Review Quantum Circuit Synthesis for Grover’s Algorithm Oracle
Abstract
:1. Introduction
2. Background
2.1. Quantum Computing
2.2. Grover’s Algorithm
- Superposition of the initial state.
- Oracle that marks the desired state.
- Diffusion operation that amplifies the desired state.
- The oracle is not optimized.
- The oracle depends on the data input, generating it each time.
- The oracle circuit generation is not a direct task.
3. Methodology
3.1. Identification of the Research Question
3.2. Identify Relevant Studies
3.3. Study Selection
- Relevance: The article’s main topic was the synthesis of quantum oracles. Articles on principles of hardware, physics, and layout synthesis were excluded. The selected articles emphasized Grover’s algorithm as their primary research topic or as a way of verifying the viability of the stated methodology.
- Credibility: The article was published in a reputable journal.
- Methodology: The article described a proper proof or methodology for validating the oracle synthesis. The articles that contained experimental data were presented clearly and supported by the described process.
- Detail: The article provided concise coverage of the topic, including background on the relevance of these procedures to quantum computing.
- Replicability: The articles exposed code or a detailed step-by-step process that allows future replication and verification of the methodology by other peers.
3.4. Summarizing and Charting the Data
- Classical with an abbreviation of [c]. It comprises articles that deal with mapping functions or compilers for translating a Boolean function to a quantum oracle.
- Metaheuristics with an abbreviation of [mh]. It comprises methodologies that use heuristic algorithms to generate and optimize quantum oracles.
- Neural networks with an abbreviation of [nn]. It comprises methodologies that use a computational model inspired by the human brain and the connection of neurons for generating quantum oracles. The neural network can be a classical or quantum implementation representing the oracle.
4. State of the Art
4.1. Classical Synthesis Methodologies
4.2. Metaheuristics Methodologies
4.3. Neural Network Methodologies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thacker, U.; Pandey, M.; Rautaray, S.S. Performance of elasticsearch in cloud environment with nGram and non-nGram indexing. In Proceedings of the 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 3–5 March 2016; pp. 3624–3628. [Google Scholar]
- Davoudian, A.; Chen, L.; Liu, M. A survey on NoSQL stores. ACM Comput. Surv. 2018, 51, 40. [Google Scholar] [CrossRef]
- Wong, T.G. Introduction to Classical and Quantum Computing; Rooted Grove: Omaha, NE, USA, 2022. [Google Scholar]
- Sigov, A.; Ratkin, L.; Ivanov, L.A. Quantum Information Technology. J. Ind. Inf. Integr. 2022, 28, 100365. [Google Scholar] [CrossRef]
- Montanaro, A. Quantum algorithms: An overview. NPJ Quantum Inf. 2016, 2, 15023. [Google Scholar] [CrossRef]
- Li, D.; Qian, L.; Zhou, Y.Q.; Yang, Y.G. Quantum partial search algorithm with smaller oracles for multiple target items. Quantum Inf. Process. 2022, 21, 160. [Google Scholar] [CrossRef]
- Grover, L.K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 1997, 79, 325–328. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 10th ed.; Cambridge University Press: Cambridge, UK, 2012; Volume 27. [Google Scholar]
- Viamontes, G.F.; Markov, I.L.; Hayes, J.P. Is quantum search practical? Quantum 2005, 7, 62–70. [Google Scholar] [CrossRef]
- Gheorghe-Pop, I.D.; Tcholtchev, N.; Ritter, T.; Hauswirth, M. Computer Scientist’s and Programmer’s View on Quantum Algorithms: Mapping Functions APIs and Inputs to Oracles. In Intelligent Computing, Proceedings of the 2021 Computing Conference, Tokyo, Japan, 17–19 November 2021; Springer: Cham, The Netherlands, 2021; Volume 1, pp. 188–201. [Google Scholar]
- Seidel, R.; Becker, C.K.U.; Bock, S.; Tcholtchev, N.; Gheorghe-Pop, I.D.; Hauswirth, M. Automatic generation of Grover quantum oracles for arbitrary data structures. Quantum Sci. Technol. 2023, 8, 025003. [Google Scholar] [CrossRef]
- Atkinson, T.; Karsa, A.; Drake, J.; Swan, J. Quantum Program Synthesis: Swarm Algorithms and Benchmarks; LNCS; Springer International Publishing: Cham, The Netherlands, 2019; Volume 11451. [Google Scholar]
- Murakami, K.; Zhao, J. AutoQC: Automated Synthesis of Quantum Circuits Using Neural Network. arXiv 2022, arXiv:2210.02766. [Google Scholar]
- Bernhardt, C. Quantum Computing for Everyone; Mit Press: Cambridge, UK, 2020. [Google Scholar]
- Kasirajan, V. Fundamentals of Quantum Computing; Springer International Publishing: Cham, The Netherlands, 2021. [Google Scholar]
- Hidary, J.D. Quantum Computing: An Applied Approach; Springer International Publishing: Cham, The Netherlands, 2021; pp. 3–21. [Google Scholar]
- Sanchez-Rivero, J.; Talav, D.; Garcia-Alonso, J.; Ruiz-Cort, A.; Murillo, J.M. Automatic Generation of an Efficient Less-Than Oracle for Quantum Amplitude Amplification. In Proceedings of the 2023 IEEE/ACM 4th International Workshop on Quantum Software Engineering (Q-SE), Melbourne, Australia, 17 May 2023. [Google Scholar]
- Long, G.L. Grover algorithm with zero theoretical failure rate. Phys. Rev. A—At. Mol. Opt. Phys. 2001, 64, 4. [Google Scholar] [CrossRef]
- Henderson, J.M.; Henderson, E.R.; Sinha, A.; Thornton, M.A.; Miller, D.M. Automated Quantum Oracle Synthesis with a Minimal Number of Qubits. In Quantum Information Science, Sensing, and Computation XV; SPIE: Bellingham, WA, USA, 2023; pp. 1–18. [Google Scholar]
- Levac, D.; Colquhoun, H.; O’Brien, K.K. Scoping studies: Advancing the methodology. Implement. Sci. 2010, 5, 69. [Google Scholar] [CrossRef] [PubMed]
- Fastovets, D.; Bogdanov, Y.; Bogdanova, N.; Lukichev, V. Representation of Boolean functions in terms of quantum computation. In Proceedings of the International Conference on Micro- and Nano-Electronics 2018, Zvenigorod, Russia, 1–5 October 2018; Volume 11022, p. 62. [Google Scholar]
- Schmitt, B.; Mozafari, F.; Meuli, G.; Riener, H.; De Micheli, G. From Boolean functions to quantum circuits: A scalable quantum compilation flow in C++. In Proceedings of the Design, Automation and Test in Europe (DATE), Grenoble, France, 1–5 February 2021; pp. 1044–1049. [Google Scholar]
- Meuli, G.; Soeken, M.; Roetteler, M.; de Micheli, G. ROS: Resource-constrained oracle synthesis for quantum computers. Electron. Proc. Theor. Comput. Sci. EPTCS 2020, 318, 119–130. [Google Scholar] [CrossRef]
- Li, L.; Voichick, F.; Hietala, K.; Peng, Y.; Wu, X.; Hicks, M. Verified compilation of Quantum oracles. In Proceedings of the ACM on Programming Languages; Association for Computing Machinery: New York, NY, USA, 2022; Volume 6, pp. 589–615. [Google Scholar]
- Velasquez, A.; Jha, S.K.; Ewetz, R.; Jha, S. Automated synthesis of quantum circuits using symbolic abstractions and decision procedures. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Republic of Korea, 22–28 May 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Massey, P.; Clark, J.A.; Stepney, S. Evolving Quantum Circuits and Programs Through Genetic Programming. In Proceedings of the Genetic and Evolutionary Computation Conference, Seattle, WA, USA, 26–30 June 2004; pp. 569–580. [Google Scholar]
- Ding, S.; Jin, Z.; Yang, Q. Evolving quantum circuits at the gate level with a hybrid quantum-inspired evolutionary algorithm. Soft Comput. 2008, 12, 1059–1072. [Google Scholar] [CrossRef]
- Dahi, Z.A.; Alba, E. Metaheuristics on quantum computers: Inspiration, simulation and real execution. Future Gener. Comput. Syst. 2022, 130, 164–180. [Google Scholar] [CrossRef]
- Swaddle, M.; Noakes, L.; Smallbone, H.; Salter, L.; Wang, J. Generating three-qubit quantum circuits with neural networks. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2017, 381, 3391–3395. [Google Scholar] [CrossRef]
- Cruz-Benito, J.; Faro, I.; Martín-Fernández, F.; Therón, R.; García-Peñalvo, F.J. A Deep-Learning-Based Proposal to Aid Users in Quantum Computing Programming. In Learning and Collaboration Technologies, Proceedings of the Learning and Teaching, LCT 2018, Las Vegas, NV, USA, 15–20 July 2018; Lecture Notes in Computer Science; Springer International Publishing: Cham, The Netherlands, 2018; Volume 10925, pp. 421–430. [Google Scholar] [CrossRef]
- Treinish, M. Tweedledum. 2021. Available online: https://github.com/boschmitt/tweedledum (accessed on 5 July 2023).
- Meuli, G. Caterpillar. 2020. Available online: https://github.com/gmeuli/caterpillar (accessed on 5 July 2023).
- Acampora, G.; Schiattarella, R. Deep neural networks for quantum circuit mapping. Neural Comput. Appl. 2021, 33, 13723–13743. [Google Scholar] [CrossRef]
Study | Method | Languages | Libraries | Techniques | Cost Functions |
---|---|---|---|---|---|
Bogdanov [21] | [c] | - | - | Zhegalkin Polynomial | Number of qubits |
Schmitt [22] | [c] | Python; C++ | Tweedledum; Caterpillar; Qiskit | ESOP; XAG | |
Meuli [23] | [c] | C++ | Caterpillar | ROS | Number of qubits; Number of gates; |
Seidel [11] | [c] | Python | Qiskit; Tweedledum | Gray; PTS | Number of qubits; CNOT Gates; U Gates |
Sanchez-Rivero [17] | [c] | Python | Qiskit | Arithmetic Oracle | Circuit depth; Number of qubits |
Li [24] | [c] | COQ; Haskell | Quipper; DDSIM; SQIR | Custom compiler | - |
Velasquez [25] | [c] | - | - | Symbolic maps; QUASH | Number of 2-qubit gates |
Atkinson [12] | [mh] | - | - | Ant Colony | |
Massey [26] | [mh] | C++ | Q-PACE; GALib | Genetic Algorithm | |
Ding [27] | [mh] | - | - | Genetic Algorithm | |
Abdelmoiz [28] | [mh] | Python | Qiskit | Cellular GA | - |
Swaddle [29] | [nn] | Python | TensorFlow | Matrix to circuit | Euclidean distance |
Murakami [13] | [nn] | - | - | Input-output Network | Two qubit gates |
Cruz-Benito [30] | [nn] | Python | Pytorch; Open QASM | Seq2seq Network | Accuracy |
x | f0 | f1 | f2 | f3 |
---|---|---|---|---|
0 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naranjo, M.A.; Fletscher, L.A. Review Quantum Circuit Synthesis for Grover’s Algorithm Oracle. Algorithms 2024, 17, 382. https://doi.org/10.3390/a17090382
Naranjo MA, Fletscher LA. Review Quantum Circuit Synthesis for Grover’s Algorithm Oracle. Algorithms. 2024; 17(9):382. https://doi.org/10.3390/a17090382
Chicago/Turabian StyleNaranjo, Miguel A., and Luis A. Fletscher. 2024. "Review Quantum Circuit Synthesis for Grover’s Algorithm Oracle" Algorithms 17, no. 9: 382. https://doi.org/10.3390/a17090382
APA StyleNaranjo, M. A., & Fletscher, L. A. (2024). Review Quantum Circuit Synthesis for Grover’s Algorithm Oracle. Algorithms, 17(9), 382. https://doi.org/10.3390/a17090382