Linear Matrix Inequality-Based Design of Structured Sparse Feedback Controllers for Sensor and Actuator Networks
Abstract
:1. Introduction
- (i)
- For SANs, the design problems of structured sparse output-feedback controllers are formulated using sparse reconstruction and block-sparse reconstruction.
- (ii)
- Two design problems are reduced to an LMI optimization problem.
- (iii)
- The effectiveness of the proposed method is clarified through numerical examples.
2. Sparse Reconstruction
2.1. Vector Case
2.2. Matrix Case
3. Problem Formulation
3.1. Mathematical Model of Plants and Feedback Controller
3.2. Design Problem of Structured Sparse Feedback Controllers
3.3. Design Problem of Structured Block-Sparse Feedback Controllers
4. Solution Method
4.1. Solution Method for Problem 1
4.2. Solution Method for Problem 2
5. Numerical Example
5.1. Example 1
5.2. Example 2
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, E.A. Cyber physical systems: Design challenges. In Proceedings of the 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC), Orlando, FL, USA, 5–7 May 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 363–369. [Google Scholar]
- Baheti, R.; Gill, H. Cyber-physical systems. Impact Control Technol. 2011, 12, 161–166. [Google Scholar]
- Lee, E.A. The past, present and future of cyber-physical systems: A focus on models. Sensors 2015, 15, 4837–4869. [Google Scholar] [CrossRef] [PubMed]
- Karnouskos, S. Cyber-physical systems in the smartgrid. In Proceedings of the 2011 9th IEEE International Conference on Industrial Informatics, Lisbon, Portugal, 26–29 July 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 20–23. [Google Scholar]
- Yu, X.; Xue, Y. Smart grids: A cyber–physical systems perspective. Proc. IEEE 2016, 104, 1058–1070. [Google Scholar] [CrossRef]
- Hasan, M.K.; Habib, A.A.; Shukur, Z.; Ibrahim, F.; Islam, S.; Razzaque, M.A. Review on cyber-physical and cyber-security system in smart grid: Standards, protocols, constraints, and recommendations. J. Netw. Comput. Appl. 2023, 209, 103540. [Google Scholar] [CrossRef]
- Haque, S.A.; Aziz, S.M.; Rahman, M. Review of cyber-physical system in healthcare. Int. J. Distrib. Sens. Netw. 2014, 10, 217415. [Google Scholar] [CrossRef]
- Dey, N.; Ashour, A.S.; Shi, F.; Fong, S.J.; Tavares, J.M.R. Medical cyber-physical systems: A survey. J. Med. Syst. 2018, 42, 74. [Google Scholar] [CrossRef] [PubMed]
- Gatouillat, A.; Badr, Y.; Massot, B.; Sejdić, E. Internet of medical things: A review of recent contributions dealing with cyber-physical systems in medicine. IEEE Internet Things J. 2018, 5, 3810–3822. [Google Scholar] [CrossRef]
- Bradley, J.M.; Atkins, E.M. Optimization and control of cyber-physical vehicle systems. Sensors 2015, 15, 23020–23049. [Google Scholar] [CrossRef] [PubMed]
- Humayed, A.; Lin, J.; Li, F.; Luo, B. Cyber-physical systems security—A survey. IEEE Internet Things J. 2017, 4, 1802–1831. [Google Scholar] [CrossRef]
- Lv, C.; Hu, X.; Sangiovanni-Vincentelli, A.; Li, Y.; Martinez, C.M.; Cao, D. Driving-style-based codesign optimization of an automated electric vehicle: A cyber-physical system approach. IEEE Trans. Ind. Electron. 2018, 66, 2965–2975. [Google Scholar] [CrossRef]
- Verdone, R.; Dardari, D.; Mazzini, G.; Conti, A. Wireless Sensor and Actuator Networks: Technologies, Analysis and Design; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Xia, F.; Kong, X.; Xu, Z. Cyber-physical control over wireless sensor and actuator networks with packet loss. In Wireless Networking Based Control; Springer: New York, NY, USA, 2011; pp. 85–102. [Google Scholar]
- Lu, C.; Saifullah, A.; Li, B.; Sha, M.; Gonzalez, H.; Gunatilaka, D.; Wu, C.; Nie, L.; Chen, Y. Real-time wireless sensor-actuator networks for industrial cyber-physical systems. Proc. IEEE 2015, 104, 1013–1024. [Google Scholar] [CrossRef]
- Kantarci, B.; Oktug, S.F. Wireless Sensor and Actuator Networks for Smart Cities. J. Sens. Actuator Netw. 2018, 7, 49. [Google Scholar] [CrossRef]
- Di Marco, P.; Park, P. Architectures and Protocols for Wireless Sensor and Actuator Networks. J. Sens. Actuator Netw. 2021, 10, 52. [Google Scholar] [CrossRef]
- Wang, M.; Wei, S.; Liang, J.; Zeng, X.; Wang, C.; Shi, J.; Zhang, X. RMIST-Net: Joint range migration and sparse reconstruction network for 3-D mmW imaging. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5205117. [Google Scholar] [CrossRef]
- Wang, M.; Wei, S.; Liang, J.; Liu, S.; Shi, J.; Zhang, X. Lightweight FISTA-inspired sparse reconstruction network for mmW 3-D holography. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5211620. [Google Scholar] [CrossRef]
- Liang, Z.; Xue, Q.; Tian, F.; Xu, C.; Wang, C.; Yang, L.; Guo, T. A sparse reconstruction domain transfer method for interference suppression in artificial olfactory system. IEEE Sens. J. 2022, 22, 6717–6730. [Google Scholar] [CrossRef]
- Sha, Y.; Wang, C.; Xu, Y.; Wei, Y.; Wang, G.; Wang, Y. Mode decomposition and sparse reconstruction of the pressure field of the cylinder entering water. Ocean Eng. 2023, 276, 114188. [Google Scholar] [CrossRef]
- Han, W.; Li, H.; Gong, M. Multi-regularization sparse reconstruction based on multifactorial multiobjective optimization. Appl. Soft Comput. 2023, 136, 110122. [Google Scholar] [CrossRef]
- Si, J.; Wang, Z.; Hu, H.; Al-Dhahir, N. Nonstationary Jammer Excision Based on Sparse Reconstruction and Support Vector Regression. In Proceedings of the 2024 International Conference on Ubiquitous Communication (Ucom), Xi’an, China, 5–7 July 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 197–201. [Google Scholar]
- Nagahara, M. Sparsity Methods for Systems and Control; Now Publishers: Norwell, MA, USA, 2020. [Google Scholar]
- Nagahara, M.; Quevedo, D.E.; Nešić, D. Maximum hands-off control: A paradigm of control effort minimization. IEEE Trans. Autom. Control 2015, 61, 735–747. [Google Scholar] [CrossRef]
- Nagahara, M.; Østergaard, J.; Quevedo, D.E. Discrete-time hands-off control by sparse optimization. EURASIP J. Adv. Signal Process. 2016, 2016, 76. [Google Scholar] [CrossRef]
- Ikeda, T.; Nagahara, M. Maximum hands-off control with time-space sparsity. In Proceedings of the 2021 American Control Conference (ACC), New Orleans, LA, USA, 25–28 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1004–1009. [Google Scholar]
- Kishida, M.; Nagahara, M. Risk-aware maximum hands-off control using worst-case conditional value-at-risk. IEEE Trans. Autom. Control 2023, 68, 6353–6360. [Google Scholar] [CrossRef]
- Banno, I.; Azuma, S.i.; Ariizumi, R.; Asai, T. Sparse event-triggered control of linear systems. Int. J. Robust Nonlinear Control 2023, 33, 134–158. [Google Scholar] [CrossRef]
- Polyak, B.; Khlebnikov, M.; Shcherbakov, P. An LMI approach to structured sparse feedback design in linear control systems. In Proceedings of the 2013 European Control Conference, Zurich, Switzerland, 17–19 July 2013; pp. 833–838. [Google Scholar]
- Stojnic, M.; Parvaresh, F.; Hassibi, B. On the reconstruction of block-sparse signals with an optimal number of measurements. IEEE Trans. Signal Process. 2009, 57, 3075–3085. [Google Scholar] [CrossRef]
- Zeinalkhani, Z.; Banihashemi, A.H. Iterative Reweighted l2/l1 Recovery Algorithms for Compressed Sensing of Block Sparse Signals. IEEE Trans. Signal Process. 2015, 63, 4516–4531. [Google Scholar] [CrossRef]
- Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory; SIAM: Philadelphia, PA, USA, 1994. [Google Scholar]
- Iwasaki, T.; Skelton, R.E. All controllers for the general H∞ control problem: LMI existence conditions and state space formulas. Automatica 1994, 30, 1307–1317. [Google Scholar] [CrossRef]
- Tarbouriech, S.; Girard, A. LMI-based design of dynamic event-triggering mechanism for linear systems. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC), Miami, FL, USA, 17–19 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 121–126. [Google Scholar]
- Ansari, J.; Abbasi, A.R.; Firouzi, B.B. Decentralized LMI-based event-triggered integral sliding mode LFC of power systems with disturbance observer. Int. J. Electr. Power Energy Syst. 2022, 138, 107971. [Google Scholar] [CrossRef]
- De Persis, C.; Postoyan, R.; Tesi, P. Event-triggered control from data. IEEE Trans. Autom. Control 2024, 69, 3780–3795. [Google Scholar] [CrossRef]
- Vinod, D.; Zhou, J. Event-Triggered and Self-Triggered Control for Discrete Polytopic Linear Parameter-Varying Systems with Exogenous Inputs. In Proceedings of the 2024 IEEE 33rd International Symposium on Industrial Electronics (ISIE), Ulsan, Republic of Korea, 18–21 June 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar]
- Li, Y.; Wang, X.; Sun, J.; Wang, G.; Chen, J. Self-triggered consensus control of multi-agent systems from data. IEEE Trans. Autom. Control 2024, 69, 4702–4709. [Google Scholar] [CrossRef]
- Bajodek, M.; Seuret, A.; Gouaisbaut, F. Order of Legendre-LMI conditions to assess stability of time-delay systems. IFAC-PapersOnLine 2022, 55, 175–180. [Google Scholar] [CrossRef]
- Bajodek, M.; Seuret, A.; Gouaisbaut, F. On the necessity of sufficient LMI conditions for time-delay systems arising from Legendre approximation. Automatica 2024, 159, 111322. [Google Scholar] [CrossRef]
- Leibfritz, F.; Lipinski, W. Description of the Benchmark Examples in COMPleib 1.0; Department of Mathematics, University of Trier: Trier, Germany, 2003. [Google Scholar]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Masubuchi, I.; Ohara, A.; Suda, N. LMI-based output feedback controller design. In Proceedings of the 1995 American Control Conference, Seattle, WA, USA, 21–23 June 1995; IEEE: Piscataway, NJ, USA, 1995; Volume 5, pp. 3473–3477. [Google Scholar]
- Heemels, W.P.; Johansson, K.H.; Tabuada, P. An introduction to event-triggered and self-triggered control. In Proceedings of the 51st IEEE Conference on Decision and Control, Maui, HI, USA, 10–13 December 2012; pp. 3270–3285. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawano, Y.; Kobayashi, K.; Yamashita, Y. Linear Matrix Inequality-Based Design of Structured Sparse Feedback Controllers for Sensor and Actuator Networks. Algorithms 2024, 17, 590. https://doi.org/10.3390/a17120590
Kawano Y, Kobayashi K, Yamashita Y. Linear Matrix Inequality-Based Design of Structured Sparse Feedback Controllers for Sensor and Actuator Networks. Algorithms. 2024; 17(12):590. https://doi.org/10.3390/a17120590
Chicago/Turabian StyleKawano, Yuta, Koichi Kobayashi, and Yuh Yamashita. 2024. "Linear Matrix Inequality-Based Design of Structured Sparse Feedback Controllers for Sensor and Actuator Networks" Algorithms 17, no. 12: 590. https://doi.org/10.3390/a17120590
APA StyleKawano, Y., Kobayashi, K., & Yamashita, Y. (2024). Linear Matrix Inequality-Based Design of Structured Sparse Feedback Controllers for Sensor and Actuator Networks. Algorithms, 17(12), 590. https://doi.org/10.3390/a17120590