Identifying and Ranking Influential Nodes in Complex Networks Based on Dynamic Node Strength
Abstract
:1. Introduction
2. Methods
3. Experimental Results
3.1. Evaluation Methodologies
3.2. Applications to the Real Networks
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Buldyrev, S.V.; Roni, P.; Gerald, P.; H Eugene, S.; Shlomo, H. Catastrophic Cascade of Failures in Interdependent Networks. Nature 2010, 464, 1025. [Google Scholar] [CrossRef] [Green Version]
- Fath, B.D.; Scharler, U.M.; Ulanowicz, R.E.; Hannon, B. Ecological network analysis: Network construction. Ecol. Model. 2017, 208, 49–55. [Google Scholar] [CrossRef]
- Marigo, A.; Piccoli, B. A model for biological dynamic networks. Netw. Heterog. Media 2017, 6, 647–663. [Google Scholar] [CrossRef]
- Guo, Q.T.; Lei, Y.J.; Jiang, X.; Ma, Y.F.; Huo, G.Y.; Zheng, Z.M. Epidemic spreading with activity-driven awareness diffusion on multiplex network. Chaos 2016, 26, 043110. [Google Scholar] [CrossRef]
- Zhang, J.X.; Chen, D.B.; Wang, G.; Xing, G. Ranking the spreading ability of nodes in complex networks based on local structure. Phys. Stat. Mech. Its Appl. 2014, 403, 130–147. [Google Scholar]
- Li, C.; Wang, L.; Sun, S.; Xia, C. Identification of influential spreaders based on classified neighbors in real-world complex networks. Appl. Math. Comput. 2017, 320, 512–523. [Google Scholar] [CrossRef]
- Li, J.; Xiong, Q.; Shi, W.; Shi, X.; Wang, K. Evaluating the importance of nodes in complex networks. Phys. Stat. Mech. Its Appl. 2016, 452, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Al-Garadi, M.A.; Varathan, K.D.; Ravana, S.D.; Ahmed, E.; Chang, V.; Lv, Z. Identifying the influential spreaders in multilayer interactions of online social networks. J. Intell. Fuzzy Syst. 2016, 31, 2721–2735. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Ren, X.; Peng, Z.; Zhang, J.; She, L. Effectively identifying the influential spreaders in large-scale social networks. Multimed. Tools Appl. 2016, 75, 8829–8841. [Google Scholar] [CrossRef]
- Gomez, S.; Diaz-Guilera, A.; Gomez-Gardenes, J.; Perez-Vicente, C.J.; Moreno, Y.; Arenas, A. Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 2013, 110, 028701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.B.; Sun, H.L.; Tang, Q. Identifying influential spreaders in complex networks by propagation probability dynamics. Chaos 2019, 29, 033120. [Google Scholar] [CrossRef] [PubMed]
- Sabidussi, G. The centrality index of a graph. Psychometrika 1966, 31, 581–603. [Google Scholar] [CrossRef]
- Newman, M.E.J. A measure of betweenness centrality based on random walks. Soc. Netw. 2005, 27, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Burt, R.S. Applied Network Analysis. Sociol. Methods Res. 1978, 7, 123–130. [Google Scholar] [CrossRef]
- Katz, L. A new status index derived from sociometric analysis. Psychometrika 1953, 18, 39–43. [Google Scholar] [CrossRef]
- Lü, L.; Zhang, Y.C.; Yeung, C.H.; Zhou, T. Leaders in Social Networks, the Delicious Case. PLoS ONE 2011, 6, 21202. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Yan, E.; Frazho, A.; Caverlee, J. PageRank for ranking authors in co-citation networks. J. Am. Soc. Inf. Sci. Technol. 2014, 60, 2229–2243. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.B.; Lü, L.Y.; Shang, M.S. Identifying influential nodes in complex networks. Phys. Stat. Mech. Its Appl. 2012, 391. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Du, Y.; Mo, H.; Wei, D.; Deng, Y. A modified weighted topsis to identify influential nodes in complex networks. Phys. Stat. Mech. Its Appl. 2016, 444, 73–85. [Google Scholar] [CrossRef]
- Du, Y.X.; Gao, C.; Hu, Y.; Mahadevan, S.; Deng, Y. A new method of identifying influential nodes in complex networks based on topsis. Phys. Stat. Mech. Its Appl. 2014, 399, 57–69. [Google Scholar] [CrossRef]
- Sara, A.; Hassan, B. Identification of influential spreaders in complex networks using HybridRank algorithm. Sci. Rep. 2018, 8, 11932. [Google Scholar]
- Kitsak, L.K.; Gallos, S.; Havlin, F.; Liljeros, L.; Muchnik, H.E.; Stanley, H.A.; Makse. Identification of influential spreaders in complex. Nat. Phys. 2010, 6, 888–893. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tang, M.; Zhou, T.; Do, Y.H. Identify influential spreaders in complex networks, the role of neighborhood. Phys. Stat. Mech. Its Appl. 2016, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.Y.; Huang, B.; Tang, M. Identifying effective multiple spreaders by coloring complex networks. Epl 2014, 108, 68005. [Google Scholar] [CrossRef] [Green Version]
- Zeng, A.; Zhang, C.J. Ranking spreaders by decomposing complex networks. Phys. Lett. A 2012, 377, 1031–1035. [Google Scholar] [CrossRef] [Green Version]
- Joonhyun, B.; Sangwook. Identifying and ranking influential spreaders in complex networks by neighborhood coreness. Phys. Stat. Mech. Its Appl. 2014, 395, 549–559. [Google Scholar]
- Liu, J.G.; Ren, Z.M.; Guo, Q. Ranking the spreading influence in complex networks. Phys. Stat. Mech. Its Appl. 2013, 392, 4154–4159. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Du, C.; Fan, J.; Xing, Y. Ranking Influential Nodes in Social Networks Based on Node Position and Neighborhood. Neurocomputing 2017, 10, 466–477. [Google Scholar] [CrossRef]
- Byungjoon, M. Identifying an influential spreader from a single seed in complex networks via a message-passing approach. Eur. Phys. J. B 2018, 91, 18. [Google Scholar]
- Maji, G. Influential spreaders identification in complex networks with potential edge weight based k-shell degree neighborhood method. J. Comput. Sci. 2020, 39, 101055.1–101055.9. [Google Scholar] [CrossRef]
- De Arruda, G.F.; Barbieri, A.L.; Rodriguez, P.M.; Moreno, Y.; Costa, L.D.F.; Rodrigues, F.A. Role of centrality for the identification of influential spreaders in complex networks. Phys. Rev. E Stat. Nonlin Soft. Matter. Phys. 2014, 90, 032812. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhang, R.; Hu, R.; Yang, F.; Yao, Y.; Yuan, Y. Identifying and ranking influential spreaders in complex networks by combining a local-degree sum and the clustering coefficient. Int. J. Mod. Phys. B 2018, 32, 1850118. [Google Scholar] [CrossRef]
- Zachary, W.W. An information flow model for conflict and fission in small groups. J. Anthropol. Res. 1977, 33, 452–473. [Google Scholar] [CrossRef] [Green Version]
- Paranjape, A.; Benson, A.R.; Leskovec, J. Motifs in Temporal Networks. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, Cambridge, UK, 6–10 February 2017; Volume 33. [Google Scholar]
- Newman, M.E.J. Finding community structure in networks using the eigenvectors of matrices. Prepr. Phys. 2006, 74, 0605087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, R.A.; Ahmed, N.K. The Network Data Repository with Interactive Graph Analytics and Visualization. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015. [Google Scholar]
- Saeedian, M.; Khalighi, M.; Azimi-Tafreshi, N.; Jafari, G.R.; Ausloos, M. Memory effects on epidemic evolution: The susceptible-infected-recovered epidemic model. Phys. Rev. 2017, 95, 022409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omata, K. Nonequilibrium statistical mechanics of a susceptible-infected-recovered epidemic model. Phys. Rev. 2017, 96, 022404. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Q.H.; Zhong, L.F.; Tang, M.; Gao, H.; Stanley, H.E. Predicting the epidemic threshold of the susceptible-infected-recovered model. Sci. Rep. 2016, 6, 24676. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.C.; Kiss, I.Z. Epidemic Spread in Networks: Existing Methods and Current Challenges. Math. Model. Nat. Phenom. 2014, 9, 4–42. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M.G. The treatment of ties in ranking problems. Biometrika 1945, 33, 239–251. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Wang, X.F.; Zhang, W.W.; Zhang, Z.L. A Community-Based Approach to Identifying Influential Spreaders. Entropy 2015, 17, 2228–2252. [Google Scholar] [CrossRef] [Green Version]
- Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Zhao, X.; Ge, B. An efficient algorithm for mining a set of influential spreaders in complex networks. Phys. A Stat. Mech. Its Appl. 2019, 516, 58–65. [Google Scholar] [CrossRef]
- Yang, X.; Huang, D.C.; Zhang, Z.K. Neighborhood coreness algorithm for identifying a set of influential spreaders in complex networks. KSII Trans. Internet Inf. Syst. 2017, 11, 2979–2995. [Google Scholar]
Rank | DC | k-shell | MDD | DNSD | ||
---|---|---|---|---|---|---|
1 | 2,7,8 | 1,2, | 1,2,3, | 2 | 1 | 2 |
3,4 | 4,7,8 | |||||
2 | 4 | 5,6,7 | 5,6,10, | 3,4 | 4 | 3 |
11,22 | ||||||
3 | 1,3 | others | 19,21 | 1 | 7 | 1 |
4 | 11,22 | others | 7 | 2 | 4 | |
5 | 5,6,10, | 8 | 3 | 7 | ||
19,21 | ||||||
6 | others | 5,6 | 8 | 8 | ||
7 | 22 | 22 | 22 | |||
8 | 11,23 | 5,6 | 5,6 | |||
9 | 14,15,16, | 10 | 10 | |||
17,10,19,21 | ||||||
10 | others | 11 | 14,15, | |||
16,17 | ||||||
11 | 9,14,15, | 23 | ||||
16,17,24, | ||||||
25,26 | ||||||
12 | 19,21 | 9,24, | ||||
25,26 | ||||||
>12 | others | others |
Networks | N | E | M(DC) | M(k-Shell) | M(MDD) | M() | M(DNSD) | M() |
---|---|---|---|---|---|---|---|---|
Karate Club | 34 | 78 | 0.708 | 0.496 | 0.708 | 0.839 | 0.954 | 0.954 |
162 | 1772 | 0.922 | 0.776 | 0.916 | 0.987 | 0.995 | 0.998 | |
Co-authors | 1589 | 2742 | 0.707 | 0.663 | 0.709 | 0.844 | 0.904 | 0.915 |
Power Grid | 3706 | 6594 | 0.593 | 0.246 | 0.587 | 0.740 | 0.920 | 0.984 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Sun, Q. Identifying and Ranking Influential Nodes in Complex Networks Based on Dynamic Node Strength. Algorithms 2021, 14, 82. https://doi.org/10.3390/a14030082
Li X, Sun Q. Identifying and Ranking Influential Nodes in Complex Networks Based on Dynamic Node Strength. Algorithms. 2021; 14(3):82. https://doi.org/10.3390/a14030082
Chicago/Turabian StyleLi, Xu, and Qiming Sun. 2021. "Identifying and Ranking Influential Nodes in Complex Networks Based on Dynamic Node Strength" Algorithms 14, no. 3: 82. https://doi.org/10.3390/a14030082
APA StyleLi, X., & Sun, Q. (2021). Identifying and Ranking Influential Nodes in Complex Networks Based on Dynamic Node Strength. Algorithms, 14(3), 82. https://doi.org/10.3390/a14030082