Quantum Computing and Machine Learning in Medical Decision-Making: A Comprehensive Review
Abstract
:1. Introduction
2. Foundational Concepts
2.1. Quantum Computing
2.2. Machine Learning
2.3. Data Analytics in Healthcare
3. Applications in Medical Decision-Making
3.1. QC Applications
3.2. ML Applications
3.3. Synergy of QC and ML
3.4. Large Language Model-Based Chatbots in Healthcare
4. Challenges and Limitations
4.1. QC Challenges
Quantum Simulators
4.2. ML Challenges
4.3. Integration Challenges
5. Future Directions and Opportunities
5.1. Emerging Trends in Quantum Hardware and Algorithm Development
5.2. Role of Explainable AI (XAI) in Medical Applications
5.3. Potential for Real-Time Decision-Making Using Quantum-Enhanced ML Models
5.4. Ethical Implications and the Need for Cross-Disciplinary Collaboration
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bornstein, B.H.; Emler, A.C. Rationality in medical decision making: A review of the literature on doctors’ decision-making biases. J. Eval. Clin. Pr. 2001, 7, 97–107. [Google Scholar] [CrossRef]
- Schwartz, A. Medical decision making and medical education: Challenges and opportunities. Perspect. Biol. Med. 2011, 54, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Siddique, S.; Chow, J.C. Artificial intelligence in radiotherapy. Rep. Pr. Oncol. Radiother. 2020, 25, 656–666. [Google Scholar] [CrossRef]
- Siddique, S.; Chow, J.C.L. Machine Learning in Healthcare Communication. Encyclopedia 2021, 1, 220–239. [Google Scholar] [CrossRef]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine learning in medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef]
- Rasool, R.U.; Ahmad, H.F.; Rafique, W.; Qayyum, A.; Qadir, J.; Anwar, Z. Quantum Computing for Healthcare: A Review. Futur. Internet 2023, 15, 94. [Google Scholar] [CrossRef]
- Chow, J.C.L. Quantum Computing in Medicine. Med Sci. 2024, 12, 67. [Google Scholar] [CrossRef]
- Ivanova, N.; Volkov, D.; Morozov, P.; Sokolova, O. Quantum Computing and Machine Learning Integration: Challenges and Opportunities. J. Deep Learn. Genom. Data Anal. 2024, 4, 42–58. [Google Scholar]
- Ekert, A.; Hayden, P.M.; Inamori, H. Basic concepts in quantum computation. In Coherent Atomic Matter Waves: 27 July–27 August 1999; Springer: Berlin/Heidelberg, Germany, 2001; pp. 661–701. [Google Scholar]
- Vedral, V.; Plenio, M.B. Basics of quantum computation. Prog. Quantum Electron. 1998, 22, 1–39. [Google Scholar] [CrossRef]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Programmable quantum gate arrays. Phys. Rev. Lett. 1997, 79, 321–324. [Google Scholar] [CrossRef]
- Gu, Z.Y.; Qian, S.W. Knotted pictures of Hadamard gate and CNOT gate. Commun. Theor. Phys. 2009, 51, 967. [Google Scholar]
- Mummaneni, B.C.; Liu, J.; Lefkidis, G.; Hübner, W. Laser-controlled implementation of controlled-NOT, hadamard, SWAP, and pauli gates as well as generation of bell states in a 3d–4f molecular magnet. J. Phys. Chem. Lett. 2022, 13, 2479–2485. [Google Scholar] [CrossRef]
- Jaeger, G. Classical and quantum computing. In Quantum Information: An Overview; American Mathematical Society: Providence, RI, USA, 2007; pp. 203–217. [Google Scholar]
- Shrivastava, P.; Soni, K.K.; Rasool, A. Evolution of Quantum Computing Based on Grover’s Search Algorithm. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6 July 2019; pp. 1–6. [Google Scholar]
- Ekert, A.; Jozsa, R. Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 1996, 68, 733. [Google Scholar] [CrossRef]
- Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia, PA, USA, 1 July 1996; pp. 212–219. [Google Scholar]
- Monz, T.; Nigg, D.; Martinez, E.A.; Brandl, M.F.; Schindler, P.; Rines, R.; Wang, S.X.; Chuang, I.L.; Blatt, R. Realization of a scalable Shor algorithm. Science 2016, 351, 1068–1070. [Google Scholar] [CrossRef]
- Blekos, K.; Brand, D.; Ceschini, A.; Chou, C.-H.; Li, R.-H.; Pandya, K.; Summer, A. A review on quantum approximate optimization algorithm and its variants. Phys. Rep. 2024, 1068, 1–66. [Google Scholar] [CrossRef]
- Schlosshauer, M. Quantum decoherence. Phys. Rep. 2019, 831, 1–57. [Google Scholar] [CrossRef]
- Khan, T.M.; Robles-Kelly, A. Machine learning: Quantum vs classical. IEEE Access 2020, 8, 219275–219294. [Google Scholar] [CrossRef]
- Roy, S.; Meena, T.; Lim, S.-J. Demystifying supervised learning in healthcare 4.0: A new reality of transforming diagnostic medicine. Diagnostics 2022, 12, 2549. [Google Scholar] [CrossRef]
- Eckhardt, C.M.; Madjarova, S.J.; Williams, R.J.; Ollivier, M.; Karlsson, J.; Pareek, A.; Nwachukwu, B.U. Unsupervised machine learning methods and emerging applications in healthcare. Knee Surg. Sports Traumatol. Arthrosc. 2022, 31, 376–381. [Google Scholar] [CrossRef]
- Saranya, E.; Shreenidhi, K.S.; Anandaram, H.; Upadhye, S.; Gukendran, R. Transforming Hospitality, Personalized Medicine, and Adaptive Learning: Robotic Innovations. In AI-Powered Advances in Pharmacology; IGI Global: Hershey, PA, USA, 2025; pp. 373–406. [Google Scholar]
- Thangavel, R.K.; Sundarraj, A.A.; Ramakrishnan, J.; Balasubramanian, K. Coati optimization algorithm for brain tumor identification based on MRI with utilizing phase-aware composite deep neural network. Electromagn. Biol. Med. 2025, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Javed, H.; El-Sappagh, S.; Abuhmed, T. Robustness in deep learning models for medical diagnostics: Security and adversarial challenges towards robust AI applications. Artif. Intell. Rev. 2024, 58, 12. [Google Scholar] [CrossRef]
- Sarafraz, I.; Agahi, H.; Mahmoodzadeh, A. Convolutional neural network (CNN) configuration using a learning automaton model for neonatal brain image segmentation. PLoS ONE 2025, 20, e0315538. [Google Scholar] [CrossRef]
- Cheng, C.-T.; Ooyang, C.-H.; Liao, C.-H.; Kang, S.-C. Applications of deep learning in trauma radiology: A narrative review. Biomed. J. 2024, 48, 100743. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Janu, N.; Nawal, M.; Goswami, A. Genomics and Machine Learning: ML Approaches, Future Directions and Challenges in Genomics. In Genomics at the Nexus of AI, Computer Vision, and Machine Learning; Wiley Online Library: Hoboken, NJ, USA, 2025; pp. 437–457. [Google Scholar]
- Chongloi, J.; Qazi, S. Role of artificial intelligence in clinical cancer genomics for oncology. In Deep Learning in Genetics and Genomics; Academic Press: Cambridge, MA, USA, 2025; pp. 61–69. [Google Scholar]
- Karaferis, D.; Balaska, D.; Pollalis, Y. Design and Development of Data-Driven AI to Reduce the Discrepancies in Healthcare EHR Utilization. J. Clin. Med. Re 2025, 5, 100184. [Google Scholar]
- Bhatt, P.; Baig, M.N.; Sridevi, R.; Hazela, B. Quantum Computing: A Catalyst for Drug Discovery Evolution. In AI-Powered Advances in Pharmacology; IGI Global: Hershey, PA, USA, 2025; pp. 169–200. [Google Scholar]
- Wang, P.-H.; Chen, J.-H.; Yang, Y.-Y.; Lee, C.; Tseng, Y.J. Recent advances in quantum computing for drug discovery and development. IEEE Nanotechnol. Mag. 2023, 17, 26–30. [Google Scholar] [CrossRef]
- Pakela, J.M.; Tseng, H.; Matuszak, M.M.; Haken, R.K.T.; McShan, D.L.; El Naqa, I. Quantum-inspired algorithm for radiotherapy planning optimization. Med Phys. 2019, 47, 5–18. [Google Scholar] [CrossRef]
- Niraula, D.; Jamaluddin, J.; Matuszak, M.M.; Haken, R.K.; Naqa, I.E. Quantum deep RL for clinical decision support in oncology: Application to adaptive radiotherapy. Sci. Rep. 2021, 11, 23545. [Google Scholar] [CrossRef]
- Sarkar, A.; Al-Ars, Z.; Bertels, K. Estimating algorithmic information using quantum computing for genomics applications. Appl. Sci. 2021, 11, 2696. [Google Scholar] [CrossRef]
- Nałęcz-Charkiewicz, K.; Charkiewicz, K.; Nowak, R.M. Quantum computing in bioinformatics: A systematic review mapping. Brief. Bioinform. 2024, 25, bbae391. [Google Scholar] [CrossRef]
- Salehi, A.W.; Khan, S.; Gupta, G.; Alabduallah, B.I.; Almjally, A.; Alsolai, H.; Siddiqui, T.; Mellit, A. A study of CNN and transfer learning in medical imaging: Advantages, challenges, future scope. Sustainability 2023, 15, 5930. [Google Scholar] [CrossRef]
- Tiwari, P.; Pant, B.; Elarabawy, M.M.; Abd-Elnaby, M.; Mohd, N.; Dhiman, G.; Sharma, S. CNN based multiclass brain tumor detection using medical imaging. Comput. Intell. Neurosci. 2022, 2022, 1830010. [Google Scholar] [CrossRef] [PubMed]
- Madabhushi, A.; Lee, G. Image analysis and machine learning in digital pathology: Challenges and opportunities. Med. Image Anal. 2016, 33, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Zormpas-Petridis, K.; Noguera, R.; Ivankovic, D.K.; Roxanis, I.; Jamin, Y.; Yuan, Y. SuperHistopath: A deep learning pipeline for mapping tumor heterogeneity on low-resolution whole-slide digital histopathology images. Front. Oncol. 2021, 10, 586292. [Google Scholar] [CrossRef]
- Shamout, F.; Zhu, T.; Clifton, D.A. Machine learning for clinical outcome prediction. IEEE Rev. Biomed. Eng. 2020, 14, 116–126. [Google Scholar] [CrossRef]
- Chu, C.S.; Lee, N.P.; Adeoye, J.; Thomson, P.; Choi, S. Machine learning and treatment outcome prediction for oral cancer. J. Oral Pathol. Med. 2020, 49, 977–985. [Google Scholar] [CrossRef]
- Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 2014, 13, 8–17. [Google Scholar] [CrossRef]
- Tahmooresi, M.; Afshar, A.; Rad, B.B.; Nowshath, K.B.; Bamiah, M.A. Early detection of breast cancer using machine learning techniques. J. Telecommun. Electron. Comput. Eng. (JTEC) 2018, 10, 21–77. [Google Scholar]
- Sebastiani, M.; Vacchi, C.; Manfredi, A.; Cassone, G. Personalized medicine and machine learning: A roadmap for the future. J. Clin. Med. 2022, 11, 4110. [Google Scholar] [CrossRef]
- Eckardt, J.N.; Wendt, K.; Bornhaeuser, M.; Middeke, J.M. RL for precision oncology. Cancers 2021, 13, 4624. [Google Scholar] [CrossRef]
- Arikhad, M.; Waqar, M.; Khan, A.H.; Rafi, A.H. Transforming Cardiovascular and Neurological Care with AI: A Paradigm Shift in Medicine. Rev. De Intel. Artif. En Med. 2024, 15, 1264–1277. [Google Scholar]
- Giorgini, F.; Di Dalmazi, G.; Diciotti, S. Artificial intelligence in endocrinology: A comprehensive review. J. Endocrinol. Investig. 2023, 47, 1067–1082. [Google Scholar] [CrossRef] [PubMed]
- Schuld, M.; Sinayskiy, I.; Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 2014, 56, 172–185. [Google Scholar] [CrossRef]
- Yu, C.-H.; Gao, F.; Lin, S.; Wang, J. Quantum data compression by principal component analysis. Quantum Inf. Process. 2019, 18, 249. [Google Scholar] [CrossRef]
- Kavitha, S.S.; Kaulgud, N. Quantum machine learning for support vector machine classification. Evol. Intell. 2022, 17, 819–828. [Google Scholar] [CrossRef]
- Abbas, A.; Sutter, D.; Zoufal, C.; Lucchi, A.; Figalli, A.; Woerner, S. The power of quantum neural networks. Nat. Comput. Sci. 2021, 1, 403–409. [Google Scholar] [CrossRef]
- Maheshwari, D.; Garcia-Zapirain, B.; Sierra-Sosa, D. Quantum machine learning applications in the biomedical domain: A systematic review. IEEE Access 2022, 10, 80463–80484. [Google Scholar] [CrossRef]
- Wei, L.; Liu, H.; Xu, J.; Shi, L.; Shan, Z.; Zhao, B.; Gao, Y. Quantum machine learning in medical image analysis: A survey. Neurocomputing 2023, 525, 42–53. [Google Scholar] [CrossRef]
- Baniata, H. SoK: Quantum computing methods for machine learning optimization. Quantum Mach. Intell. 2024, 6, 47. [Google Scholar] [CrossRef]
- Pulicharla, M.R. Hybrid Quantum-Classical Machine Learning Models: Powering the Future of AI. J. Sci. Technol. 2023, 4, 40–65. [Google Scholar] [CrossRef]
- Colburn, G.G. Hybrid Classical-Quantum Dose Computation Method for Radiation Therapy Treatment Planning. Available online: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/ww72bg09s (accessed on 24 January 2025).
- Avramouli, M.; Savvas, I.K.; Vasilaki, A.; Garani, G. Unlocking the potential of quantum machine learning to advance drug discovery. Electronics 2023, 12, 2402. [Google Scholar] [CrossRef]
- Sharma, M.; Mahajan, Y.; Alzahrani, A. Personalized Medicine Through Quantum Computing: Tailoring Treatments in Healthcare. In Quantum Innovations at the Nexus of Biomedical Intelligence; IGI Global: Hershey, PA, USA, 2024; pp. 147–166. [Google Scholar]
- Prajapati, J.B.; Paliwal, H.; Prajapati, B.G.; Saikia, S.; Pandey, R. Quantum machine learning in prediction of breast cancer. In Quantum Computing: A Shift from Bits to Qubits; Springer: Singapore, 2023; pp. 351–382. [Google Scholar]
- Matondo-Mvula, N.; Elleithy, K. Advances in Quantum Medical Image Analysis Using Machine Learning: Current Status and Future Directions. In Proceedings of the 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), Bellevue, WA, USA, 17–22 September 2023; pp. 367–377. [Google Scholar]
- Rahimi, M.; Asadi, F. Oncological Applications of Quantum Machine Learning. Technol. Cancer Res. Treat. 2023, 22, 15330338231215214. [Google Scholar] [CrossRef] [PubMed]
- Felefly, T.; Roukoz, C.; Fares, G.; Achkar, S.; Yazbeck, S.; Meyer, P.; Kordahi, M.; Azoury, F.; Nasr, D.N.; Nasr, E.; et al. An explainable MRI-radiomic quantum neural network to differentiate between large brain metastases and high-grade glioma using quantum annealing for feature selection. J. Digit. Imaging 2023, 36, 2335–2346. [Google Scholar] [CrossRef]
- Chow, J.C.L.; Li, K. Ethical Considerations in Human-Centered AI: Advancing Oncology Chatbots Through Large Language Models. JMIR Bioinform. Biotechnol. 2024, 5, e64406. [Google Scholar] [CrossRef]
- Chow, J.C.L.; Wong, V.; Li, K. Generative Pre-Trained Transformer-Empowered Healthcare Conversations: Current Trends, Challenges, and Future Directions in Large Language Model-Enabled Medical Chatbots. BioMedInformatics 2024, 4, 837–852. [Google Scholar] [CrossRef]
- Kovacek, D.; Chow, J.C.L. An AI-assisted chatbot for radiation safety education in radiotherapy. IOP SciNotes 2021, 2, 034002. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Wang, Y. A review on main optimization methods of BERT. Data Anal. Knowl. Discov. 2021, 5, 3–15. [Google Scholar]
- Wu, S.; Fei, H.; Qu, L.; Ji, W.; Chua, T.S. Next-gpt: Any-to-any multimodal llm. arXiv 2023, arXiv:2309.05519. [Google Scholar]
- Chow, J.C.L.; Li, K. Developing effective frameworks for large language model–based medical chatbots: Insights from radiotherapy education with ChatGPT. JMIR Cancer 2025, 11, e66633. [Google Scholar] [CrossRef]
- Xu, L.; Sanders, L.; Li, K.; Chow, J.C.L. Chatbot for health care and oncology applications using artificial intelligence and machine learning: Systematic review. JMIR Cancer 2021, 7, e27850. [Google Scholar] [CrossRef]
- Silvestri, C.; Roshal, J.; Shah, M.; Widmann, W.D.; Townsend, C.; Brian, R.; L’huillier, J.C.; Navarro, S.M.; Lund, S.; Sathe, T.S. Evaluation of a novel large language model (LLM)-powered chatbot for oral boards scenarios. Glob. Surg. Educ.-J. Assoc. Surg. Educ. 2024, 3, 112. [Google Scholar] [CrossRef]
- Chow, J.C.L.; Sanders, L.; Li, K. Design of an educational chatbot using artificial intelligence in radiotherapy. AI 2023, 4, 319–332. [Google Scholar] [CrossRef]
- Ali, S.R.; Dobbs, T.D.; Whitaker, I.S. Using a ChatBot to support clinical decision-making in free flap monitoring. J. Plast. Reconstr. Aesthetic Surg. 2022, 75, 2387–2440. [Google Scholar] [CrossRef] [PubMed]
- Brender, T.D. Medicine in the era of artificial intelligence: Hey chatbot, write me an H&P. JAMA Intern. Med. 2023, 183, 507–508. [Google Scholar]
- Chung, K.; Park, R.C. Chatbot-based heathcare service with a knowledge base for cloud computing. Clust. Comput. 2018, 22, 1925–1937. [Google Scholar] [CrossRef]
- Zand, A.; Sharma, A.; Stokes, Z.; Reynolds, C.; Montilla, A.; Sauk, J.; Hommes, D. An exploration into the use of a chatbot for patients with inflammatory bowel diseases: Retrospective cohort study. J. Med Internet Res. 2020, 22, e15589. [Google Scholar] [CrossRef]
- Carmona, K.A.; Chittamuru, D.; Kravitz, R.L.; Ramondt, S.; Ramírez, A.S. Health information seeking from an intelligent web-based symptom checker: Cross-sectional questionnaire study. J. Med Internet Res. 2022, 24, e36322. [Google Scholar] [CrossRef]
- Ćirković, A. Evaluation of four artificial intelligence–assisted self-diagnosis apps on three diagnoses: Two-year follow-up study. J. Med. Internet Res. 2020, 22, e18097. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, D.; Legay, A.; Kieffer, S. User Reception of Babylon Health’s Chatbot. In Proceedings of the 6th International Conference on Human Computer Interaction Theory and Applications, Lleida, Spain, 22–27 June 2025; pp. 134–141. [Google Scholar]
- Chow, J.C.L.; Wong, V.; Sanders, L.; Li, K. Developing an AI-assisted educational chatbot for radiotherapy using the ibm watson assistant platform. Healthcare 2023, 11, 2417. [Google Scholar] [CrossRef]
- Ahmed, M.N.; Toor, A.S.; O’Neil, K.; Friedland, D. Cognitive computing and the future of health care cognitive computing and the future of healthcare: The cognitive power of IBM watson has the potential to transform global personalized medicine. IEEE Pulse 2017, 8, 4–9. [Google Scholar] [CrossRef]
- Swick, R.K. The accuracy of artificial intelligence (ai) chatbots in telemedicine. J. South Carol. Acad. Sci. 2021, 19, 17. [Google Scholar]
- Reddy, V.V.; Singh, T.; Muralidharan, C. Healthbot-An AI based chatbot using Webspider and Mediglobe. In Proceedings of the 2024 10th International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 12–14 April 2024; pp. 1229–1234. [Google Scholar]
- Fellous-Asiani, M.; Chai, J.H.; Whitney, R.S.; Auffèves, A.; Ng, H.K. Limitations in quantum computing from resource constraints. PRX Quantum 2021, 2, 040335. [Google Scholar] [CrossRef]
- Markov, I.L. Limits on fundamental limits to computation. Nature 2014, 512, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Resch, S.; Karpuzcu, U.R. Benchmarking quantum computers and the impact of quantum noise. ACM Comput. Surv. 2021, 54, 1–35. [Google Scholar] [CrossRef]
- Caleffi, M.; Amoretti, M.; Ferrari, D.; Illiano, J.; Manzalini, A.; Cacciapuoti, A.S. Distributed quantum computing: A survey. Comput. Netw. 2024, 254, 110672. [Google Scholar] [CrossRef]
- Rosch-Grace, D.; Straub, J. Analysis of the likelihood of quantum computing proliferation. Technol. Soc. 2022, 68, 101880. [Google Scholar] [CrossRef]
- Cruz-Benito, J.; Faro, I.; Martín-Fernández, F.; Therón, R.; García-Peñalvo, F.J. A Deep-Learning-based proposal to aid users in Quantum Computing programming. In Learning and Collaboration Technologies, Proceedings of the Learning and Teaching: 5th International Conference, LCT 2018, Held as Part of HCI International 2018, Las Vegas, NV, USA, 15–20 July 2018; Proceedings, Part II 5 2018; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 421–430. [Google Scholar]
- Cross, A. The IBM Q experience and QISKit open-source quantum computing software. In APS March Meeting Abstracts; American Physical Society: College Park, Maryland, USA, 2018; Volume 2018, p. L58-003. [Google Scholar]
- Daley, A.J.; Bloch, I.; Kokail, C.; Flannigan, S.; Pearson, N.; Troyer, M.; Zoller, P. Practical quantum advantage in quantum simulation. Nature 2022, 607, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wu, Q.; Shen, J.; Zhao, J.; Zidan, M.; Tong, L. An optimized quantum minimum searching algorithm with sure-success probability and its experiment simulation with Cirq. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 10425–10434. [Google Scholar] [CrossRef]
- Bergholm, V.; Izaac, J.; Schuld, M.; Gogolin, C.; Ahmed, S.; Ajith, V.; Alam, M.S.; Alonso-Linaje, G.; AkashNarayanan, B.; Asadi, A.; et al. Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv 2018, arXiv:1811.04968. [Google Scholar]
- Chow, J.C.L.; Sanders, L.; Li, K. Impact of ChatGPT on medical chatbots as a disruptive technology. Front. Artif. Intell. 2023, 6, 1166014. [Google Scholar] [CrossRef]
- Gianfrancesco, M.A.; Tamang, S.; Yazdany, J.; Schmajuk, G. Potential biases in machine learning algorithms using electronic health record data. JAMA Intern. Med. 2018, 178, 1544–1547. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Mcdermid, J.A.; Lawton, T.; Habli, I. The role of explainability in assuring safety of machine learning in healthcare. IEEE Trans. Emerg. Top. Comput. 2022, 10, 1746–1760. [Google Scholar] [CrossRef]
- Rasheed, K.; Qayyum, A.; Ghaly, M.; Al-Fuqaha, A.; Razi, A.; Qadir, J. Explainable, trustworthy, and ethical machine learning for healthcare: A survey. Comput. Biol. Med. 2022, 149, 106043. [Google Scholar] [CrossRef]
- Polak, T.B.; van Rosmalen, J.; de Groot, C.A.U. –. Expanded Access as a source of real-world data: An overview of FDA and EMA approvals. Br. J. Clin. Pharmacol. 2020, 86, 1819–1826. [Google Scholar] [CrossRef]
- Cerezo, M.; Verdon, G.; Huang, H.-Y.; Cincio, L.; Coles, P.J. Challenges and opportunities in quantum machine learning. Nat. Comput. Sci. 2022, 2, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Doga, H.; Bose, A.; Sahin, M.E.; Bettencourt-Silva, J.; Pham, A.; Kim, E.; Andress, A.; Saxena, S.; Parida, L.; Robertus, J.L.; et al. How can quantum computing be applied in clinical trial design and optimization? Trends Pharmacol. Sci. 2024, 45, 880–891. [Google Scholar] [CrossRef]
- Möller, M.; Vuik, C. On the impact of quantum computing technology on future developments in high-performance scientific computing. Ethic-Inf. Technol. 2017, 19, 253–269. [Google Scholar] [CrossRef]
- Núñez-Merino, M.; Maqueira-Marín, J.M.; Moyano-Fuentes, J.; Castaño-Moraga, C.A. Quantum-inspired computing technology in operations and logistics management. Int. J. Phys. Distrib. Logist. Manag. 2024, 54, 247–274. [Google Scholar] [CrossRef]
- de Leon, N.P.; Itoh, K.M.; Kim, D.; Mehta, K.K.; Northup, T.E.; Paik, H.; Palmer, B.S.; Samarth, N.; Sangtawesin, S.; Steuerman, D.W. Materials challenges and opportunities for quantum computing hardware. Science 2021, 372, eabb2823. [Google Scholar] [CrossRef]
- Oyeniran, O.C.; Adewusi, A.O.; Adeleke, A.G.; Azubuko, C.F.; Akwawa, L.A. Advancements in quantum computing and their implications for software development. Comput. Sci. IT Res. J. 2023, 4, 577–593. [Google Scholar] [CrossRef]
- Band, S.S.; Yarahmadi, A.; Hsu, C.-C.; Biyari, M.; Sookhak, M.; Ameri, R.; Dehzangi, I.; Chronopoulos, A.T.; Liang, H.-W. Application of explainable artificial intelligence in medical health: A systematic review of interpretability methods. Inform. Med. Unlocked 2023, 40, 101286. [Google Scholar] [CrossRef]
- Zhang, Y.; Weng, Y.; Lund, J. Applications of Explainable Artificial Intelligence in Diagnosis and Surgery. Diagnostics 2022, 12, 237. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, S.; Behera, B.K.; Mulay, P.; Ahmed, E.A.; Al-Kuwari, S.; Tiwari, P.; Farouk, A. Explainable quantum clustering method to model medical data. Knowl.-Based Syst. 2023, 267, 110413. [Google Scholar] [CrossRef]
- Steinmüller, P.; Schulz, T.; Graf, F.; Herr, D. eXplainable AI for quantum Machine Learning. arXiv 2022, arXiv:2211.01441. [Google Scholar]
- Ullah, U.; Garcia-Zapirain, B. Quantum Machine Learning Revolution in Healthcare: A Systematic Review of Emerging Perspectives and Applications. IEEE Access 2024, 12, 11423–11450. [Google Scholar] [CrossRef]
- Coyle, D.; Weller, A. “Explaining” machine learning reveals policy challenges. Science 2020, 368, 1433–1434. [Google Scholar] [CrossRef]
- Ganguly, S.; Ganguly, S. QML: Way Forward. In Quantum Machine Learning: An Applied Approach: The Theory and Application of Quantum Machine Learning in Science and Industry; Apress: New York, NY, USA, 2021; pp. 461–496. [Google Scholar]
Application | Description | Reference |
---|---|---|
Drug Discovery | QC can enhance drug discovery by enabling simulations of complex molecular interactions at the quantum level. | [34] |
Radiotherapy | QC excels at solving optimization problems, which is crucial for radiotherapy treatment planning. | [35] |
Genomic Data Analysis | QC has the potential to innovate genomic data analysis by enabling faster processing and more accurate predictions. | [37] |
Medical Imaging | ML algorithms are increasingly used in medical imaging and pathology to assist in diagnosing diseases with higher accuracy and speed. | [39] |
Digital Pathology | ML algorithms are applied to analyze histopathological slides of tissue samples, helping pathologists identify disease markers, cancerous cells, and other abnormalities. | [41] |
Predictive Modeling | ML models can identify risk factors and predict the likelihood of disease progression or recurrence. | [43] |
Personalized Medicine | ML algorithms can analyze genetic mutations and molecular profiles of tumors to recommend targeted therapies. | [47] |
Quantum ML (QML) | QML refers to the application of QC to enhance traditional ML algorithms. | [51] |
Hybrid Quantum-Classical Models | Researchers are exploring hybrid quantum-classical models, where quantum algorithms are integrated with classical ML methods. | [58] |
LLM-based Chatbots | LLM-based chatbots are increasingly being used in patient education, providing individuals with personalized, accessible information about their conditions, treatments, and medications. | [72] |
Challenge | Description | References | Potential Solutions |
---|---|---|---|
QC Challenges | Scalability, high error rates, and accessibility of quantum hardware. | [86,87,88,89,90,91] | Advancements in qubit stability, error correction, fault-tolerant architectures, and increased accessibility. |
ML Challenges | Data quality, patient privacy, bias, explainability, and regulatory compliance. | [96,97,98,99,100] | Improved data curation, anonymization techniques, bias mitigation, explainable AI, and adherence to regulations. |
Integration Challenges | Bridging QC and ML, rigid clinical workflows, interoperability, and high costs. | [101,102,103,104] | Specialized expertise, flexible workflows, interoperability standards, and investment in infrastructure. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chow, J.C.L. Quantum Computing and Machine Learning in Medical Decision-Making: A Comprehensive Review. Algorithms 2025, 18, 156. https://doi.org/10.3390/a18030156
Chow JCL. Quantum Computing and Machine Learning in Medical Decision-Making: A Comprehensive Review. Algorithms. 2025; 18(3):156. https://doi.org/10.3390/a18030156
Chicago/Turabian StyleChow, James C. L. 2025. "Quantum Computing and Machine Learning in Medical Decision-Making: A Comprehensive Review" Algorithms 18, no. 3: 156. https://doi.org/10.3390/a18030156
APA StyleChow, J. C. L. (2025). Quantum Computing and Machine Learning in Medical Decision-Making: A Comprehensive Review. Algorithms, 18(3), 156. https://doi.org/10.3390/a18030156