EEG Channel Selection for Stroke Patient Rehabilitation Using BAT Optimizer
Abstract
:1. Introduction
2. Related Works
3. BAT Algorithm
3.1. Inspiration of BAT
3.2. Procedure of BAT
- Step 1: BAT algorithm parameter initialization. In this step, the BAT parameters are initialized with initial values. These parameters are the number of microbats (solutions) (N), maximum number of iterations (), max () and min () frequency range, velocity vector (v), loudness rate (A), pulse rate (r), initial pulse rate (), two parameters ( and ) with constant values in the range [0, 1], and bandwidth range () in the range [−1, 1].
- Step 2: BAT population memory initialization. The BAT solutions are randomly generated in this step using Equation (1), considering the BAT algorithm and particular optimization problem parameters and constraints.
- Step 3: Bat population intensification. Now, all microbats x fly and change their position considering a velocity v defined by a frequency f that is generated randomly, as shown in Equations (3) and (4). Accordingly, the bat positions are updated using Equation (5).It is notable that the microbats update their locations to be closer to the global best (). Thus, the new position of the microbats intensifies the position in a direction toward .
- Step 4: Bat population diversification.In this step, the microbats’ positions are updated based on random parameters to attempt to find better global solutions. A new solution is selected from the BM based on a selection method and assigned to . Subsequently, the current solution is updated using as follows:
- Step 5: BM update. The position of the microbats in the BM will be updated in this step if the new location is fitter than the old one and . Moreover, will be updated if the new BM contains a solution with a better fitness value. Subsequently, and values will be updated in accordance with Equations (8) and (9).
- Step 6: Stop criterion. Steps 3, 4, and 5 will be repeated until the algorithm reaches the stop criterion.
4. Proposed Method
4.1. Phase I: EEG Signal Acquisition
4.2. Phase II: Preprocessing
4.3. Phase III: EEG Feature Extraction
4.4. Phase IV: EEG Channel Selection Using BAT Optimizer
- Step 1: BAT algorithm parameter initialization. In this step, the BAT parameters are initialized with initial values. These parameters are the number of microbats (solutions) (N), maximum number of iterations (), max () and min () frequency range, velocity vector (v), loudness rate (A), pulse rate (r), initial pulse rate (), two parameters ( and ) with constant values in the range [0, 1], and bandwidth range () in the range [−1, 1], as shown in Table 1.
- Step 2: BAT population memory initialization. The BAT solutions are randomly generated in this step using Equation (11), considering the BAT algorithm and particular optimization problem parameters and constraints.
- Step 3: BAT population intensification. Now, all microbats x fly and change their position considering a velocity v defined by a frequency f that is generated randomly, as shown in Equations (13) and (14). Accordingly, the bat positions are updated using Equation (15).It is notable that the microbats update their locations to be closer to the global best (). Thus, the new position of the microbats intensifies the position in a direction towards .
- Step 4: BAT population diversification.In this step, the microbats’ positions are updated based on random parameters to attempt to find better global solutions. A new solution is selected from the BM based on a selection method and assigned to . Subsequently, the current solution is updated using , as follows:
- Step 5: BM update. The position of the microbats in the BM will be updated in this step if the new location is fitter than the old one and . Moreover, will be updated if the new BM contains a solution with a better fitness value. Subsequently, and values will be updated in accordance with Equations (18) and (19).
- Step 6: stop criterion. Steps 3, 4, and 5 will be repeated until the algorithm reach the stop criterion.
4.5. Phase V: Classification
5. Experiments and Results
5.1. Time Domain Results
5.2. Entropy Domain Results
5.3. Frequency Domain Results
5.4. Statistical Analysis Results
5.5. Results Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, F.; Fan, Y.; Zhang, X.; Wang, C.; Hu, F.; Jia, W.; Hui, H. Multi-Feature Fusion Method Based on EEG Signal and its Application in Stroke Classification. J. Med. Syst. 2020, 44, 39. [Google Scholar] [CrossRef]
- Khairunizam, W.; Yean, C.W.; Murugappan, M.; Junoh, A.K.; Razlan, Z.M.; Shahriman, A.; Mustafa, W.A.W.; Ibrahim, Z.; Nurhafizah, S. An Experimental Framework for Assessing Emotions of Stroke Patients using Electroencephalogram (EEG). J. Phys. Conf. Ser. 2020, 1529, 052072. [Google Scholar] [CrossRef]
- Carino-Escobar, R.I.; Carrillo-Mora, P.; Valdés-Cristerna, R.; Rodriguez-Barragan, M.A.; Hernandez-Arenas, C.; Quinzaños-Fresnedo, J.; Galicia-Alvarado, M.A.; Cantillo-Negrete, J. Longitudinal analysis of stroke patients’ brain rhythms during an intervention with a brain-computer interface. Neural Plast. 2019, 2019. [Google Scholar] [CrossRef] [PubMed]
- Grefkes, C.; Fink, G.R. Connectivity-based approaches in stroke and recovery of function. Lancet Neurol. 2014, 13, 206–216. [Google Scholar] [CrossRef]
- Hachinski, V.; Donnan, G.A.; Gorelick, P.B.; Hacke, W.; Cramer, S.C.; Kaste, M.; Fisher, M.; Brainin, M.; Buchan, A.M.; Lo, E.H.; et al. Stroke: Working toward a prioritized world agenda. Stroke 2010, 41, 1084–1099. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Cui, Z.; Yu, Y.; Mao, J.; Xu, J.; Ji, L.; Kan, X.; Shen, X.; Li, X.; Zhu, S.; et al. Application of a Brain–Computer Interface System with Visual and Motor Feedback in Limb and Brain Functional Rehabilitation after Stroke: Case Report. Brain Sci. 2022, 12, 1083. [Google Scholar] [CrossRef]
- Jin, J.; Qu, T.; Xu, R.; Wang, X.; Cichocki, A. Motor Imagery EEG Classification Based on Riemannian Sparse Optimization and Dempster-Shafer Fusion of Multi-Time-Frequency Patterns. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 31, 58–67. [Google Scholar] [CrossRef]
- Al-Qazzaz, N.K.; Alyasseri, Z.A.A.; Abdulkareem, K.H.; Ali, N.S.; Al-Mhiqani, M.N.; Guger, C. EEG feature fusion for motor imagery: A new robust framework towards stroke patients rehabilitation. Comput. Biol. Med. 2021, 137, 104799. [Google Scholar] [CrossRef]
- Al-Timemy, A.H.; Bugmann, G.; Outram, N.; Escudero, J. Reduction in classifi-cation errors for myoelectric control of hand movements with independent component analysis. In Proceedings of the The 5th International Conference on Information Technology, ICIT, Bali, Indonesia, 26–28 October 2011; Volume 2011. [Google Scholar]
- Al-Qazzaz, N.K.; Ali, S.H.B.M.; Ahmad, S.A.; Escudero, J. Optimal EEG Channel Selection for Vascular Dementia Identification Using Improved Binary Gravitation Search Algorithm. In Proceedings of the International Conference for Innovation in Biomedical Engineering and Life Sciences, Penang, Malaysia, 10–13 December 2017; pp. 125–130. [Google Scholar]
- Al-Qazzaz, N.K.; Sabir, M.K.; Ali, S.H.B.M.; Ahmad, S.A.; Grammer, K. Multichannel optimization with hybrid spectral-entropy markers for gender identification enhancement of emotional-based EEGs. IEEE Access 2021, 9, 107059–107078. [Google Scholar] [CrossRef]
- Velasco, I.; Sipols, A.; De Blas, C.S.; Pastor, L.; Bayona, S. Motor imagery EEG signal classification with a multivariate time series approach. Biomed. Eng. OnLine 2023, 22, 29. [Google Scholar] [CrossRef]
- Jouzizadeh, M. EEG-Assessed Network and Signal Variability Features in Males and Females during a Visuospatial Task. Ph.D. Thesis, Université d’Ottawa/University of Ottawa, Ottawa, ON, Canada, 2024. [Google Scholar]
- Al-Qazzaz, N.K.; Sabir, M.K.; Ali, S.; Ahmad, S.A.; Grammer, K. Effective EEG channels for emotion identification over the brain regions using differential evolution algorithm. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 4703–4706. [Google Scholar]
- Dornhege, G.; Millán, J.d.R.; Hinterberger, T.; McFarland, D.J.; Muller, K.R. Toward Brain-Computer Interfacing; MIT Press: Cambridge, MA, USA, 2007; Volume 63. [Google Scholar]
- Kingphai, K.; Moshfeghi, Y. On channel selection for EEG-based mental workload classification. In Proceedings of the International Conference on Machine Learning, Optimization, and Data Science, Grasmere, UK, 22–26 September 2023; pp. 403–417. [Google Scholar]
- Liu, T.; Wu, Y.; Ye, A.; Cao, L.; Cao, Y. Two-stage sparse multi-objective evolutionary algorithm for channel selection optimization in BCIs. Front. Hum. Neurosci. 2024, 18, 1400077. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, B.; Dallasta, I.; Das, P.; Kulasingham, J.P.; Girgenti, S.; Simon, J.Z.; Babadi, B.; Marsh, E.B. Altered directional functional connectivity underlies post-stroke cognitive recovery. Brain Commun. 2023, 5, fcad149. [Google Scholar] [CrossRef] [PubMed]
- Seguin, C.; Sporns, O.; Zalesky, A. Brain network communication: Concepts, models and applications. Nat. Rev. Neurosci. 2023, 24, 557–574. [Google Scholar] [CrossRef] [PubMed]
- Mang, J.; Xu, Z.; Qi, Y.; Zhang, T. Favoring the cognitive-motor process in the closed-loop of BCI mediated post stroke motor function recovery: Challenges and approaches. Front. Neurorobotics 2023, 17, 1271967. [Google Scholar] [CrossRef] [PubMed]
- Nunez, P.L.; Srinivasan, R.; Westdorp, A.F.; Wijesinghe, R.S.; Tucker, D.M.; Silberstein, R.B.; Cadusch, P.J. EEG coherency: I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr. Clin. Neurophysiol. 1997, 103, 499–515. [Google Scholar] [CrossRef] [PubMed]
- Al-Qazzaz, N.K.; Hamid Bin Mohd Ali, S.; Ahmad, S.A.; Islam, M.S.; Escudero, J. Automatic artifact removal in EEG of normal and demented individuals using ICA–WT during working memory tasks. Sensors 2017, 17, 1326. [Google Scholar] [CrossRef] [PubMed]
- Al-Qazzaz, N.K.; Ali, S.H.B.M.; Ahmad, S.A.; Islam, M.S.; Escudero, J. Discrimination of stroke-related mild cognitive impairment and vascular dementia using EEG signal analysis. Med. Biol. Eng. Comput. 2018, 56, 137–157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Nam, C.S.; Zhou, G.; Jin, J.; Wang, X.; Cichocki, A. Temporally constrained sparse group spatial patterns for motor imagery BCI. IEEE Trans. Cybern. 2018, 49, 3322–3332. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, S.; Taran, S.; Bajaj, V.; Siuly, S. A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications. Comput. Methods Programs Biomed. 2020, 187, 105325. [Google Scholar] [CrossRef]
- Duan, L.; Hongxin, Z.; Khan, M.S.; Fang, M. Recognition of motor imagery tasks for BCI using CSP and chaotic PSO twin SVM. J. China Univ. Posts Telecommun. 2017, 24, 83–90. [Google Scholar] [CrossRef]
- Alotaiby, T.; Abd El-Samie, F.E.; Alshebeili, S.A.; Ahmad, I. A review of channel selection algorithms for EEG signal processing. EURASIP J. Adv. Signal Process. 2015, 2015, 66. [Google Scholar] [CrossRef]
- He, L.; Yu, Z.; Gu, Z.; Li, Y. Bhattacharyya bound based channel selection for classification of motor imageries in EEG signals. In Proceedings of the 2009 Chinese Control and Decision Conference, Guilin, China, 17–19 June 2009; pp. 2353–2356. [Google Scholar]
- Tam, W.K.; Ke, Z.; Tong, K.Y. Performance of common spatial pattern under a smaller set of EEG electrodes in brain-computer interface on chronic stroke patients: A multi-session dataset study. In Proceedings of the 2011 annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 6344–6347. [Google Scholar]
- Gómez-López, J.C.; Escobar, J.J.; Díaz, A.F.; Damas, M.; Gil-Montoya, F.; González, J. Boosting the convergence of a GA-based wrapper for feature selection problems on high-dimensional data. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Boston, MA, USA, 9–13 July 2022; pp. 431–434. [Google Scholar]
- Shen, C.; Zhang, K. Two-stage improved Grey Wolf optimization algorithm for feature selection on high-dimensional classification. Complex Intell. Syst. 2022, 8, 2769–2789. [Google Scholar] [CrossRef]
- Tiwari, A.; Chaturvedi, A. Automatic EEG channel selection for multiclass brain-computer interface classification using multiobjective improved firefly algorithm. Multimed. Tools Appl. 2023, 82, 5405–5433. [Google Scholar] [CrossRef]
- Millán, J.d.R.; Franzé, M.; Mouriño, J.; Cincotti, F.; Babiloni, F. Relevant EEG features for the classification of spontaneous motor-related tasks. Biol. Cybern. 2002, 86, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Cagigal, V.; Santamaría-Vázquez, E.; Hornero, R. Brain–computer interface channel selection optimization using meta-heuristics and evolutionary algorithms. Appl. Soft Comput. 2022, 115, 108176. [Google Scholar] [CrossRef]
- Gaur, P.; Gupta, H.; Chowdhury, A.; McCreadie, K.; Pachori, R.B.; Wang, H. A sliding window common spatial pattern for enhancing motor imagery classification in EEG-BCI. IEEE Trans. Instrum. Meas. 2021, 70, 4002709. [Google Scholar] [CrossRef]
- Shi, B.; Wang, Q.; Yin, S.; Yue, Z.; Huai, Y.; Wang, J. A binary harmony search algorithm as channel selection method for motor imagery-based BCI. Neurocomputing 2021, 443, 12–25. [Google Scholar] [CrossRef]
- Ghaemi, A.; Rashedi, E.; Pourrahimi, A.M.; Kamandar, M.; Rahdari, F. Automatic channel selection in EEG signals for classification of left or right hand movement in Brain Computer Interfaces using improved binary gravitation search algorithm. Biomed. Signal Process. Control 2017, 33, 109–118. [Google Scholar] [CrossRef]
- Lotte, F.; Congedo, M.; Lécuyer, A.; Lamarche, F.; Arnaldi, B. A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 2007, 4, R1. [Google Scholar] [CrossRef]
- Hassan, M.M.; Alam, M.G.R.; Uddin, M.Z.; Huda, S.; Almogren, A.; Fortino, G. Human emotion recognition using deep belief network architecture. Inf. Fusion 2019, 51, 10–18. [Google Scholar] [CrossRef]
- Khosla, A.; Khandnor, P.; Chand, T. A comparative analysis of signal processing and classification methods for different applications based on EEG signals. Biocybern. Biomed. Eng. 2020, 40, 649–690. [Google Scholar] [CrossRef]
- Altan, G.; Kutlu, Y.; Allahverdi, N. Deep belief networks based brain activity classification using EEG from slow cortical potentials in stroke. Int. J. Appl. Math. Electron. Comput. 2016, 4, 205–210. [Google Scholar] [CrossRef]
- García-Laencina, P.J.; Rodríguez-Bermudez, G.; Roca-Dorda, J. Exploring dimensionality reduction of EEG features in motor imagery task classification. Expert Syst. Appl. 2014, 41, 5285–5295. [Google Scholar] [CrossRef]
- Aler, R.; Galván, I.M. Optimizing the number of electrodes and spatial filters for Brain–Computer Interfaces by means of an evolutionary multi-objective approach. Expert Syst. Appl. 2015, 42, 6215–6223. [Google Scholar] [CrossRef]
- Lal, T.N.; Schroder, M.; Hinterberger, T.; Weston, J.; Bogdan, M.; Birbaumer, N.; Scholkopf, B. Support vector channel selection in BCI. IEEE Trans. Biomed. Eng. 2004, 51, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Rakotomamonjy, A.; Guigue, V. BCI competition III: Dataset II-ensemble of SVMs for BCI P300 speller. IEEE Trans. Biomed. Eng. 2008, 55, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.; Wang, X.; Wang, Y. Dimensionality reduction in evolutionary algorithms-based feature selection for motor imagery brain-computer interface. Swarm Evol. Comput. 2020, 52, 100597. [Google Scholar] [CrossRef]
- Tsai, C.F.; Eberle, W.; Chu, C.Y. Genetic algorithms in feature and instance selection. Knowl.-Based Syst. 2013, 39, 240–247. [Google Scholar] [CrossRef]
- Udhaya Kumar, S.; Hannah Inbarani, H. PSO-based feature selection and neighborhood rough set-based classification for BCI multiclass motor imagery task. Neural Comput. Appl. 2017, 28, 3239–3258. [Google Scholar] [CrossRef]
- Baig, M.Z.; Aslam, N.; Shum, H.P.; Zhang, L. Differential evolution algorithm as a tool for optimal feature subset selection in motor imagery EEG. Expert Syst. Appl. 2017, 90, 184–195. [Google Scholar] [CrossRef]
- Atyabi, A.; Luerssen, M.; Fitzgibbon, S.; Powers, D.M. Evolutionary feature selection and electrode reduction for EEG classification. In Proceedings of the 2012 IEEE Congress on Evolutionary Computation, Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–8. [Google Scholar]
- Nakisa, B.; Rastgoo, M.N.; Tjondronegoro, D.; Chandran, V. Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors. Expert Syst. Appl. 2018, 93, 143–155. [Google Scholar] [CrossRef]
- Al-Qazzaz, N.K.; Ali, S.H.M.; Ahmad, S.A. Differential Evolution Based Channel Selection Algorithm on EEG Signal for Early Detection of Vascular Dementia among Stroke Survivors. In Proceedings of the 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Sarawak, Malaysia, 3–6 December 2018; pp. 239–244. [Google Scholar]
- Alyasseri, Z.A.A.; Khader, A.T.; Al-Betar, M.A.; Joao, P.P.; Osama, A.A. EEG-based Person Authentication Using Multi-objective Flower Pollination Algorithm. In Proceedings of the Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 15–22. [Google Scholar]
- Yang, X.S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010); Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74. [Google Scholar]
- Hyvarinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 1999, 10, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Escudero, J.; Hornero, R.; Abásolo, D.; Fernández, A. Blind source separation to enhance spectral and non-linear features of magnetoencephalogram recordings. Application to Alzheimer’s disease. Med. Eng. Phys. 2009, 31, 872–879. [Google Scholar] [CrossRef] [PubMed]
- James, C.J.; Hesse, C.W. Independent component analysis for biomedical signals. Physiol. Meas. 2005, 26, R15. [Google Scholar] [CrossRef] [PubMed]
- Al-Qazzaz, N.K.; Hamid Bin Mohd Ali, S.; Ahmad, S.A.; Islam, M.S.; Escudero, J. Selection of mother wavelet functions for multi-channel EEG signal analysis during a working memory task. Sensors 2015, 15, 29015–29035. [Google Scholar] [CrossRef] [PubMed]
- Escudero, J.; Hornero, R.; Abásolo, D.; Fernández, A. Quantitative evaluation of artifact removal in real magnetoencephalogram signals with blind source separation. Ann. Biomed. Eng. 2011, 39, 2274–2286. [Google Scholar] [CrossRef] [PubMed]
- Barbati, G.; Porcaro, C.; Zappasodi, F.; Rossini, P.M.; Tecchio, F. Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals. Clin. Neurophysiol. 2004, 115, 1220–1232. [Google Scholar] [CrossRef]
- Mammone, N.; La Foresta, F.; Morabito, F.C. Automatic artifact rejection from multichannel scalp EEG by wavelet ICA. IEEE Sens. J. 2011, 12, 533–542. [Google Scholar] [CrossRef]
Algorithm | Parameters | Population Size | Runs |
---|---|---|---|
CS | = 1.5, | 20 | 30 |
PSO | 20 | 30 | |
BAT | A = 0.5, r = 0.5 | 20 | 30 |
FFA | = 0.5, = 1, = 0.2 | 20 | 30 |
GWO | - | 20 | 30 |
Feature/Algorithm | PSO | GWO | FFA | CS | BAT | ||
---|---|---|---|---|---|---|---|
Best | Accuracy | 97.9 | 90.7 | 66.7 | 54.9 | 99 | |
No. channels | 8 | 3 | 1 | 1 | 6 | ||
Worst | Accuracy | 81.5 | 67.4 | 45.1 | 43.2 | 92.8 | |
No. channels | 12 | 6 | 3 | 2 | 13 | ||
Mean | Accuracy | 94.4 | 76.2 | 56.7 | 50.6 | 97.5 | |
No. channels | 9 | 4 | 2 | 2 | 10 | ||
Best | Accuracy | 97.1 | 88.4 | 68.8 | 55.1 | 97.7 | |
No. channels | 5 | 3 | 1 | 1 | 4 | ||
HjAc | Worst | Accuracy | 85.3 | 70.4 | 41.7 | 42.1 | 77.9 |
No. channels | 9 | 5 | 3 | 2 | 14 | ||
Mean | Accuracy | 94.4 | 82.1 | 60.7 | 48.7 | 90.8 | |
No. channels | 8 | 4 | 3 | 2 | 8 | ||
Best | Accuracy | 91.2 | 78.9 | 58.8 | 48.7 | 93.8 | |
No. channels | 7 | 3 | 2 | 1 | 5 | ||
HjComp | Worst | Accuracy | 84.7 | 58.1 | 47.4 | 40.9 | 74.7 |
No. channels | 15 | 6 | 3 | 2 | 13 | ||
Mean | Accuracy | 88.6 | 69.9 | 53.9 | 44.2 | 88.2 | |
No. channels | 9 | 4 | 3 | 1 | 9 | ||
Best | Accuracy | 96.5 | 89.3 | 67.9 | 53.5 | 97.9 | |
No. channels | 6 | 2 | 2 | 1 | 5 | ||
HjMo | Worst | Accuracy | 86.4 | 51.8 | 53.9 | 43.8 | 88.6 |
No. channels | 11 | 6 | 3 | 2 | 12 | ||
Mean | Accuracy | 92.3 | 80.6 | 61.2 | 47.9 | 95.4 | |
No. channels | 9 | 4 | 3 | 1 | 9 | ||
Best | Accuracy | 72.8 | 57.9 | 47.2 | 44.1 | 70.1 | |
No. channels | 4 | 2 | 1 | 1 | 5 | ||
Worst | Accuracy | 56.6 | 44.1 | 41.5 | 41.3 | 53.9 | |
No. channels | 10 | 6 | 3 | 2 | 11 | ||
Mean | Accuracy | 65.2 | 51.7 | 44.7 | 42.6 | 64.9 | |
No. channels | 8 | 4 | 3 | 2 | 9 | ||
Best | Accuracy | 71.2 | 61 | 48.4 | 43.4 | 73.2 | |
No. channels | 7 | 3 | 2 | 1 | 7 | ||
Worst | Accuracy | 56.5 | 48.2 | 43.3 | 40.3 | 63.1 | |
No. channels | 12 | 6 | 3 | 2 | 12 | ||
Mean | Accuracy | 65.6 | 54.9 | 45.4 | 42 | 68.8 | |
No. channels | 9 | 5 | 3 | 2 | 10 | ||
Best | Accuracy | 78.7 | 63.7 | 50 | 44.4 | 79.2 | |
No. channels | 4 | 1 | 2 | 1 | 3 | ||
Worst | Accuracy | 58 | 41 | 43.2 | 40.4 | 48.2 | |
No. channels | 11 | 6 | 3 | 2 | 13 | ||
Mean | Accuracy | 69.6 | 53.3 | 45.9 | 42.3 | 72.5 | |
No. channels | 7 | 4 | 2 | 2 | 9 |
Feature/Algorithm | PSO | GWO | FFA | CS | BAT | ||
---|---|---|---|---|---|---|---|
Best | Accuracy | 96.6 | 82.7 | 61.3 | 52 | 96.5 | |
No. channels | 3 | 3 | 1 | 1 | 7 | ||
Conv | Worst | Accuracy | 76.4 | 64.7 | 45.5 | 42.5 | 87.1 |
No. channels | 11 | 6 | 3 | 2 | 14 | ||
Mean | Accuracy | 90.2 | 73.6 | 54.9 | 45.8 | 93.2 | |
No. channels | 8 | 5 | 2 | 1 | 11 | ||
Best | Accuracy | 93.6 | 81.6 | 60.6 | 49.1 | 95.5 | |
No. channels | 2 | 4 | 2 | 1 | 8 | ||
Worst | Accuracy | 82.2 | 68.7 | 50.5 | 41.8 | 88.9 | |
No. channels | 10 | 6 | 3 | 2 | 12 | ||
Mean | Accuracy | 88.6 | 74.4 | 55.7 | 45.5 | 92.1 | |
No. channels | 7 | 5 | 3 | 1 | 10 | ||
Best | Accuracy | 94.7 | 78.6 | 59.3 | 49.8 | 95.6 | |
No. channels | 5 | 3 | 2 | 1 | 7 | ||
n | Worst | Accuracy | 75.8 | 56.1 | 47.9 | 44.3 | 84.9 |
No. channels | 10 | 6 | 3 | 2 | 12 | ||
Mean | Accuracy | 85.3 | 69.8 | 52.3 | 46.6 | 90.8 | |
No. channels | 8 | 5 | 2 | 2 | 10 | ||
Best | Accuracy | 85.2 | 73.6 | 54.3 | 46.8 | 88.1 | |
No. channels | 7 | 3 | 2 | 1 | 7 | ||
mu | Worst | Accuracy | 70.8 | 55.9 | 45.1 | 40.5 | 75.5 |
No. channels | 12 | 6 | 3 | 2 | 12 | ||
Mean | Accuracy | 80.7 | 66.1 | 49.4 | 44.8 | 84 | |
No. channels | 9 | 5 | 2 | 2 | 9 | ||
Best | Accuracy | 84.3 | 67.7 | 51.9 | 46.6 | 87.2 | |
No. channels | 4 | 2 | 2 | 1 | 8 | ||
mu | Worst | Accuracy | 63.7 | 47 | 44.9 | 41.2 | 75.3 |
No. channels | 12 | 6 | 3 | 2 | 13 | ||
Mean | Accuracy | 77.3 | 56.5 | 47.7 | 43 | 80.3 | |
No. channels | 8 | 4 | 2 | 1 | 10 | ||
Best | Accuracy | 87.9 | 71.5 | 52.9 | 51.9 | 91.4 | |
No. channels | 6 | 3 | 1 | 1 | 7 | ||
Worst | Accuracy | 75.4 | 53.2 | 42.6 | 40.4 | 75.9 | |
No. channels | 10 | 6 | 3 | 3 | 14 | ||
Mean | Accuracy | 81.4 | 63.7 | 48.2 | 44.3 | 83.6 | |
No. channels | 8 | 5 | 2 | 2 | 10 | ||
Best | Accuracy | 83.9 | 72.5 | 52.3 | 46.6 | 84.6 | |
No. channels | 7 | 3 | 1 | 1 | 4 | ||
Worst | Accuracy | 65.9 | 54.4 | 41.2 | 40.2 | 61.3 | |
No. channels | 12 | 7 | 3 | 2 | 13 | ||
Mean | Accuracy | 78.7 | 64.5 | 47.2 | 42.8 | 79.8 | |
No. channels | 10 | 5 | 2 | 1 | 10 |
Feature/Algorithm | PSO | GWO | FFA | CS | BAT | ||
---|---|---|---|---|---|---|---|
Best | Accuracy | 96.7 | 87.3 | 64.1 | 52.5 | 96.3 | |
No. channels | 5 | 3 | 2 | 1 | 7 | ||
Worst | Accuracy | 65.4 | 66 | 50.2 | 41.9 | 90.3 | |
No. channels | 10 | 6 | 3 | 2 | 12 | ||
Mean | Accuracy | 91.2 | 76.4 | 54 | 50 | 93.8 | |
No. channels | 8 | 4 | 2 | 2 | 10 | ||
Best | Accuracy | 82.7 | 69.2 | 53.6 | 46.6 | 83.4 | |
No. channels | 6 | 3 | 2 | 1 | 6 | ||
Worst | Accuracy | 69.5 | 55.5 | 41 | 20 | 68.7 | |
No. channels | 10 | 6 | 3 | 2 | 14 | ||
Mean | Accuracy | 76.3 | 60.6 | 46.1 | 36.5 | 78.4 | |
No. channels | 9 | 4 | 2 | 2 | 10 |
Feature/Algorithm | PSO | GWO | FFA | CS | BAT | ||
---|---|---|---|---|---|---|---|
Accuracy | 97.9 | 90.7 | 66.7 | 54.9 | 99 | ||
Rank | 2 | 3 | 4 | 5 | 1 | ||
HjAc | Accuracy | 97.1 | 88.4 | 68.8 | 55.1 | 97.7 | |
Rank | 2 | 3 | 4 | 5 | 1 | ||
HjComp | Accuracy | 91.2 | 78.9 | 58.8 | 48.7 | 93.8 | |
Rank | 2 | 3 | 4 | 5 | 1 | ||
TDF | HjMo | Accuracy | 96.5 | 89.3 | 67.9 | 53.5 | 97.9 |
Rank | 2 | 3 | 4 | 5 | 1 | ||
Accuracy | 72.8 | 57.9 | 47.2 | 44.1 | 70.1 | ||
Rank | 1 | 3 | 4 | 5 | 2 | ||
Accuracy | 71.2 | 61 | 48.4 | 43.4 | 73.2 | ||
Rank | 2 | 3 | 4 | 5 | 1 | ||
Accuracy | 78.7 | 63.7 | 50 | 44.4 | 79.2 | ||
Rank | 2 | 3 | 4 | 5 | 1 | ||
Summation of Ranks | 13 | 21 | 28 | 35 | 8 | ||
Accuracy | 96.7 | 87.3 | 64.1 | 52.5 | 96.3 | ||
Rank | 1 | 3 | 4 | 5 | 2 | ||
FDF | Accuracy | 82.7 | 69.2 | 53.6 | 46.6 | 83.4 | |
Rank | 2 | 3 | 4 | 5 | 1 | ||
Summation of Ranks | 3 | 6 | 8 | 10 | 3 | ||
Conv | Accuracy | 96.6 | 82.7 | 61.3 | 52 | 96.5 | |
Rank | 1 | 3 | 4 | 5 | 2 | ||
Accuracy | 93.6 | 81.6 | 60.6 | 49.1 | 95.5 | ||
Rank | 2 | 3 | 4 | 5 | 1 | ||
n | Accuracy | 94.7 | 78.6 | 59.3 | 49.8 | 95.6 | |
Rank | 2 | 3 | 4 | 5 | 1 | ||
EDF | mu | Accuracy | 85.2 | 73.6 | 54.3 | 46.8 | 88.1 |
Rank | 2 | 3 | 4 | 5 | 1 | ||
mu | Accuracy | 84.3 | 67.7 | 51.9 | 46.6 | 87.2 | |
Rank | 2 | 3 | 4 | 5 | 1 | ||
Accuracy | 87.9 | 71.5 | 52.9 | 51.9 | 91.4 | ||
Rank | 2 | 3 | 4 | 5 | 1 | ||
Accuracy | 83.9 | 72.5 | 52.3 | 46.6 | 84.6 | ||
Rank | 2 | 3 | 4 | 5 | 1 | ||
Summation of Ranks | 13 | 21 | 28 | 35 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Betar, M.A.; Alyasseri, Z.A.A.; Al-Qazzaz, N.K.; Makhadmeh, S.N.; Ali, N.S.; Guger, C. EEG Channel Selection for Stroke Patient Rehabilitation Using BAT Optimizer. Algorithms 2024, 17, 346. https://doi.org/10.3390/a17080346
Al-Betar MA, Alyasseri ZAA, Al-Qazzaz NK, Makhadmeh SN, Ali NS, Guger C. EEG Channel Selection for Stroke Patient Rehabilitation Using BAT Optimizer. Algorithms. 2024; 17(8):346. https://doi.org/10.3390/a17080346
Chicago/Turabian StyleAl-Betar, Mohammed Azmi, Zaid Abdi Alkareem Alyasseri, Noor Kamal Al-Qazzaz, Sharif Naser Makhadmeh, Nabeel Salih Ali, and Christoph Guger. 2024. "EEG Channel Selection for Stroke Patient Rehabilitation Using BAT Optimizer" Algorithms 17, no. 8: 346. https://doi.org/10.3390/a17080346
APA StyleAl-Betar, M. A., Alyasseri, Z. A. A., Al-Qazzaz, N. K., Makhadmeh, S. N., Ali, N. S., & Guger, C. (2024). EEG Channel Selection for Stroke Patient Rehabilitation Using BAT Optimizer. Algorithms, 17(8), 346. https://doi.org/10.3390/a17080346