Assessing Vegetation Composition and the Indicator Species around Water Source Areas in a Pine Forest Plantation: A Case Study from Watujali and Silengkong Catchments, Kebumen, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Time and Site Descriptions
2.2. Data Collection
2.3. Data Analysis
2.3.1. Species Identification
2.3.2. Calculation of Species Abundance
2.3.3. General Comparison between Vegetation Community around Water Source Areas in Watujali and Silengkong Catchments
2.3.4. Defining Indicator Species
2.3.5. Ordination and Correlation
3. Results
3.1. Identification of Specific Plants around Water Source Areas before Vegetation Change as the Basis for Indicator Species
3.2. Species Composition around Water Source Areas in Different Catchments (Watujali and Silengkong Catchments)
3.3. Defining Indicator Species
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Foley, J.; Asner, G.; Costa, M.; Coe, M.T.; DeFries, R.; Gibs, H.K.; Synder, P. Amazonia revealed: Forest degradation and loss of ecosystem goods and services in the Amazone Basins. Front. Ecol. Environ. 2007, 5, 25–32. [Google Scholar] [CrossRef]
- Gong, T.T.; Lei, H.M.; Yang, D.W.; Jiao, Y.; Yang, H.B. Effects of Vegetation Change on Evapotranspiration in a Semiarid Shrubland of the Loess Plateau, China. Hydrol. Earth Syst. Sci. Disc. 2014, 11, 13571–13605. [Google Scholar] [CrossRef]
- Gwynne, R. Direct Foreign Investment and Non Traditional Export Growth in Chile; The case of The Forestry Sector. Bull. Lat. Am. Res. 1996, 15, 341–357. [Google Scholar] [CrossRef]
- Kunert, N.; Cardenas, A.M. Are mixed tropical tree plantation more resistant to drought than monocultures? Forests 2015, 6, 2029–2046. [Google Scholar] [CrossRef]
- Perhutani. Statistik Perhutani 2009–2013 [The 2009–2013 Perhutani Statistics]; Perum Perhutani: Jakarta, Indonesia, 2014. [Google Scholar]
- Valduga, M.O.; Zenni, R.D.; Vitule, J.R. Ecological impacts of non-native tree species plantations are board and heterogeneous: A review of Brazilian research. Anais da Academia Brasileira de Ciencias. 2016, 88, 1675–1688. [Google Scholar] [CrossRef]
- George, R.J.; Nulsen, R.A.; Ferdowsian, R.; Raper, G.P. Interaction betseen trees and groundwaters in recharge and discharge areas-A survey of Western Australian sites. Agric. Water Manag. 1999, 39, 91–113. [Google Scholar] [CrossRef]
- Fan, J.; Ostergaard, K.T.; Guyot, A.; Fujiwara, S.; Lockington, D.A. Estimating groundwater evapotranspiration by a subtropical pine plantation using diurnal water table fluctuations: Implication from night-time water use. J. Hydrol. 2016, 542, 679–685. [Google Scholar] [CrossRef]
- Winter, T.C. The concept of Hydrologic Landscapes. J. Am. Water Resour. Assoc. 2001, 37, 335–349. [Google Scholar] [CrossRef]
- Pramono, I.B.; Budiastuti, M.T.; Gunawan, T.; Wiryanto. Base flow from various area of pine forest at Kedungbulus sub watershed, Kebumen District, Central Java, Indonesia. Int. J. Dev. Sustain. 2017, 6, 99–114. [Google Scholar]
- Duan, L.; Huang, M.; Zhang, L. Differences in Hydrological Responses for Different Vegetation Types on a Steep Slope on The Loess Plateu, China. J. Hydrol. 2016, 537, 356–366. [Google Scholar] [CrossRef]
- Arbez, M. Ecological Impacts of Plantation Forests on Biodiversity and Genetic Diversity: Ecological and socioeconomic impacts of close-to-nature forestry. In EFI Proceedings No. 37; Green, T., Ed.; European Forest Institute: Joensuu, Finland, 2001. [Google Scholar]
- Troeger, D.; Garcia, R.; Aguayo, M.; Barra, R.; Vogt, J. Assesing the impact of plantation forestry on plant biodiversity; A comparison of sites in Central Chile and Chilean Patagonia. Glob. Ecol. Conserv. 2017, 10, 159–172. [Google Scholar]
- Pereira, H.; Navarro, L.; Martins, I. Global biodiversity change: The bad, the good, and the unknown. Annu. Rev. Env. Resour. 2012, 37, 25–50. [Google Scholar] [CrossRef]
- Bosch, J.; Hewlett, J. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 1982, 55, 3–23. [Google Scholar] [CrossRef]
- Swank, A.; Douglass, J. Streamflow Greatly Reduce by Converting Deciduous Hardwood Stand to Pine. Science 1974, 185, 857–859. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Zhou, G.; Zhang, Z.; Wei, X.; McNulty, S.G.; Vose, J.M. Potential water yield reduction due to forestatition accros China. J. Hydrol. 2016, 328, 548–558. [Google Scholar] [CrossRef]
- Cahyati, L.D.; Sumarni, T.; Widaryanto, E. Potential allelopathy of Pine leaf as bioherbicide on Pigweed (Portulaca Oleracea). J. Env. Sci. Technol. Food Technol. 2013, 7, 48–53. [Google Scholar]
- Odum, E. Dasar-dasar ekologi edisi kletiga [Basic of Ecology], 3rd ed.; UGM Press: Yogyakarta, Indonesia, 1971. [Google Scholar]
- Adalina, Y. Pengaruh Tanaman Hutan Jenis Pinus. Sp (Konifer) Terhadap Kondisi Kemasaman (pH) Tanah Dibawahnya [The Effect of Pinus sp Forest Plantation on Soil pH under the Forest Stand]. Available online: https://www.scribd.com/doc/94757845/2510 (accessed on 14 September 2007).
- KPH Kedu Selatan. Laporan evaluasi potensi sumberdaya hutan tahun 2016 [The 2016 Evaluation of Forest Resources Potential]; Perum Perhutani: Purworejo, Indonesia, 2016. [Google Scholar]
- Pramono, I.B.; Budiastuti, M.T.; Gunawan, T.; Wiryanto. Water Yield Analysis on Area Covered by Pine Forest at Kedungbulus Watershed Central Java, Indonesia. Int. J. Adv. Sci. Eng. Inf. Technol. 2017, 7, 943–949. [Google Scholar] [CrossRef]
- BPSHT Unit I Jawa Tengah. Petunjuk Pelaksanaan Pengelolaan Sumberdaya Hutan Bersama Masyarakat di Unit I Jawa Tengah [Manual for Community Base Forest Management in Unit I Central Java]; PT Perhutani Persero Unit I Central Java: Semarang, Indonesia, 2002. [Google Scholar]
- Tiner, R.W., Jr. Wetlands of the United States: Current Status and Recent Trends; United States Fish and Wildlife Service: Washington, DC, USA, 1984. [Google Scholar]
- Dahl, T.E. Wetlands Losses in the United States, 1780’s to 1980’s; Report to the Congress (No. PB-91-169284/XAB); National Wetlands Inventory: St. Petersburg, FL, USA, 1990. [Google Scholar]
- Goslee, S.; Brooks, R.; Cole, C. Plants as indicator of wetland water source. Plant Ecol. 1997, 131, 199–206. [Google Scholar] [CrossRef]
- Verma, R.; Jayanti, T.; Vinoda, S.; Shivappa, A. Tree species as indicators of groundwater recharge and discharge. Int. J. Eng. Tech. Res. (IJETR) 2015, 3, 127–135. [Google Scholar]
- Hoyos, I.C.; Krakauer, N.Y.; Khanbilvardi, R. Estimating the probability of vegetation to be groundwater dependent based on the elevation tree models. Environments 2016, 3, 1–21. [Google Scholar]
- Bakker, J.D. Increasing the utility of indicator species analysis. J. Appl. Ecol. 2008, 45, 1829–1835. [Google Scholar] [CrossRef]
- Fiqa, A.P.; Arisoesilaningsih, E.; Soejono. Konservasi Mata Air DAS Brantas Memanfaatkan Diversitas Flora Indonesia [Springs Conservation of Brantas Watershed Using the Flora Diversity of Indonesia]; Sem. Basic Sci. II; FMIPA UNIBRAW: Malang, Indonesia, 2005. [Google Scholar]
- Sofiah, S.; Fika, A.P. Jenis-jenis pohon disekitar mata air dataran tinggi dan rendah (studi kasus Kabupaten Malang) [Tree species around springs in highland and lowland]. J. Berkala Penelitian Hayati Edisi Khusus 2010, 4A, 1–3. [Google Scholar]
- Soejono, S.; Budiharta, S.; Arisoesilaningsih, E. Proposing local trees diversity for rehabilitation of degraded lowland areas surrounding springs. Biodiversitas 2013, 14, 37–42. [Google Scholar] [CrossRef]
- Trimanto. Diversitas pohon sekitar aliran mata air di kawasan Pulau Moyo Nusa Tenggara Barat [Tree diversity around springs channal in Moyo island, Nusa Tenggara Barat]. Pros. Sem. Biol. 2013, 10, 434–438. [Google Scholar]
- Ridwan, M.; Pamungkas, D.W. Diversity of trees around the springs in Panekan Sub-District, Magetan, East Java. Pros. Sem. Nas Masy Biodiv. Indon. 2015, 1, 1375–1379. [Google Scholar]
- Kali, F.B.; Kusuma, Z.; Leksono, A.S. Diversity of vegetation around the springs to support water resource conservation in Belu, East Nusa Tenggara, Indonesia. J. Biodivers. Env. Sci. (JBBS) 2015, 6, 100–114. [Google Scholar]
- Siswo; Yuliantoro, D.; Atmoko, B.D.; Yun, C.W. Benefit of Moraceae Family Trees in Emergence of Springs; Local Knowledge Perception (Case Study from Gendol Hill, Bulukerto, Wonogiri, Central Java, Indonesia). Proc. Koreaan Soc. Environ. Con. 2017, 27, 8–9. [Google Scholar]
- Siswo; Yun, C.W.; Abdiyani, S. Distribution of tree species around springs and trees-springs interplay possibility in the springs area of Soloraya, Central Java, Indonesia. Forest Sci. Technol. 2019, 15, 128–139. [Google Scholar] [CrossRef]
- Caldwell, M.M.; Richards, J.H. Hydraulict lift: Water efflux from upper roots improves effectiveness of water uptake by roots. Oecologia 1989, 79, 1–5. [Google Scholar] [CrossRef]
- Carignan, V.; Villard, M. Selecting indicator species to monitor ecological integrity: A review. Environ. Monit. Assess. 2002, 78, 45–61. [Google Scholar] [CrossRef]
- Niemi, G.J.; McDonald, M.E. Application of ecological indicators. Annu. Rev. Ecol. Evol. Syst. 2005, 35, 89–111. [Google Scholar] [CrossRef]
- De Cáceres, M.; Legendre, P.; Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 2010, 119, 1674–1684. [Google Scholar] [CrossRef]
- González, E.; Rochefort, L.; Boudreau, S.; Hugron, S.; Poulin, M. Can indicator species predict restoration outcomes early in the monitoring process? A case study with peatlands. Ecol. Indic. 2013, 32, 232–238. [Google Scholar] [CrossRef]
- Moyle, P.B.; Randall, P.J. Evaluating the biotic integrity of watersheds in the Sierra Nevada, California. Conserv. Biol. 1998, 12, 1318–1326. [Google Scholar] [CrossRef]
- Karr, J.R. Assessment of biotic integrity using fish communities. Fisheries 1981, 6, 21–27. [Google Scholar] [CrossRef]
- Harig, A.L.; Bain, M.B. Defining and restoring biological integrity in wilderness lakes. Ecol. Appl. 1998, 8, 71–87. [Google Scholar] [CrossRef]
- Brooks, R.P.; O’Connell, T.J.; Wardrop, D.H.; Jackson, L.E. Towards a regional index. Environ. Monit. Assess. 1998, 51, 131–143. [Google Scholar] [CrossRef]
- Larsen, F.W.; Bladt, J.; Rahbek, C. Improving the performance of indicator groups for the identification of important areas for species conservation. Conserv. Biol. 2007, 21, 731–740. [Google Scholar] [CrossRef]
- Pramono, I.B.; Adi, R.N. Water yield during dry season from old and young pine forests in Gombong, central Java. In Proceedings of the International Seminar—Research on Plantation Forests: Challenges and Opportunities; Centre of Plantation Forest Research and Development: Bogor, Indonesia, 2009. [Google Scholar]
- Pramono, I.B.; Wijaya, W.W. Hubungan antara luas hutan pinus dan aliran dasar di Subdas Kedung Bulus, Kebumen [The relationship between area of pine forest and the base flow in Kedung Bulus Sub Subwatershed, Kebumen]; Pros Sem Nas Hasil Penelitian Teknologi Pengelolaan DAS; Pusat Penelitian dan Pengembangan Konservasi dan Rehabilitasi [Center of research and development for conservation and rehabilitation]: Surakarta, Indonesia, 2014. [Google Scholar]
- BPTKPDAS; Perhutani. Buku Rencana Pengelolaan Kawasan Hutan dengan Tujuan Khusus Cemoro Modang dan Kawasan dengan Tujuan Khusus Gombong [Management Plan Book for Forest Area with Specific Purpose of Cemoro Modang and Gombong]; BPTKPDAS: Surakarta, Indonesia, 2012. [Google Scholar]
- SDII Global Corporation. Delineation of Spring Protection Areas at Five, First-Magnitude Springs in North-Central Florida; SDII Global Corporation: Tampa, FL, USA, 2004. [Google Scholar]
- Hendrayana, H. Hidrogelologi Mata Air; Gadjah Mada University: Yogyakarta, Indonesia, 2013. [Google Scholar]
- BPDASHL Solo. Rancangan Rehabilitasi Hutan dan Lahan di Imbuhan Mata Air [Design of Forest and Land Rehabilitation in Recharge Area of Springs]; BPDASHL Solo: Solo City, Indonesia, 2017. [Google Scholar]
- Barbour, G.M.; Burk, J.K.; Pitts, W.D. Terrestrial Plant Ecology; The Benyamin: New York, NY, USA, 1987. [Google Scholar]
- Kusmana, C. Metode Survey Vegetasi [Vegetation Survey Method]; Institut Pertanian Bogor: Bogor, Indonesia, 1997. [Google Scholar]
- Kartawinata, K.; Soenarko, S.; Tantra, I.G.M.; Samingan, T. Pedoman inventarisasi flora dan ekosistem [Guidelines for Flora and Ecosystem Inventory]; Direktorat Perlindungan dan Pengawetan Alam: Bogor, Indonesia, 1976. [Google Scholar]
- McCune, B.; Grace, J.B. Analysis of Ecological Communities; MJM Software Design: Corvallis, OR, USA, 2002. [Google Scholar]
- Peck, J.E. Multivariate Analysis for Community Ecologists; MJM Software Design: Corvallis, OR, USA, 2010. [Google Scholar]
- Mielke, P.W.; Berry, K.J.; Mielke, H.W.; Gonzales, C.R. Avoiding two major problems associated with statistical tests: One-way analysis of variance. Biom. Biostat. J. 2017, 1, 111. [Google Scholar]
- Mielke, P.W., Jr. 34 Meteorological applications of permutation techniques based on distance functions. Handbook Stat. 1984, 4, 813–830. [Google Scholar]
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- Siswo; Yun, C.W. The presence analysis of specific trees around springs to support restoration/ rehabilitation efforts of the springs area. In Proceedings of the SFEM2018/IUFRO 4.02.02, Nantou County, Taiwan, 28–31 August 2018. [Google Scholar]
- Krebs, C.J. Ecology. The Experimental Analysis of Distribution and Abundance; Harper & Row Inc.: New York, NY, USA, 1978. [Google Scholar]
- Kent, M.; Coker, P.A.D.D.Y. Vegetation Description and Analysis a Practical Approach; Belhaven Press: London, UK, 1992. [Google Scholar]
- Magurran, A.E. Measuring Biological Diversity; Blackwell Science: Malden, MA, USA, 2004. [Google Scholar]
- Ter Braak, C.J.; Barendregt, L. Weighted averaging of species indicator values: Its efficiency in environmental calibration. Math. Biosci. 1986, 78, 57–72. [Google Scholar] [CrossRef] [Green Version]
- De Cáceres, M.; Legendre, P.; Wiser, S.K.; Brotons, L. Using species combinations in indicator value analyses. Methods Ecol. Evol. 2012, 3, 973–982. [Google Scholar] [CrossRef]
- Battisti, C.; Contoli, L. Diversity indices as ‘magic’ tools in landscape planning: A cautionary note on their uncritical use. Landsc. Res. 2011, 36, 111–117. [Google Scholar] [CrossRef]
- Magurran, A.E. Ecological Diversity and Its Measurement; Croom Helm Limited: London, UK, 1988. [Google Scholar]
- Riski, P. Belajar konservasi hutan dan mata air di Wonosalam [Learning Forest and Springs Conservation in Wonosalam]. Mongabay; Situs Berita Lingkungan, April 30 2015. Available online: http://www.mongabay.co.id/2015/04/30/belajar-konservasi-hutan-dan-mata-air-di-wonosalam/ (accessed on 25 May 2018).
- Sastrapraja, S.; Afriastini, J. Kerabat seri beringin sumber daya alam [Relatives of the Banyan Series of Natural Resources]; Lembaga Biologi Nasional: Bogor, Indonesia, 1984. [Google Scholar]
- Sosef, M.S. Plant Resources of South-East Asia; Backhuys: SV Kerkwerve, The Netherlands, 1998. [Google Scholar]
- Veneklass, E.; Santos Silva, M.; Den Ouden, F. Determination of growth rate in Ficus benjamina L. compared to related faster-growing woody and herbaceous species. Sci. Horticult. 2002, 93, 75–84. [Google Scholar] [CrossRef]
- Yuliantoro, D.; Atmoko, B.D.; Siswo. Pohon Sahabat Air [Trees, Water Mate]; BPPTPDAS [Watersheed Management Technology Center (WMTC)]: Surakarta, Indonesia, 2016. [Google Scholar]
- Fernandez, C.; Lelong, B.; Vila, B.; Mévy, J.P.; Robles, C.; Greff, S.; Bousquet-Mélou, A. Potential allelopathic effect of Pinus halepensis in the secondary succession: An experimental approach. Chemoecology 2006, 16, 97–105. [Google Scholar] [CrossRef]
- Londo, A.J.; Kushla, J.D.; Carter, R.C. Soil pH and tree species suitability in the south. South. Reg. Ext. For. 2006, 2, 1–5. [Google Scholar]
- Yang, B.; Ying, L.; Bingyang, D.; Both, S.; Erfmeier, A.; Hardtle, W.; Ma, K.; Schmid, B.; Scholten, T.; Seidler, G.; et al. Impact of tree diversity and environmental conditions on the survival of schrub species in a forest biodiversity experiment in Subtropical China. J. Plant Ecol. 2017, 10, 179–189. [Google Scholar] [CrossRef]
- Harton, J.L.; Hart, S.C. Hydraulic lift: A potentially important ecosystem process. Trends Ecol. Evol. 1998, 13, 232–235. [Google Scholar] [CrossRef]
- Burges, S.S.; Adams, M.A.; Turner, N.C.; White, D.A.; Ong, C.K. Tree roots: Conduits for deep recharge of soil water. Oecologia 2001, 126, 158–165. [Google Scholar] [CrossRef]
- Barbier, S.; Gosselin, F.; Balandier, P. Influence of tree species on understory vegetation diversity and mechanism involved-A critical review for temperate and boreal forest. For. Ecol. Manag. 2008, 254, 1–15. [Google Scholar] [CrossRef]
- Lang, A.C.; Hardtle, W.; Geibler, C.; Nadrowski, K.; Schuldt, A.; Yu, M.; Oheimb, G.V. Tree morphology responds to neighbourhood competition and slope in species-rich forests of subtropical China. For. Ecol. Manag. 2010, 260, 1708–1715. [Google Scholar] [CrossRef]
- Richard, A.; Galle, S.; Descloitres, M.; Cohard, J.M.; Vandervaere, J.P.; Séguis, L.; Peugeot, C. Interplay of riparian forest and groundwater in the hillslope hydrology of Sudanian West Africa (northern Benin). Hydrol. Earth Syst. Sci. 2013, 17, 5079–5096. [Google Scholar] [CrossRef] [Green Version]
- Schwinning, S. The ecohydrology of roots in rocks. Ecohydrology 2010, 3, 238–245. [Google Scholar] [CrossRef]
- Canadell, J.; Jackson, R.B.; Ehleringer, J.R.; Mooney, H.A.; Sala, O.E.; Schulze, E.D. Maximum rooting depth of vegetation types at the global scale. Oecologia 1996, 108, 583–595. [Google Scholar] [CrossRef]
Catchment Characteristic | Watujali | Silengkong |
---|---|---|
Area (ha) | 95.7 | 105.2 |
Average elevation (m) | 270 | 255 |
Average slope of river (%) | 18.5 | 22.61 |
Length of catchment (km) | 1.27 | 1.30 |
Width of catchment (km) | 1.12 | 1.23 |
No | Species | Family | |
---|---|---|---|
Tree/Pole/Sapling Species | |||
1 | Benda | Artocarpus elasticus * | Moraceae |
2 | Aren | Arenga pinnata | Arecaceae |
3 | Gintung | Bischofia javanica * | Phillantaceae |
4 | Bulu | Ficus annulate * | Moraceae |
5 | Dadap | Erytrina variegata | Fabaceae |
6 | Laban | Vitec pubescens * | Verbenaceae |
7 | Serut | Streblus asper | Moraceae |
8 | Tutup | Macaranga sp. | Euphorbiaceae |
9 | Picung | Pangium edule * | Achariaceae |
10 | Awar-awar | Ficus septica | Moraceae |
11 | Kemadu | Laportea sinuata | Urticaceae |
12 | Johar | Cassia siamea | Fabaceae |
13 | Sprih | Ficus microcarpa | Moraceae |
14 | Randu alas | Bombax ceiba * | Malvaceae |
15 | Jati | Tectona grandis | Leguminoceae |
16 | Gondang | Ficus variegata | Moraceae |
17 | Bambu | Bambusa spp. | Poaceae |
Small Species (Herbs/Shrubs) | |||
1 | Piji | Afreca pumila | Arecaceae |
2 | Tepus | Achasma sp. | Zingeberaceae |
3 | Suweg | Amorphophallus sp. | Araceae |
4 | Pakishaji | Cycas rumpii | Cycadaceae |
5 | Pakis | Pteridium aquilinum | Dennstaedtiaceae |
6 | Gondang | Ficus variegata | Moraceae |
7 | Pacar air | Impatiens balsamania | Balsamaniaceae |
8 | Lempuyangan | Zingeber zerumbet | Zingeberaceae |
9 | Pacing | Costus spicatus | Costaceae |
10 | Kajar | Colocasiagigantean | Araceae |
11 | Pakis hata | Lygodium circinatum | Schizaeaceae |
12 | Awar-awar | Ficus septica | Moraceae |
13 | Serut | Streblus asper | Moraceae |
14 | Kemadu | Laportea sinuata | Urticaceae |
15 | Pakis haji | Cycas rumpii | Cycadaceae |
Comparison of Sorensen Distance | T | A | p |
---|---|---|---|
Watujali and Silengkong | −5.104 | 0.08 | 0.000 |
No | Species Levels | Similarity Index (%) | Dissimilarity Index (%) |
---|---|---|---|
1 | Trees | 38.71 | 61.29 |
2 | Belta/saplings | 44.44 | 55.56 |
3 | Seedlings/herbs | 59.52 | 40.48 |
No | Species | Value | ||
---|---|---|---|---|
Max | IV | p | ||
Tree | ||||
1 | Pinus merkusii | W | 52.1 | 0.0420 |
2 | Laportea sinuat | S | 29.4 | 0.0044 |
Sapling | ||||
1 | Laportea sinuata | S | 34.6 | 0.0126 |
2 | Tectona grandi | W | 29.6 | 0.0002 |
Seedling and Herbs | ||||
1 | Colocasia gigantean | S | 33 | 0.0196 |
2 | Pagostemon sp. | W | 26 | 0.0032 |
3 | Costus spicatus | S | 36 | 0.0236 |
4 | Chromolaena odorata | W | 31 | 0.0006 |
5 | Hyptis capitata | W | 34 | 0.0106 |
6 | Centrosema brasilianum | W | 26 | 0.0056 |
7 | Ficus septica | W | 25 | 0.0210 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siswo; Yun, C.-W.; Abdiyani, S. Assessing Vegetation Composition and the Indicator Species around Water Source Areas in a Pine Forest Plantation: A Case Study from Watujali and Silengkong Catchments, Kebumen, Indonesia. Forests 2019, 10, 825. https://doi.org/10.3390/f10100825
Siswo, Yun C-W, Abdiyani S. Assessing Vegetation Composition and the Indicator Species around Water Source Areas in a Pine Forest Plantation: A Case Study from Watujali and Silengkong Catchments, Kebumen, Indonesia. Forests. 2019; 10(10):825. https://doi.org/10.3390/f10100825
Chicago/Turabian StyleSiswo, Chung-Weon Yun, and Susi Abdiyani. 2019. "Assessing Vegetation Composition and the Indicator Species around Water Source Areas in a Pine Forest Plantation: A Case Study from Watujali and Silengkong Catchments, Kebumen, Indonesia" Forests 10, no. 10: 825. https://doi.org/10.3390/f10100825
APA StyleSiswo, Yun, C. -W., & Abdiyani, S. (2019). Assessing Vegetation Composition and the Indicator Species around Water Source Areas in a Pine Forest Plantation: A Case Study from Watujali and Silengkong Catchments, Kebumen, Indonesia. Forests, 10(10), 825. https://doi.org/10.3390/f10100825