The Development of High-Density Vertical Silicon Nanowires and Their Application in a Heterojunction Diode
Abstract
:1. Introduction
2. Experimental Procedures
3. Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhang, Y.Z.; Wu, L.H.; Liu, Y.P.; Xie, E.Q.; Yan, D.; Chen, J.T. Preparation of ZnO Nanospheres and Their Applications in Dye-Sensitized Solar Cells. Chin. Phys. Lett. 2009, 26. [Google Scholar] [CrossRef]
- Tian, B.; Zhang, X.; Kempa, T.J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C.M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Kempa, T.J.; Tian, B.; Kim, D.R.; Hu, J.; Zheng, X.; Lieber, C.M. Single and Tandem Axial p-i-n Nanowire Photovoltaic Devices. Nano Lett. 2008, 8, 3456–3460. [Google Scholar] [CrossRef] [PubMed]
- Boettcher, S.W.; Spurgeon, J.M.; Putnam, M.C.; Warren, E.L.; Turner-Evans, D.B.; Kelzenberg, M.D.; Maiolo, J.R.; Atwater, H.A.; Lewis, N.S. Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes. Science 2010, 327, 185–187. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.M.; Yu, H.Y.; Li, J.S.; Zhang, G.; Lo, P.G.Q.; Kwong, D.L. Design High-Efficiency Si Nanopillar-Array-Textured Thin-Film Solar Cell. IEEE Electron. Devices Lett. 2010, 31, 335–337. [Google Scholar] [CrossRef]
- Liu, A.; Jones, R.; Liao, L.; Samar-Rubio, D.; Rubin, D.; Cohen, O.; Nicolaescu, R.; Paniccia, M. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 2004, 427, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Lieber, C.M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851–853. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Baca, A.J.; Park, S.I.; Elvikis, P.; Geddes, J.B.; Li, L.; Kim, R.H.; Xiao, J.; Wang, S.; Kim, T.H.; et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 2008, 7, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Lugstein, A.; Steinmair, M.; Henkel, C.; Bertagnolli, E. Scalable approach for vertical device integration of epitaxial nanowires. Nano Lett. 2009, 9, 1830–1834. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.R.; Lee, C.H.; Rao, P.M.; Cho, I.S.; Zheng, X. Hybrid Si Microwire and planar solar cells: Passivation and characterization. Nano Lett. 2011, 11, 2704–2708. [Google Scholar] [CrossRef] [PubMed]
- Boukai, A.I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J.K.; Goddard, W.A.; Heath, J.R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Elnathan, R.; Kwiat, M.; Patolsky, F.; Voelcker, N.H. Engineering vertically aligned semiconductor nanowire arrays for applications in the life sciences. Nano Today 2014, 9, 172–196. [Google Scholar] [CrossRef]
- Jeong, I.S.; Kim, J.H.; Im, S. Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure. Appl. Phys. Lett. 2003, 83, 2946–2948. [Google Scholar] [CrossRef]
- Mridha, S.; Basak, D. Ultraviolet and visible photoresponse properties of nZnO/pSi heterojunction. J. Appl. Phys. 2007, 101. [Google Scholar] [CrossRef]
- Wang, J.C.; Weng, W.T.M.; Tsai, Y.; Lee, M.K.S.; Horng, F.; Perng, T.P.; Kei, C.C.; Yu, C.C.; Meng, H.F. Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer. J. Mater. Chem. 2010, 20, 862–866. [Google Scholar] [CrossRef]
- Chen, M.J.; Yang, J.R.; Shiojiri, M. ZnO-based ultra-violet light emitting diodes and nanostructures fabricated by atomic layer deposition. Semicond. Sci. Technol. 2012, 27. [Google Scholar] [CrossRef]
- Eshaghi, A.; Hajkarimi, M. Optical and electrical properties of aluminum zinc oxide (AZO) nanostructured thin film deposited on polycarbonate substrate. Int. J. Light Electron Opt. 2014, 125, 5746–5749. [Google Scholar] [CrossRef]
- Keramatnejad, K.; Asl-Soleimani, E.; Khorramshahi, F.; Khatami, S. Optimizing UV detection properties of n-ZnO nanowire/p-Si heterojunction photodetectors by using a porous substrate. Opt. Quantum Electron. 2015, 47, 1739–1749. [Google Scholar] [CrossRef]
- Zhang, X.M.; Golberg, D.; Bando, Y.; Fukata, N. n-ZnO/p-Si 3D heterojunction solar cells in Si holey arrays. Nanoscale 2012, 4, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Hussain, B.; Ebong, A.; Ferguson, I. Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell. Sol. Energy Mater. Sol. Cells 2015, 139, 95–100. [Google Scholar] [CrossRef]
- Pietruszka, R.; Schifano, R.; Krajewski, T.A.; Witkowski, B.S.; Kopalko, K.; Wachnicki, L.E.; Zielony, G.K.; Bieganski, P.; Placzek-Popko, E.; Godlewski, M. Improved efficiency of n-ZnO/p-Si based photovoltaic cells by band offset engineering. Sol. Energy Mater. Sol. Cells 2016, 147, 164–170. [Google Scholar] [CrossRef]
- Iwan, S.; Bambang, S.; Zhao, J.L.; Tan, S.T.; Fan, H.M.; Sun, L.; Zhang, S.; Ryu, H.H.; Sun, X.W. Green electroluminescence from an n-ZnO:Er/p-Si heterostructured light-emitting diode. Phys. B Condens. Matt. 2012, 407, 2721–2724. [Google Scholar] [CrossRef]
- Hwang, T.Y.; An, G.H.; Lim, J.H.; Myung, N.V.; Cho, Y.H. Morphology control of ordered Si nanowire arrays by nanosphere lithography and metal-assisted chemical etching. Jpn. J. Appl. Phys. 2014, 53, 05HA07-1–05HA07-5. [Google Scholar] [CrossRef]
- Kelzenberg, M.D.; Boettcher, S.W.; Petykiewicz, J.A.; Turner-Evans, D.B.; Putnam, M.C.; Warren, E.L.; Spurgeon, J.M.; Briggs, R.M.; Lewis, N.S.; Atwater, H.A. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 2010, 9, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Hazra, P.; Jit, S. Electrical Characteristics of Si/ZnO Core–Shell Nanowire Heterojunction Diode. Phys. Semicond. Devices 2013, 673–675. [Google Scholar] [CrossRef]
- Hochbaum, A.I.; Chen, R.K.; Delgado, R.D.; Liang, W.J.; Garnett, E.C.; Najarian, M.; Majumdar, A.; Yang, P.D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.P.; Fang, H.; Zhu, J. Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length and Density. J. Adv. Mater. 2007, 19, 744–748. [Google Scholar] [CrossRef]
- Peng, K.Q.; Zhang, M.L.; Lu, A.J.; Wong, N.B.; Zhang, R.Q.; Lee, S.T. Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching. Appl. Phys. Lett. 2007, 90, 163123–163125. [Google Scholar] [CrossRef]
- Zhang, M.L.; Peng, K.Q.; Fan, X.; Jie, J.S.; Zhang, R.Q.; Lee, S.T.; Wong, N.B.J. Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching. Phys. Chem. C 2008, 112, 4444–4450. [Google Scholar] [CrossRef]
- Hochbaum, A.I.; Fan, R.; He, R.R.; Yang, P.D. Controlled Growth of Si Nanowire Arrays for Device Integration. Nano Lett. 2005, 5, 457–460. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Wang, H.Z.; Li, Y.G.; Jing, X.U.; Zhang, Q.H.; Wang, C.R. Fabrication and characterization of amorphous ITO/p-Si heterojunction solar cell. Sci. China 2013, 56, 1870–1876. [Google Scholar] [CrossRef]
- Qi, X.; She, G.; Huang, X.; Zhang, T.; Wang, H. High-performance n-Si/a-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting. Nanoscale 2014, 6, 3182–3189. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Ghosh, K.; Kahol, P.K. Fabrication and characterization of NiO/ZnO p–n junctions by pulsed laser deposition. Physica E 2009, 41, 617–620. [Google Scholar] [CrossRef]
- Garnett, E.C.; Tseng, Y.C.; Khanal, D.R.; Wu, J.; Bokor, J.; Yang, P. Dopant profiling and surface analysis of silicon nanowires using capacitance–voltage measurements. Nat. Nanotechnol. 2009, 4, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhang, G.; Lee, D.Y.; Li, H.M.; Lim, Y.D.; Yoo, W.J.; Park, Y.J.; Kim, J.M. Self-Assembled Wire Arrays and ITO Contacts for Silicon Nanowire Solar Cell Applications. Chin. Phys. Lett. 2011, 28, 035202-1–035202-4. [Google Scholar] [CrossRef]
- Shah, J.M.; Li, Y.L.; Gessmann, T.; Schubert, E.F. Experimental analysis and theoretical model for anomalously high ideality factors in AlGaN/GaN pn junction diodes. J. Appl. Phys. 2003, 94, 2627–2630. [Google Scholar] [CrossRef]
- Nahass, M.M.E.; Rahman, K.F.A.; Darwish, A.A.A. Fabrication and electrical characterization of p-NiPc/n-Si heterojunction. Microelectron. J. 2007, 38, 91–95. [Google Scholar] [CrossRef]
- Singh, R.; Narula, A.K. Junction properties of aluminum/polypyrrole (polypyrrole derivatives) Schottky diodes. Appl. Phys. Lett. 1997, 71, 2845–2847. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, W.-C.; Su, S.-C.; Wu, C.-C. The Development of High-Density Vertical Silicon Nanowires and Their Application in a Heterojunction Diode. Materials 2016, 9, 534. https://doi.org/10.3390/ma9070534
Chang W-C, Su S-C, Wu C-C. The Development of High-Density Vertical Silicon Nanowires and Their Application in a Heterojunction Diode. Materials. 2016; 9(7):534. https://doi.org/10.3390/ma9070534
Chicago/Turabian StyleChang, Wen-Chung, Sheng-Chien Su, and Chia-Ching Wu. 2016. "The Development of High-Density Vertical Silicon Nanowires and Their Application in a Heterojunction Diode" Materials 9, no. 7: 534. https://doi.org/10.3390/ma9070534