Periodic and Non-Periodic Brainwaves Emerging via Stochastic Syncronization of Closed Loops of Firing Neurons
Abstract
1. Introduction
2. Mathematical Framework
2.1. Line Power Spectral Density
2.2. Broadband Power Spectral Density
3. Discussion
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hirsch, L.J.; Brenner, R.P. Atlas of EEG in Critical Care; John Wiley & Son: London, UK, 2010; pp. 1–334. [Google Scholar]
- da Silva, F.L. EEG and MEG: Relevance to neuroscience. Neuron 2013, 80, 1112–1128. [Google Scholar]
- Baillet, S. Magnetoencephalography for brain electrophysiology and imaging. Nat. Neurosci. 2017, 20, 327–339. [Google Scholar] [CrossRef] [PubMed]
- de Arcangelis, L.; Herrmann, H.J. Learning as a phenomenon occurring in a critical state. Proc. Natl. Acad. Sci. USA 2010, 107, 3977–3981. [Google Scholar] [CrossRef] [PubMed]
- Tagliazucchi, E.; Balenzuela, P.; Fraiman, D.; Chialvo, D.R. Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis. Front. Physiol. 2012, 3, 15. [Google Scholar] [CrossRef] [PubMed]
- Buzsaki, G.; Draguhn, A. Neuronal oscillations in cortical networks. Science 2004, 304, 1926–1929. [Google Scholar] [CrossRef] [PubMed]
- Canolty, R.T.; Edwards, E.; Dalal, S.S.; Soltani, M.; Nagarajan, S.S.; Kirsch, H.E.; Knight, R.T. High gamma power is phase-locked to theta oscillations in human neocortex. Science 2006, 313, 1626–1628. [Google Scholar] [CrossRef]
- He, B.J.; Zempel, J.M.; Snyder, A.Z.; Raichle, M.E. The temporal structures and functional significance of scale-free brain activity. Neuron 2010, 66, 353–369. [Google Scholar] [PubMed]
- Buzsáki, G.; Wang, X.J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 2012, 35, 203. [Google Scholar] [CrossRef] [PubMed]
- Becker, R.; Van De Ville, D.; Kleinschmidt, A. Alpha oscillations reduce temporal long-range dependence in spontaneous human brain activity. J. Neurosci. 2018, 38, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Wairagkar, M.; Hayashi, Y.; Nasuto, S.J. Dynamics of long-range temporal correlations in broadband EEG during different motor execution and imagery tasks. Front. Neurosci. 2021, 15, 413. [Google Scholar] [CrossRef]
- Cabral, J.; Castaldo, F.; Vohryzek, J.; Litvak, V.; Bick, C.; Lambiotte, R.; Friston, K.; Kringelbach, M.L.; Deco, G. Metastable oscillatory modes emerge from interactions in the brain spacetime connectome. Commun. Phys. 2022, 5, 184. [Google Scholar] [CrossRef]
- Brady, B.; Bardouille, T. Periodic/Aperiodic parameterization of transient oscillations (PAPTO)–Implications for healthy ageing. NeuroImage 2022, 251, 118974. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, T.; Haller, M.; Peterson, E.J.; Varma, P.; Sebastian, P.; Gao, R.; Noto, T.; Lara, A.H.; Wallis, J.D.; Knight, R.T.; et al. Parameterizing neural power spectra into periodic and aperiodic components. Nat. Neurosci. 2020, 23, 1655–1665. [Google Scholar] [CrossRef] [PubMed]
- Gerster, M.; Waterstraat, G.; Litvak, V.; Lehnertz, K.; Schnitzler, A.; Florin, E.; Curio, G.; Nikulin, V. Separating neural oscillations from aperiodic 1/f activity: Challenges and recommendations. Neuroinformatics 2022, 20, 991–1012. [Google Scholar] [CrossRef]
- Zhang, M.; Tang, Z.; Liu, X.; Van der Spiegel, J. Electronic neural interfaces. Nat. Electron. 2020, 3, 191–200. [Google Scholar] [CrossRef]
- Goodfellow, M.; Andrzejak, R.G.; Masoller, C.; Lehnertz, K. What Models and Tools can Contribute to a Better Understanding of Brain Activity. Front. Netw. Physiol. 2022, 2, 907995. [Google Scholar] [CrossRef]
- Huggins, W.H. Signal-Flow Graphs and Random Signals. Proc. IRE 1957, 45, 74–86. [Google Scholar] [CrossRef]
- Barnard, R.D. On the discrete spectral densities of Markov pulse trains. Bell Syst. Tech. J. 1964, 43, 233–259. [Google Scholar] [CrossRef]
- Mazzetti, P.; Oldano, C. Spectral properties of physical processes of Markov correlated events. I. Theory. J. Appl. Phys. 1978, 49, 5351–5356. [Google Scholar] [CrossRef]
- Galko, P.; Pasupathy, S. The mean power spectral density of Markov chain driven signals. IEEE Trans. Inf. Theory 1981, 27, 746–754. [Google Scholar] [CrossRef]
- Bilardi, G.; Padovani, R.; Pierobon, G. Spectral analysis of functions of Markov chains with applications. IEEE Trans. Commun. 1983, 31, 853–861. [Google Scholar] [CrossRef]
- Mazzetti, P.; Carbone, A. Harmonic spectral components in time sequences of Markov correlated events. AIP Adv. 2017, 7, 075216. [Google Scholar] [CrossRef]
- Centers, J.; Tan, X.; Hareedy, A.; Calderbank, R. Power spectra of constrained codes with level-based signaling: Overcoming finite-length challenges. IEEE Trans. Commun. 2021, 69, 4971–4986. [Google Scholar] [CrossRef]
- Izhikevich, E.M. Dynamical Systems in Neuroscience; MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Delorme, A.; Palmer, J.; Onton, J.; Oostenveld, R.; Makeig, S. Independent EEG sources are dipolar. PLoS ONE 2012, 7, e30135. [Google Scholar] [CrossRef] [PubMed]
- Vorwerk, J.; Cho, J.H.; Rampp, S.; Hamer, H.; Knösche, T.R.; Wolters, C.H. A guideline for head volume conductor modeling in EEG and MEG. NeuroImage 2014, 100, 590–607. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, T.; Zhang, S.; Kendrick, K.M.; Liu, T. Fundamental functional differences between gyri and sulci: Implications for brain function, cognition, and behavior. Psychoradiology 2021, 1, 23–41. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, S.; He, Z.; Zhang, S.; Jiang, X.; Zhang, T.; Liu, T.; Liu, C.; Han, J. Modeling functional difference between gyri and sulci within intrinsic connectivity networks. Cereb. Cortex 2022, 24, bhac111. [Google Scholar] [CrossRef]
- Hutt, A. Oscillatory activity in excitable neural systems. Contemp. Phys. 2010, 51, 3–16. [Google Scholar] [CrossRef]
- Hashemi, M.; Hutt, A.; Sleigh, J. How the cortico-thalamic feedback affects the EEG power spectrum over frontal and occipital regions during propofol-induced sedation. J. Comput. Neurosci. 2015, 39, 155–179. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzetti, P.; Carbone, A. Periodic and Non-Periodic Brainwaves Emerging via Stochastic Syncronization of Closed Loops of Firing Neurons. Algorithms 2022, 15, 396. https://doi.org/10.3390/a15110396
Mazzetti P, Carbone A. Periodic and Non-Periodic Brainwaves Emerging via Stochastic Syncronization of Closed Loops of Firing Neurons. Algorithms. 2022; 15(11):396. https://doi.org/10.3390/a15110396
Chicago/Turabian StyleMazzetti, Piero, and Anna Carbone. 2022. "Periodic and Non-Periodic Brainwaves Emerging via Stochastic Syncronization of Closed Loops of Firing Neurons" Algorithms 15, no. 11: 396. https://doi.org/10.3390/a15110396
APA StyleMazzetti, P., & Carbone, A. (2022). Periodic and Non-Periodic Brainwaves Emerging via Stochastic Syncronization of Closed Loops of Firing Neurons. Algorithms, 15(11), 396. https://doi.org/10.3390/a15110396