Periodic and Non-Periodic Brainwaves Emerging via Stochastic Syncronization of Closed Loops of Firing Neurons
Abstract
:1. Introduction
2. Mathematical Framework
2.1. Line Power Spectral Density
2.2. Broadband Power Spectral Density
3. Discussion
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hirsch, L.J.; Brenner, R.P. Atlas of EEG in Critical Care; John Wiley & Son: London, UK, 2010; pp. 1–334. [Google Scholar]
- da Silva, F.L. EEG and MEG: Relevance to neuroscience. Neuron 2013, 80, 1112–1128. [Google Scholar]
- Baillet, S. Magnetoencephalography for brain electrophysiology and imaging. Nat. Neurosci. 2017, 20, 327–339. [Google Scholar] [CrossRef] [PubMed]
- de Arcangelis, L.; Herrmann, H.J. Learning as a phenomenon occurring in a critical state. Proc. Natl. Acad. Sci. USA 2010, 107, 3977–3981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagliazucchi, E.; Balenzuela, P.; Fraiman, D.; Chialvo, D.R. Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis. Front. Physiol. 2012, 3, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buzsaki, G.; Draguhn, A. Neuronal oscillations in cortical networks. Science 2004, 304, 1926–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canolty, R.T.; Edwards, E.; Dalal, S.S.; Soltani, M.; Nagarajan, S.S.; Kirsch, H.E.; Knight, R.T. High gamma power is phase-locked to theta oscillations in human neocortex. Science 2006, 313, 1626–1628. [Google Scholar] [CrossRef] [Green Version]
- He, B.J.; Zempel, J.M.; Snyder, A.Z.; Raichle, M.E. The temporal structures and functional significance of scale-free brain activity. Neuron 2010, 66, 353–369. [Google Scholar] [PubMed] [Green Version]
- Buzsáki, G.; Wang, X.J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 2012, 35, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, R.; Van De Ville, D.; Kleinschmidt, A. Alpha oscillations reduce temporal long-range dependence in spontaneous human brain activity. J. Neurosci. 2018, 38, 755–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wairagkar, M.; Hayashi, Y.; Nasuto, S.J. Dynamics of long-range temporal correlations in broadband EEG during different motor execution and imagery tasks. Front. Neurosci. 2021, 15, 413. [Google Scholar] [CrossRef]
- Cabral, J.; Castaldo, F.; Vohryzek, J.; Litvak, V.; Bick, C.; Lambiotte, R.; Friston, K.; Kringelbach, M.L.; Deco, G. Metastable oscillatory modes emerge from interactions in the brain spacetime connectome. Commun. Phys. 2022, 5, 184. [Google Scholar] [CrossRef]
- Brady, B.; Bardouille, T. Periodic/Aperiodic parameterization of transient oscillations (PAPTO)–Implications for healthy ageing. NeuroImage 2022, 251, 118974. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, T.; Haller, M.; Peterson, E.J.; Varma, P.; Sebastian, P.; Gao, R.; Noto, T.; Lara, A.H.; Wallis, J.D.; Knight, R.T.; et al. Parameterizing neural power spectra into periodic and aperiodic components. Nat. Neurosci. 2020, 23, 1655–1665. [Google Scholar] [CrossRef] [PubMed]
- Gerster, M.; Waterstraat, G.; Litvak, V.; Lehnertz, K.; Schnitzler, A.; Florin, E.; Curio, G.; Nikulin, V. Separating neural oscillations from aperiodic 1/f activity: Challenges and recommendations. Neuroinformatics 2022, 20, 991–1012. [Google Scholar] [CrossRef]
- Zhang, M.; Tang, Z.; Liu, X.; Van der Spiegel, J. Electronic neural interfaces. Nat. Electron. 2020, 3, 191–200. [Google Scholar] [CrossRef]
- Goodfellow, M.; Andrzejak, R.G.; Masoller, C.; Lehnertz, K. What Models and Tools can Contribute to a Better Understanding of Brain Activity. Front. Netw. Physiol. 2022, 2, 907995. [Google Scholar] [CrossRef]
- Huggins, W.H. Signal-Flow Graphs and Random Signals. Proc. IRE 1957, 45, 74–86. [Google Scholar] [CrossRef]
- Barnard, R.D. On the discrete spectral densities of Markov pulse trains. Bell Syst. Tech. J. 1964, 43, 233–259. [Google Scholar] [CrossRef]
- Mazzetti, P.; Oldano, C. Spectral properties of physical processes of Markov correlated events. I. Theory. J. Appl. Phys. 1978, 49, 5351–5356. [Google Scholar] [CrossRef]
- Galko, P.; Pasupathy, S. The mean power spectral density of Markov chain driven signals. IEEE Trans. Inf. Theory 1981, 27, 746–754. [Google Scholar] [CrossRef]
- Bilardi, G.; Padovani, R.; Pierobon, G. Spectral analysis of functions of Markov chains with applications. IEEE Trans. Commun. 1983, 31, 853–861. [Google Scholar] [CrossRef]
- Mazzetti, P.; Carbone, A. Harmonic spectral components in time sequences of Markov correlated events. AIP Adv. 2017, 7, 075216. [Google Scholar] [CrossRef] [Green Version]
- Centers, J.; Tan, X.; Hareedy, A.; Calderbank, R. Power spectra of constrained codes with level-based signaling: Overcoming finite-length challenges. IEEE Trans. Commun. 2021, 69, 4971–4986. [Google Scholar] [CrossRef]
- Izhikevich, E.M. Dynamical Systems in Neuroscience; MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Delorme, A.; Palmer, J.; Onton, J.; Oostenveld, R.; Makeig, S. Independent EEG sources are dipolar. PLoS ONE 2012, 7, e30135. [Google Scholar] [CrossRef] [PubMed]
- Vorwerk, J.; Cho, J.H.; Rampp, S.; Hamer, H.; Knösche, T.R.; Wolters, C.H. A guideline for head volume conductor modeling in EEG and MEG. NeuroImage 2014, 100, 590–607. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, T.; Zhang, S.; Kendrick, K.M.; Liu, T. Fundamental functional differences between gyri and sulci: Implications for brain function, cognition, and behavior. Psychoradiology 2021, 1, 23–41. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, S.; He, Z.; Zhang, S.; Jiang, X.; Zhang, T.; Liu, T.; Liu, C.; Han, J. Modeling functional difference between gyri and sulci within intrinsic connectivity networks. Cereb. Cortex 2022, 24, bhac111. [Google Scholar] [CrossRef]
- Hutt, A. Oscillatory activity in excitable neural systems. Contemp. Phys. 2010, 51, 3–16. [Google Scholar] [CrossRef]
- Hashemi, M.; Hutt, A.; Sleigh, J. How the cortico-thalamic feedback affects the EEG power spectrum over frontal and occipital regions during propofol-induced sedation. J. Comput. Neurosci. 2015, 39, 155–179. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzetti, P.; Carbone, A. Periodic and Non-Periodic Brainwaves Emerging via Stochastic Syncronization of Closed Loops of Firing Neurons. Algorithms 2022, 15, 396. https://doi.org/10.3390/a15110396
Mazzetti P, Carbone A. Periodic and Non-Periodic Brainwaves Emerging via Stochastic Syncronization of Closed Loops of Firing Neurons. Algorithms. 2022; 15(11):396. https://doi.org/10.3390/a15110396
Chicago/Turabian StyleMazzetti, Piero, and Anna Carbone. 2022. "Periodic and Non-Periodic Brainwaves Emerging via Stochastic Syncronization of Closed Loops of Firing Neurons" Algorithms 15, no. 11: 396. https://doi.org/10.3390/a15110396
APA StyleMazzetti, P., & Carbone, A. (2022). Periodic and Non-Periodic Brainwaves Emerging via Stochastic Syncronization of Closed Loops of Firing Neurons. Algorithms, 15(11), 396. https://doi.org/10.3390/a15110396