Local Convergence Analysis of a One Parameter Family of Simultaneous Methods with Applications to Real-World Problems
Abstract
:1. Introduction
2. Notations and Preliminaries
- (i)
- (ii)
3. Convergence Analysis
3.1. Local Convergence of the First Kind
3.2. Local Convergence of the Second Kind
4. Computational Aspects and Applications
4.1. Comparative Analysis
4.2. Applications to Some Real-World Problems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weierstrass, K. Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränderlichen dargestellt werden kann als ein Product aus linearen Functionen derselben Veränderlichen. Sitzungsber. Königl. Preuss. Akad. Wiss. Berlinn 1891, II, 1085–1101. Available online: https://biodiversitylibrary.org/page/29263197 (accessed on 5 February 2023).
- Dochev, K. Modified Newton method for simultaneous approximation of all roots of a given algebraic equation. Phys. Math. J. Bulg. Acad. Sci. 1962, 5, 136–139. [Google Scholar]
- Proinov, P.D. General convergence theorems for iterative processes and applications to the Weierstrass root-finding method. J. Complex. 2016, 33, 118–144. [Google Scholar] [CrossRef]
- Petković, M. Point Estimation of Root Finding Methods; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2008; Volume 1933. [Google Scholar] [CrossRef]
- Proinov, P.D.; Petkova, M.D. A new semilocal convergence theorem for the Weierstrass method for finding zeros of a polynomial simultaneously. J. Complex. 2014, 30, 366–380. [Google Scholar] [CrossRef]
- Dochev, K.; Byrnev, P. Certain modifications of Newton’s method for the approximate solution of algebraic equations. USSR Comput. Math. Math. Phys. 1964, 4, 174–182. [Google Scholar] [CrossRef]
- Prešić, M. An Iterative Procedure for Determination of k Roots of a Polynomial. Ph.D. Thesis, University of Belgrade, Belgrade, Serbia, 1972. Available online: http://elibrary.matf.bg.ac.rs/handle/123456789/338 (accessed on 5 February 2023). (In Serbian).
- Milovanović, G. A method to accelerate iterative processes in Banach space. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 1974, 461, 67–71. [Google Scholar]
- Tanabe, K. Behavior of the sequences around multiple zeros generated by some simultaneous methods for solving algebraic equations. Tech. Rep. Inf. Process Numer. Anal. 1983, 4, 1–6. (In Japanese) [Google Scholar]
- Proinov, P.D. A general semilocal convergence theorem for simultaneous methods for polynomial zeros and its applications to Ehrlich’s and Dochev-Byrnev’s methods. Appl. Math. Comput. 2016, 284, 102–114. [Google Scholar] [CrossRef]
- Semerdzhiev, K.; Pateva, S. A numerical method for simultaneous determination of all roots of a given algebraic equation. Plovdiv. Univ. Nauchn. Trud. 1977, 15, 263–274. (In Bulgarian) [Google Scholar]
- Semerdzhiev, K. Methods for simultaneous approximative determining all roots of a given algebraic equation. Comm. JINR 1979, P5, 12495. (In Russian) [Google Scholar]
- Kyurkchiev, N.V. Some iterative schemes of Dochev type with an increased rate of convergence. Annu. Univ. Sofia Fac. Math. MÉc. 1982, 76, 3–10. (In Russian) [Google Scholar]
- Sendov, B.; Andreev, A.; Kjurkchiev, N. Numerical Solution of Polynomial Equations. In Handbook of Numerical Analysis; Ciarlet, P., Lions, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; Volume III, pp. 625–778. [Google Scholar]
- Proinov, P.D.; Marcheva, P.I. A new family of Dochev-Byrnev type iterative methods with accelerated convergence. Sci. Work. Union Sci. Bulg. 2022, 23, 93–97. [Google Scholar]
- Ehrlich, L. A modified Newton method for polynomials. Commun. ACM 1967, 10, 107–108. [Google Scholar] [CrossRef]
- Börsch-Supan, W. Residuenabschätzung für Polynom-Nullstellen mittels Lagrange Interpolation. Numer. Math. 1970, 14, 287–296. [Google Scholar] [CrossRef]
- Werner, W. On the simultaneous determination of polynomial roots. Lect. Notes Math. 1982, 953, 188–202. [Google Scholar]
- Carstensen, C. On quadratic-like convergence of the means for two methods for simultaneous rootfinding of polynomials. BIT 1993, 33, 64–73. [Google Scholar] [CrossRef]
- Proinov, P.D.; Vasileva, M.T. A New Family of High-Order Ehrlich-Type Iterative Methods. Mathematics 2021, 9, 1855. [Google Scholar] [CrossRef]
- Ivanov, S.I. A unified semilocal convergence analysis of a family of iterative algorithms for computing all zeros of a polynomial simultaneously. Numer. Algor. 2017, 75, 1193–1204. [Google Scholar] [CrossRef]
- Cordero, A.; Garrido, N.; Torregrosa, J.R.; Triguero-Navarro, P. Iterative schemes for finding all roots simultaneously of nonlinear equations. Appl. Math. Let. 2022, 134, 108325. [Google Scholar] [CrossRef]
- Proinov, P.D. New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems. J. Complex. 2010, 26, 3–42. [Google Scholar] [CrossRef]
- Proinov, P.D. Two Classes of Iteration Functions and Q-Convergence of Two Iterative Methods for Polynomial Zeros. Symmetry 2021, 13, 371. [Google Scholar] [CrossRef]
- Proinov, P.D.; Ivanov, S.I. A new family of Sakurai-Torii-Sugiura type iterative methods with high order of convergence. J. Comput. Appl. Math. 2022. under review. [Google Scholar]
- Marcheva, P.I.; Ivanov, S.I. Convergence analysis of a modified Weierstrass method for the simultaneous determination of polynomial zeros. Symmetry 2020, 12, 1408. [Google Scholar] [CrossRef]
- Proinov, P.D. Relationships between different types of initial conditions for simultaneous root finding methods. Appl. Math. Lett. 2016, 52, 102–111. [Google Scholar] [CrossRef]
- Weerakoon, S.; Fernando, T. A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 2000, 13, 87–93. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J.R. Variants of Newton’s Method using fifth-order quadrature formulas. Appl. Math. Comput. 2007, 190, 686–698. [Google Scholar] [CrossRef]
- Grau-Sánchez, M.; Nogueraa, M.; Gutiérrez, J.M. On some computational orders of convergence. Appl. Math. Lett. 2010, 23, 472–478. [Google Scholar] [CrossRef]
- Pulvirenti, G.; Faria, C. Influence of Housing Wall Compliance on Shock Absorbers in the Context of Vehicle Dynamics; IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 252. [Google Scholar]
- Konieczny, L. Analysis of simplifications applied in vibration damping modelling for a passive car shock absorber. Shock Vib. 2016, 2016, 6182847. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J. Nonlinear dynamic responses of twin-tube hydraulic shock absorber. Mech. Res. Commun. 2002, 29, 359–365. [Google Scholar] [CrossRef]
- Barethiye, V.M.; Pohit, G.; Mitra, A. Analysis of a quarter car suspension system based on nonlinear shock absorber damping models. Int. J. Automot. Mech. Eng. 2017, 14, 4401–4418. [Google Scholar] [CrossRef]
- Aberth, O. Iteration Methods for Finding all Zeros of a Polynomial Simultaneously. Math. Comp. 1973, 27, 339–344. [Google Scholar] [CrossRef]
- Kabadzhov, V.G. Optical Methods for Investigating the Structural Changes of Proteins in Polydisperse Systems. Ph.D. Thesis, University of Plovdiv, Plovdiv, Bulgaria, 2018. (In Bulgarian). [Google Scholar] [CrossRef]
- Bronshtein, I.N.; Semendyayev, K.A.; Musiol, G.; Mühlig, H. Handbook of Mathematics, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef] [Green Version]
Method | k | |||||
---|---|---|---|---|---|---|
9 | ||||||
8 | − | |||||
8 | − | |||||
9 | − |
Method | ||||||
---|---|---|---|---|---|---|
23 | ||||||
14 | − | |||||
17 | − | |||||
13 | − |
Method | ||||||
---|---|---|---|---|---|---|
19 | ||||||
13 | − | |||||
17 | − | |||||
15 | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavkov, T.M.; Kabadzhov, V.G.; Ivanov, I.K.; Ivanov, S.I. Local Convergence Analysis of a One Parameter Family of Simultaneous Methods with Applications to Real-World Problems. Algorithms 2023, 16, 103. https://doi.org/10.3390/a16020103
Pavkov TM, Kabadzhov VG, Ivanov IK, Ivanov SI. Local Convergence Analysis of a One Parameter Family of Simultaneous Methods with Applications to Real-World Problems. Algorithms. 2023; 16(2):103. https://doi.org/10.3390/a16020103
Chicago/Turabian StylePavkov, Tsonyo M., Valentin G. Kabadzhov, Ivan K. Ivanov, and Stoil I. Ivanov. 2023. "Local Convergence Analysis of a One Parameter Family of Simultaneous Methods with Applications to Real-World Problems" Algorithms 16, no. 2: 103. https://doi.org/10.3390/a16020103
APA StylePavkov, T. M., Kabadzhov, V. G., Ivanov, I. K., & Ivanov, S. I. (2023). Local Convergence Analysis of a One Parameter Family of Simultaneous Methods with Applications to Real-World Problems. Algorithms, 16(2), 103. https://doi.org/10.3390/a16020103