Identification of Crude Distillation Unit: A Comparison between Neural Network and Koopman Operator
Abstract
:1. Introduction
2. Modeling and Methodology
2.1. Nonlinear Autoregressive Exogenous Model
Algorithm 1 NARX−NN model identification algorithm |
2.2. Koopman Operator Theory
Algorithm 2 Training procedure of the Koopman dynamics |
|
3. Application to CDU
3.1. Process Description
3.2. Data Collection
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Achaw, O.-W.; Danso-Boateng, E. Crude Oil Refinery and Refinery Products; Springer International Publishing: Cham, Switzerland, 2021; pp. 235–265. [Google Scholar]
- Nanovsky, S. The impact of oil prices on trade. Rev. Int. Econ. 2019, 27, e0001. [Google Scholar] [CrossRef]
- Mahecha, C.A.; López, D.C.; Hoyos, L.J.; Acevedo, L.; Villamizar, J.F. Optimization model of a system of crude oil distillation units with heat integration and metamodeling. CT&F-Cienc. Tecnol. Futuro 2009, 3, 159–173. [Google Scholar]
- López, C.D.C.; Hoyos, L.J.; Mahecha, C.A.; Arellano-Garcia, H.; Wozny, G. Optimization model of crude oil distillation units for optimal crude oil blending and operating conditions. Ind. Eng. Chem. Res. 2013, 52, 12993–13005. [Google Scholar] [CrossRef]
- Franzoi, R.; Menezes, B.; Kelly, J.; Gut, J.; Grossmann, I. Cutpoint temperature surrogate modeling for distillation yields and properties. Ind. Eng. Chem. Res. 2020, 59, 18616–18628. [Google Scholar] [CrossRef]
- H’ng, S.X.; Ng, L.Y.; Ng, D.K.S.; Andiappan, V. Optimisation of vacuum distillation units in oil refineries using surrogate models. Process. Integr. Optim. Sustain. 2024, 8, 351–373. [Google Scholar] [CrossRef]
- Yao, H.; Chu, J. Operational optimization of a simulated atmospheric distillation column using support vector regression models and information analysis. Chem. Eng. Res. Des. 2012, 90, 2247–2261. [Google Scholar] [CrossRef]
- Liau, L.C.-K.; Yang, T.C.-K.; Tsai, M.-T. Expert system of a crude oil distillation unit for process optimization using neural networks. Expert Syst. Appl. 2004, 26, 247–255. [Google Scholar] [CrossRef]
- Motlaghi, S.; Jalali, F.; Ahmadabadi, M.N. An expert system design for a crude oil distillation column with the neural networks model and the process optimization using genetic algorithm framework. Expert Syst. Appl. 2008, 35, 540–1545. [Google Scholar] [CrossRef]
- Gueddar, T.; Dua, V. Novel model reduction techniques for refinery-wide energy optimisation. Spec. Issue Therm. Energy Manag. Process. Ind. 2012, 89, 117–126. [Google Scholar] [CrossRef]
- Durrani, M.A.; Ahmad, I.; Kano, M.; Hasebe, S. An artificial intelligence method for energy efficient operation of crude distillation units under uncertain feed composition. Energies 2018, 11, 2993. [Google Scholar] [CrossRef]
- Ochoa-Estopier, L.M.; Jobson, M.; Smith, R. Operational optimization of crude oil distillation systems using artificial neural networks. In Proceedings of the ESCAPE-22 (European Symposium on Computer Aided Process Engineering-22), London, UK, 17–20 June 2012; Volume 59, pp. 178–185. [Google Scholar]
- Ochoa-Estopier, L.M.; Jobson, M. Optimization of heat-integrated crude oil distillation systems. part i: The distillation model. Ind. Eng. Chem. Res. 2015, 54, 4988–5000. [Google Scholar] [CrossRef]
- Ochoa-Estopier, L.M.; Jobson, M. Optimization of heat-integrated crude oil distillation systems. part iii: Optimisation framework. Ind. Eng. Chem. Res. 2015, 54, 5018–5036. [Google Scholar] [CrossRef]
- Shi, B.; Yang, X.; Yan, L. Optimization of a crude distillation unit using a combination of wavelet neural network and line-up competition algorithm. Chin. J. Chem. Eng. 2017, 25, 1013–1021. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, Z.; Wang, M.; Liu, B.; Fan, X.; Tian, W. An energy-efficiency prediction method in crude distillation process based on long short-term memory network. Processes 2023, 11, 1257. [Google Scholar] [CrossRef]
- Ibrahim, D.; Jobson, M.; Li, J.; Guillén-Gosálbez, G. Optimization-based design of crude oil distillation units using surrogate column models and a support vector machine. Chem. Eng. Res. Des. 2018, 134, 212–225. [Google Scholar] [CrossRef]
- Li, S.; Zheng, Y.; Li, S.; Huang, M. Knowledge-based operation optimization of a distillation unit integrating feedstock property considerations. Eng. Appl. Artif. Intell. 2022, 107, 104496. [Google Scholar] [CrossRef]
- Osuolale, F.N.; Zhang, J. Energy efficient control and optimisation of distillation column using artificial neural network. Chem. Eng. Trans. 2014, 39, 37–42. [Google Scholar]
- Muhsin, W.; Zhang, J. Multi-objective optimization of a crude oil hydrotreating process with a crude distillation unit based on bootstrap aggregated neural network models. Processes 2022, 10, 1438. [Google Scholar] [CrossRef]
- Zhu, J.; Fan, C.; Yang, M.; Qian, F.; Mahalec, V. Data-driven models of crude distillation units for production planning and for operations monitoring. Comput. Chem. Eng. 2023, 177, 108322. [Google Scholar] [CrossRef]
- Mowbray, M.; Vallerio, M.; Perez-Galvan, C.; Zhang, D.; Chanona, A.D.R.; Navarro-Brull, F.J. Industrial data science—A review of machine learning applications for chemical and process industries. React. Chem. Eng. 2022, 7, 1471–1509. [Google Scholar] [CrossRef]
- fadzil, M.A.M.; Razali, A.A.; Zabiri, H. Machine learning-based modeling and optimization analysis for an integrated industrial base oil production complex. Ind. Eng. Chem. Res. 2023, 62, 20280–20299. [Google Scholar] [CrossRef]
- Brunton, S.L.; Budišić, M.; Kaiser, E.; Kutz, J.N. Modern koopman theory for dynamical systems. SIAM Rev. 2022, 64, 229–340. [Google Scholar] [CrossRef]
- Koopman, B.O. Hamiltonian systems and transformation in hilbert space. Proc. Natl. Acad. Sci. USA 1931, 17, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Mezić, I.; Banaszuk, A. Comparison of systems with complex behavior. Phys. D Nonlinear Phenom. 2004, 197, 101–133. [Google Scholar] [CrossRef]
- Mezić, I. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 2005, 41, 309–325. [Google Scholar] [CrossRef]
- Gholaminejad, T.; Khaki-Sedigh, A. Stable deep koopman model predictive control for solar parabolic-trough collector field. Renew. Energy 2022, 198, 492–504. [Google Scholar] [CrossRef]
- Susuki, Y.; Mezic, I. Nonlinear koopman modes and coherency identification of coupled swing dynamics. IEEE Trans. Power Syst. 2011, 26, 1894–1904. [Google Scholar] [CrossRef]
- Abraham, I.; Torre, G.D.L.; Murphey, T.D. Model-based control using koopman operators. arXiv 2017, arXiv:1709.01568. [Google Scholar]
- Yu, S.; Shen, C.; Ersal, T. Autonomous driving using linear model predictive control with a koopman operator based bilinear vehicle model. IFAC-PapersOnLine 2022, 55, 254–259. [Google Scholar] [CrossRef]
- Sootla, A.; Ernst, D. Pulse-based control using koopman operator under parametric uncertainty. arXiv 2017, arXiv:1708.00232. [Google Scholar] [CrossRef]
- Avila, A.M.; Mezić, I. Data-driven analysis and forecasting of highway traffic dynamics. Nat. Commun. 2020, 11, 2090. [Google Scholar] [CrossRef] [PubMed]
- Billings, S.A. Models for Linear and Nonlinear Systems; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; Chapter 2; pp. 17–59. [Google Scholar]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Manonmani, A.; Thyagarajan, T.; Elango, M.; Sutha, S. Modelling and control of greenhouse system using neural networks. Trans. Inst. Meas. Control. 2018, 40, 918–929. [Google Scholar] [CrossRef]
- Jaleel, E.A.; Aparna, K. Identification of realistic distillation column using hybrid particle swarm optimization and NARX based artificial neural network. Evol. Syst. 2019, 10, 149–166. [Google Scholar] [CrossRef]
- Heidari, E.; Daeichian, A.; Sobati, M.A.; Movahedirad, S. Prediction of the droplet spreading dynamics on a solid substrate at irregular sampling intervals: Nonlinear auto-regressive exogenous artificial neural network approach (narx-ann). Chem. Eng. Res. Des. 2020, 156, 263–272. [Google Scholar] [CrossRef]
- Zilio, A.; Zuanna, F.D.; Biadene, D.; Caldognetto, T.; Mattavelli, P. On the design of narx-anns for the black-box modeling of power electronic converters. In Proceedings of the 2023 IEEE Energy Conversion Congress and Exposition (ECCE), Nashville, TN, USA, 29 October–2 November 2023; pp. 2776–2782. [Google Scholar]
- Mauroy, A.; Mezić, I.; Susuki, Y. (Eds.) The Koopman Operator in Systems and Control: Concepts, Methodologies, and Applications; Lecture Notes in Control and Information Sciences; Springer International Publishing: Cham, Switzerland, 2020; Volume 484. [Google Scholar]
- Proctor, J.; Brunton, S.; Kutz, J. Generalizing koopman theory to allow for inputs and control. Appl. Dyn. Syst. 2018, 17, 909–930. [Google Scholar] [CrossRef]
- Liu, Z.; Kundu, S.; Chen, L.; Yeung, E. Decomposition of nonlinear dynamical systems using koopman gramians. In Proceedings of the 2018 Annual American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; pp. 4811–4818. [Google Scholar]
- Surana, A. Koopman operator based observer synthesis for control-affine nonlinear systems. In Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14 December 2016; pp. 6492–6499. [Google Scholar]
- Goswami, D.; Paley, D.A. Global bilinearization and controllability of control-affine nonlinear systems: A Koopman spectral approach. In Proceedings of the 2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, VIC, Australia, 12–15 December 2017; pp. 6107–6112. [Google Scholar]
- Jones, D.S.J. Atmospheric and Vacuum Crude Distillation Units in Petroleum Refineries; Springer International Publishing: Cham, Switzerland, 2015; pp. 125–198. [Google Scholar]
- Fraser, S. Chapter 4—Distillation in refining. In Distillation; Górak, A., Schoenmakers, H., Eds.; Academic Press: Boston, MA, USA, 2014; pp. 155–190. [Google Scholar]
Inputs | |
---|---|
Column reflux | |
Middle draw | |
Column bottom tray temperature | |
d | Feed to column |
Outputs | |
Overhead composition | |
Middle-draw composition | |
Bottoms’ composition |
Case # | Description |
---|---|
1 | No mismatch with aggressive tuning |
2 | Gain mismatch, |
3 | Gain mismatch, |
4 | Delay mismatch, |
5 | Poor PID tuning for all three MVs |
6 | Sqrt-type nonlinearity in channels |
7 | Tight constraints on |
8 | Unmeasured disturbance affecting equally |
Model | Hyperparameter | Range |
---|---|---|
KL / KB | Network width | [16, 256] |
Network depth | [1, 32] | |
No. of lifted dynamics | [4, 64] | |
NARX | Network width | [4, 256] |
Network depth | [1, 32] | |
Delay | [1, 4] |
Hyperparameter | NARX | KL | KB |
---|---|---|---|
Network width | 12 | 16 | 22 |
Network depth | 1 | 8 | 10 |
Delay | 2 | / | / |
No. of lifted dynamics | / | 42 | 64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abubakar, A.N.; Khaldi, M.K.; Aldhaifallah, M.; Patwardhan, R.; Salloum, H. Identification of Crude Distillation Unit: A Comparison between Neural Network and Koopman Operator. Algorithms 2024, 17, 368. https://doi.org/10.3390/a17080368
Abubakar AN, Khaldi MK, Aldhaifallah M, Patwardhan R, Salloum H. Identification of Crude Distillation Unit: A Comparison between Neural Network and Koopman Operator. Algorithms. 2024; 17(8):368. https://doi.org/10.3390/a17080368
Chicago/Turabian StyleAbubakar, Abdulrazaq Nafiu, Mustapha Kamel Khaldi, Mujahed Aldhaifallah, Rohit Patwardhan, and Hussain Salloum. 2024. "Identification of Crude Distillation Unit: A Comparison between Neural Network and Koopman Operator" Algorithms 17, no. 8: 368. https://doi.org/10.3390/a17080368
APA StyleAbubakar, A. N., Khaldi, M. K., Aldhaifallah, M., Patwardhan, R., & Salloum, H. (2024). Identification of Crude Distillation Unit: A Comparison between Neural Network and Koopman Operator. Algorithms, 17(8), 368. https://doi.org/10.3390/a17080368