation of methanol over Au/TiO2 catalysts. Appl. Catal. A 2005, 290, 138–147. [Google Scholar] [CrossRef]
- Fan, L.; Ichikuni, N.; Shimazu, S.; Uematsu, T. Preparation of Au/TiO2 catalysts by suspension spray reaction method and their catalytic property for CO oxidation. Appl. Catal. A 2003, 246, 87–95. [Google Scholar] [CrossRef]
- Jiang, D.-E.; Overbury, S.H.; Dai, S. Structures and energetics of Pt clusters on TiO2: Interplay between metal-metal bonds and metal-oxygen bonds. J. Phys. Chem. C 2012, 116, 21880–21885. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kmetykó, Á.; Mogyorósi, K.; Gerse, V.; Kónya, Z.; Pusztai, P.; Dombi, A.; Hernádi, K. Photocatalytic H2 Production Using Pt-TiO2 in the Presence of Oxalic Acid: Influence of the Noble Metal Size and the Carrier Gas Flow Rate. Materials 2014, 7, 7022-7038. https://doi.org/10.3390/ma7107022
Kmetykó Á, Mogyorósi K, Gerse V, Kónya Z, Pusztai P, Dombi A, Hernádi K. Photocatalytic H2 Production Using Pt-TiO2 in the Presence of Oxalic Acid: Influence of the Noble Metal Size and the Carrier Gas Flow Rate. Materials. 2014; 7(10):7022-7038. https://doi.org/10.3390/ma7107022
Chicago/Turabian StyleKmetykó, Ákos, Károly Mogyorósi, Viktória Gerse, Zoltán Kónya, Péter Pusztai, András Dombi, and Klára Hernádi. 2014. "Photocatalytic H2 Production Using Pt-TiO2 in the Presence of Oxalic Acid: Influence of the Noble Metal Size and the Carrier Gas Flow Rate" Materials 7, no. 10: 7022-7038. https://doi.org/10.3390/ma7107022
APA StyleKmetykó, Á., Mogyorósi, K., Gerse, V., Kónya, Z., Pusztai, P., Dombi, A., & Hernádi, K. (2014). Photocatalytic H2 Production Using Pt-TiO2 in the Presence of Oxalic Acid: Influence of the Noble Metal Size and the Carrier Gas Flow Rate. Materials, 7(10), 7022-7038. https://doi.org/10.3390/ma7107022