Post-Harvest Evaluation of Soil Physical Properties and Natural Regeneration Growth in Steep-Slope Terrains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sampling Strategy
2.3. Measurements
2.4. Statistical Analyses
3. Results
3.1. The Effect of Traffic Intensity
3.2. The Effect of Slope Gradients
3.3. The Effect of Recovery Period
3.4. Density and Height of Seedling
4. Discussion
4.1. The Effect of Traffic Intensity
4.2. The Effect of Slope Gradients
4.3. The Effect of Recovery Period
4.4. Density and Height of Seedling
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Horn, R.; Vossbrink, J.; Becker, S. Modern forestry vehicles and their impacts on soil physical properties. Soil Tillage Res. 2004, 79, 207–219. [Google Scholar] [CrossRef]
- Ampoorter, E.; De Schrijver, A.; De Frenne, P.; Hermy, M.; Verheyen, K. Experimental assessment of ecological restoration options for compacted forest soils. Ecol. Eng. 2011, 37, 1734–1746. [Google Scholar] [CrossRef]
- Jourgholami, M.; Etehadi Abari, M. Effectiveness of sawdust and straw mulching on postharvest runoff and soil erosion of a skid trail in a mixed forest. Ecol. Eng. 2017, 109, 1–9. [Google Scholar] [CrossRef]
- Kozlowski, T.T. Soil compaction and growth of woody plants. Scand. J. For. Res. 1999, 14, 596–619. [Google Scholar] [CrossRef]
- Williamson, J.R.; Neilsen, W.A. The influence of forest site on rate and extent of soil compaction and profile disturbance of skid trails during ground-based harvesting. Can. J. For. Res. 2000, 30, 1196–1205. [Google Scholar] [CrossRef]
- Marchi, E.; Picchio, R.; Spinelli, R.; Verani, S.; Venanzi, R.; Certini, G. Environmental impact assessment of different logging methods in pine forests thinning. Ecol. Eng. 2014, 70, 429–436. [Google Scholar] [CrossRef]
- Ebeling, C.; Fründ, H.C.; Lang, F.; Gaertig, T. Evidence for increased P availability on wheel tracks 10 to 40 years after forest machinery traffic. Geoderma 2017, 297, 61–69. [Google Scholar] [CrossRef]
- Huang, J.; Lacey, J.; Ryan, P.J. Impact of forest harvesting on the hydraulic properties of surface soil. Soil Sci. 1996, 161, 79–86. [Google Scholar] [CrossRef]
- Jamshidi, R.; Jaeger, D.; Raafatnia, N.; Tabari, M. Influence of two ground-based skidding systems on soil compaction under different slope and gradient conditions. Int. J. Eng. Sci. 2008, 19, 9–16. [Google Scholar] [CrossRef]
- Cambi, M.; Hoshika, Y.; Mariotti, B.; Paoletti, E.; Picchio, R.; Venanzi, R.; Marchi, E. Compaction by a forest machine affects soil quality and Quercus robur L. seedling performance in an experimental field. For. Ecol. Manag. 2017, 384, 406–414. [Google Scholar] [CrossRef]
- Ezzati, S.; Najafi, A.; Rab, M.A.; Zenner, E.K. Recovery of soil bulk density, porosity and rutting from ground skidding over a 20-year period after timber harvesting in Iran. Silva Fenn. 2012, 46, 521–538. [Google Scholar] [CrossRef]
- Venanzi, R.; Picchio, R.; Piovesan, G. Silvicultural and logging impact on soil characteristics in Chestnut (Castanea sativa Mill.) Mediterranean coppice. Ecol. Eng. 2016, 92, 82–89. [Google Scholar] [CrossRef]
- Cambi, M.; Paffetti, D.; Vettori, C.; Picchio, R.; Venanzi, R.; Marchi, E. Assessment of the impact of forest harvesting operations on the physical parameters and microbiological components on a Mediterranean sandy soil in an Italian stone pine stand. Eur. J. For. Res. 2017, 136, 205–215. [Google Scholar] [CrossRef]
- Rab, M.A. Changes in physical properties of a soil associated with logging of Eucalyptus regnan forest in southeastern Australia. For. Ecol. Manag. 1994, 70, 215–229. [Google Scholar] [CrossRef]
- Jourgholami, M.; Khoramizadeh, A.; Zenner, E.K. Effects of soil compaction on seedling morphology, growth, and architecture of chestnut-leaved oak (Quercus castaneifolia). iForest 2016, 10, 145–153. [Google Scholar] [CrossRef]
- Zenner, E.K.; Fauskee, J.T.; Berger, A.L.; Puettmann, K.J. Impacts of skidding traffic intensity on soil disturbance, soil recovery, and aspen regeneration in north central Minnesota. North. J. Appl. For. 2007, 24, 177–183. [Google Scholar] [CrossRef]
- Whalley, W.R.; Dumitru, E.; Dexter, A.R. Biological effects of soil compaction. Soil Tillage Res. 1995, 35, 53–68. [Google Scholar] [CrossRef]
- Greacen, E.L.; Sands, R. Compaction of forest soils. A review. Soil Res. 1980, 18, 163–189. [Google Scholar] [CrossRef]
- Harvey, B.; Brais, S. Effects of mechanized careful logging on natural regeneration and vegetation competition in the southeastern Canadian boreal forest. Can. J. For. Res. 2002, 32, 653–666. [Google Scholar] [CrossRef]
- Picchio, R.; Neri, F.; Petrini, E.; Verani, S.; Marchi, E.; Certini, G. Machinery-induced soil compaction in thinning two pine stands in central Italy. For. Ecol. Manag. 2012, 285, 38–43. [Google Scholar] [CrossRef]
- Majnounian, B.; Jourgholami, M. Effects of rubber-tired cable skidder on soil compaction in Hyrcanian Forest. Croat. J. For. Eng. 2013, 34, 123–135. [Google Scholar]
- Jourgholami, M.; Labelle, E.R.; Feghhi, J. Efficacy of leaf litter mulch to mitigate runoff and sediment yield following mechanized operations in the Hyrcanian mixed forests. J. Soil Sediment 2019, 19, 2076–2088. [Google Scholar] [CrossRef]
- Jourgholami, M.; Ghassemi, T.; Labelle, E.R. Soil physio-chemical and biological indicators to evaluate the restoration of compacted soil following reforestation. Ecol. Indic. 2019, 101, 102–110. [Google Scholar] [CrossRef]
- Jourgholami, M.; Khajavi, S.; Labelle, E.R. Mulching and water diversion structures on skid trails: Response of soil physical properties six years after harvesting. Ecol. Eng. 2018, 123, 1–9. [Google Scholar] [CrossRef]
- Jourgholami, M.; Nasirian, A.; Labelle, E.R. Ecological restoration of compacted soil following the application of different leaf litter mulches on the skid trail over a five-year period. Sustainability 2018, 10, 2148. [Google Scholar] [CrossRef]
- Cambi, M.; Grigolato, S.; Neri, F.; Picchio, R.; Marchi, E. Effects of forwarder operation on soil physical characteristics: A case study in the Italian alps. Croat. J. For. Eng. 2016, 37, 233–239. [Google Scholar]
- Rab, M.A. Recovery of soil physical properties from compaction and soil profile disturbance caused by logging of native forest in Victorian Central Highlands, Australia. For. Ecol. Manag. 2004, 191, 329–340. [Google Scholar] [CrossRef]
- Håkansson, I.; Reeder, R.C. Subsoil compaction by vehicles with high axle load extent, persistence and crop response. Soil Tillage Res. 1994, 29, 277–304. [Google Scholar] [CrossRef]
- Ebeling, C.; Lang, F.; Gaertig, T. Structural recovery in three selected forest soils after compaction by forest machines in Lower Saxony, Germany. For. Ecol. Manag. 2016, 359, 74–82. [Google Scholar] [CrossRef]
- Picchio, R.; Mercurio, R.; Venanzi, R.; Gratani, L.; Giallonardo, T.; Monaco, A.L.; Frattaroli, A.R. Strip clear-cutting application and logging typologies for renaturalization of pine afforestation-A case study. Forests 2018, 9, 366. [Google Scholar] [CrossRef]
- DeArmond, D.; Emmert, F.; Lima, A.J.N.; Higuchi, N. Impacts of soil compaction persist 30 years after logging operations in the Amazon Basin. Soil Tillage Res. 2019, 189, 207–216. [Google Scholar] [CrossRef]
- Picchio, R.; Tavankar, F.; Nikooy, M.; Pignatti, G.; Venanzi, R.; Lo Monaco, A. Morphology, Growth and Architecture Response of Beech (Fagus orientalis Lipsky) and Maple Tree (Acer velutinum Boiss.) Seedlings to Soil Compaction Stress Caused by Mechanized Logging Operations. Forests 2019, 10, 771. [Google Scholar] [CrossRef]
- Murphy, G.; Brownlie, R.; Kimberley, M.; Beets, P. Impacts of forest harvesting related soil disturbance on end-of-rotation wood quality and quantity in a New Zealand radiata pine forest. Silva Fenn. 2004, 43, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Powers, R.F.; Tiarks, A.E.; Boyle, J.R. Assessing soil quality: Practicable standards for sustainable forest productivity in the United States. In Criteria and Indicators of Soil Quality for Sustainable Forest Productivity; Davidson, E.A., Ed.; Special Publication 53 of the Soil Science Society of America: Madison, WA, USA, 1998; Volume 53, pp. 53–80. [Google Scholar]
- Wang, J.; LeDoux, C.B.; Edwards, P. Changes in soil bulk density resulting from construction and conventional cable skidding using preplanned skid trails. North. J. Appl. For. 2007, 24, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Dexter, A.R.; Horn, R.; Kemper, W.D. Two mechanisms for age-hardening of soil. J. Soil Sci. 1988, 39, 163–175. [Google Scholar] [CrossRef]
- Dexter, A.R. Amelioration of soil by natural processes. Soil Tillage Res. 1991, 20, 87–100. [Google Scholar] [CrossRef]
- de Moraes, M.T.; Debiasi, H.; Carlesso, R.; Franchini, J.C.; da Silva, V.R.; da Luz, F.B. Age-hardening phenomena in an oxisol from the subtropical region of Brazil. Soil Tillage Res. 2017, 170, 27–37. [Google Scholar] [CrossRef]
- Koorevaar, P.; Menelik, G.; Dirksen, C. Elements of Soil Physics; Elsevier: Amsterdam, The Netherlands, 1983; p. 13. [Google Scholar]
- Von Wilpert, K.; Schäffer, J. Ecological effects of soil compaction and initial recovery dynamics: A preliminary study. Eur. J. For. Res. 2006, 125, 129–138. [Google Scholar] [CrossRef]
- Mohieddinne, H.; Brasseur, B.; Spicher, F.; Gallet-Moron, E.; Buridant, J.; Kobaissi, A.; Horen, H. Physical recovery of forest soil after compaction by heavy machines, revealed by penetration resistance over multiple decades. For. Ecol. Manag. 2019, 449, 117472. [Google Scholar] [CrossRef]
- Shoulders, E.; Terry, T.A. Dealing with site disturbances from harvesting and site preparation in the lower coastal plain. In Proceedings of the A Symposium on Principles of Maintaining Productivity on Prepared Sites, Southern Forest Experiment Station and Southeastern Area State and Private Forestry, New Orleans, LA, USA, 21–22 March 1978; pp. 85–97. [Google Scholar]
- Tiarks, A.E.; Buford, M.A.; Powers, R.F.; Ragus, J.F.; Page-Dumroese, D.S.; Ponder, F.J.; Stone, D.M. North-merican long-term soil productivity research program. In Proceedings of the National Silviculture Workshop, Warren, PA, USA, 19–22 May 1997; pp. 140–147. [Google Scholar]
- Venanzi, R.; Picchio, R.; Grigolato, S.; Latterini, F. Soil and forest regeneration after different extraction methods in coppice forests. For. Ecol. Manag. 2019, 454, 117666. [Google Scholar] [CrossRef]
- McNabb, D.H.; Startsev, A.D.; Nguyen, H. Soil wetness and traffic level effects on bulk density and air-filled porosity of compacted boreal forest soils. Soil Sci. Soc. Am. J. 2001, 65, 1238–1247. [Google Scholar] [CrossRef]
- Razali, N.; Ismail, M.H.; Kamarudin, N.; Zaki, P.H. Effect of skid trails on the regeneration of commercial tree species at Balah Forest Reserve, Kelantan, Malaysia. Biodiversitas 2014, 15, 240–244. [Google Scholar] [CrossRef]
- Karsten, R.J.; Meilby, H.; Larsen, J.B. Regeneration and management of lesser known timber species in the Peruvian Amazon following disturbance by logging. For. Ecol. Manag. 2014, 327, 76–85. [Google Scholar] [CrossRef]
- Darrigo, M.R.; Venticinque, E.M.; dos Santos, F.A.M. Effects of reduced impact logging on the forest regeneration in the central Amazonia. For. Ecol. Manag. 2016, 360, 52–59. [Google Scholar] [CrossRef]
- Blouin, V.M.; Schmidt, M.G.; Bulmer, C.E.; Krzic, M. Mechanical disturbance impacts on soil properties and lodgepole pine growth in British Columbia’s central interior. Can. J. Soil Sci. 2005, 85, 681–691. [Google Scholar] [CrossRef] [Green Version]
- Gomez, A.; Powers, R.F.; Singer, M.J.; Horwath, W.R. Soil compaction effects on growth of young ponderosa pine following litter removal in California’s Sierra Nevada. Soil Sci. Soc. Am. J. 2002, 66, 1334–1343. [Google Scholar] [CrossRef]
- Nussbaum, R.; Anderson, J.; Spencer, T. Factors limiting the growth of indigenous tree seedlings planted on degraded rainforest soils in Sabah, Malaysia. For. Ecol. Manag. 1995, 74, 149–159. [Google Scholar] [CrossRef]
- Jourgholami, M. Effects of soil compaction on growth variables in Cappadocian maple (Acer cappadocicum) seedlings. J. For. Res. 2018, 29, 601–610. [Google Scholar] [CrossRef]
- Jourgholami, M.; Fathi, K.; Labelle, E.R. Effects of litter and straw mulch amendments on compacted soil properties and Caucasian alder (Alnus subcordata) growth. New For. 2018, 137, 223–235. [Google Scholar] [CrossRef]
Recovery Period (No. of Compartment) | Locations | Skid Trail Length (m) | Monthly Temperature (°C) | Elevation (m) |
---|---|---|---|---|
5 years (C. 118) | 51°33′26.51″ E Long 36°32′17.24″ N Lat | 850 | 14 | 850–900 |
10 years (C. 214) | 51°34′31.24″ E Long 36°34′09.15″ N Lat | 1100 | 15 | 920–975 |
15 years (C. 212) | 51°34′20.41″ E Long 36°34′15.01″ N Lat | 900 | 15 | 940–975 |
20 years (C. 217) | 51°34′02.86″ E Long 36°34′24.12″ N Lat | 1050 | 15 | 955–975 |
Sample Site | ||||
---|---|---|---|---|
Recovery Length | HST | MST | LST | Un |
5 years | Clay | Clay loam | Clay loam | Clay loam |
10 years | Clay | Silty clay | Silty clay loam | Clay loam |
15 years | Loam | Loam | Loam | Silt loam |
20 years | Clay loam | Silt loam | Silty clay | Loam |
p Value | |||
---|---|---|---|
Source of Variation | BD (g cm−3) | PR (MPa) | TP (%) |
A | 0.000 ** | 0.000 ** | 0.000 ** |
T | 0.000 ** | 0.000 ** | 0.000 ** |
S | 0.000 ** | 0.000 ** | 0.000 ** |
A × T | 0.990 ns | 0.000 ** | 0.997 ns |
A × S | 0.003 ** | 0.000 ** | 0.004 ** |
Sample Site/Recovery Length | Traffic Intensity | Soil Physical Properties | ||
---|---|---|---|---|
BD (g cm−3) | PR (MPa) | TP (%) | ||
A (5 year) | LST | 1.09 ± 0.01 b | 2.94 ± 0.06 b | 53.45 ± 0.77 b |
MST | 1.11 ± 0.02 ab | 3.22 ± 0.05 ab | 52.66 ± 0.76 b | |
HST | 1.15 ± 0.01 a | 3.74 ± 0.06 a | 51.26 ± 0.76 b | |
Un | 0.91 ± 0.02 c | 1.66 ± 0.04 c | 61.39 ± 0.75 a | |
B (10 year) | LST | 1.11 ± 0.01 a | 2.77 ± 0.06 b | 50.35 ± 0.76 b |
MST | 1.13 ± 0.01 a | 2.87 ± 0.05 b | 49.46 ± 0.77 b | |
HST | 1.17 ± 0.02 a | 3.01 ± 0.05 a | 47.67 ± 0.76 bc | |
Un | 0.93 ± 0.01 b | 1.51 ± 0.04 c | 58.49 ± 0.77 b | |
C (15 year) | LST | 1.01 ± 0.02 a | 2.40 ± 0.05 b | 53.66 ± 0.77 b |
MST | 1.05 ± 0.01 a | 2.86 ± 0.06 ab | 51.76 ± 0.77 b | |
HST | 1.08 ± 0.02 a | 3.21 ± 0.05 a | 50.08 ± 0.76 b | |
Un | 0.89 ± 0.01 b | 1.62 ± 0.04 c | 59.05 ± 0.77 a | |
D (20 year) | LST | 1.01 ± 0.01 a | 1.89 ± 0.06 a | 54.46 ± 0.75 a |
MST | 1.04 ± 0.02 a | 1.98 ± 0.05 a | 53.11 ± 0.76 a | |
HST | 1.06 ± 0.01 a | 1.99 ± 0.06 a | 52.01 ± 0.77 ab | |
Un | 0.93 ± 0.01 b | 1.46 ± 0.04 b | 57.96 ± 0.77 a |
Sample Site/Recovery Length | Traffic Intensity | Soil Physical Properties | ||
---|---|---|---|---|
BD (g cm−3) | PR (MPa) | TP (%) | ||
A (5 years) | LST | 19.8 | 77.1 | 12.9 |
MST | 22 | 94 | 14.2 | |
HST | 26.4 | 125.3 | 16.5 | |
B (10 years) | LST | 19.3 | 83.4 | 13.9 |
MST | 21.5 | 90 | 15.4 | |
HST | 25.8 | 99.3 | 18.5 | |
C (15 years) | LST | 13.5 | 48.1 | 9.1 |
MST | 18 | 76.5 | 12.3 | |
HST | 21.3 | 98.1 | 15.2 | |
D (20 years) | LST | 8.6 | 29.4 | 6 |
MST | 11.8 | 35.6 | 8.4 | |
HST | 14 | 36.3 | 10.3 |
Sample Site/Recovery Length | Slope (%) | Soil Physical Properties | ||
---|---|---|---|---|
BD (g cm−3) | PR (MPa) | TP (%) | ||
A (5 years) | 0–20 | 1.1 ± 0.014 ab | 2.915 ± 0.052 b | 53.425 ± 0.63 b |
>20 | 1.145 ± 0.014 a | 3.686 ± 0.041 a | 51.498 ± 0.61 b | |
Un | 0.933 ± 0.018 c | 1.667 ± 0.064 c | 61.391 ± 0.77 a | |
B (10 years) | 0–20 | 1.104 ± 0.02 a | 2.368 ± 0.051 b | 50.922 ± 0.64 b |
>20 | 1.183 ± 0.02 a | 3.405 ± 0.052 a | 47.402 ± 0.63 c | |
Un | 0.934 ± 0.018 b | 1.511 ± 0.064 c | 58.492 ± 0.78 b | |
C (15 years) | 0–20 | 1.009 ± 0.02 b | 2.696 ± 0.052 ab | 53.723 ± 0.65 ab |
>20 | 1.091 ± 0.03 a | 2.963 ± 0.043 a | 49.951 ± 0.63 b | |
Un | 0.893 ± 0.018 b | 1.626 ± 0.061 c | 59.05 ± 0.77 a | |
D (20 years) | 0–20 | 1.046 ± 0.031 a | 1.965 ± 0.052 a | 53.004 ± 0.63 a |
>20 | 1.035 ± 0.014 a | 1.951 ± 0.043 a | 53.994 ± 0.64 a | |
Un | 0.933 ± 0.018 b | 1.463 ± 0.064 b | 57.964 ± 0.77 a |
Sample Site/Recovery Length | Slope (%) | Soil Physical Properties | ||
---|---|---|---|---|
BD (g cm−3) | PR (MPa) | TP (%) | ||
A (5 years) | 0–20 | 20.6 | 74.9 | 13 |
>20 | 25.7 | 121.1 | 16.1 | |
B (10 years) | 0–20 | 19.5 | 56.7 | 12.9 |
>20 | 26.7 | 125.3 | 19 | |
C (15 years) | 0–20 | 13 | 65.8 | 9 |
>20 | 22.2 | 82.2 | 15.4 | |
D (20 years) | 0–20 | 12.1 | 34.3 | 8.5 |
>20 | 10.9 | 33.3 | 7.9 |
Different Years After the Skidding Operations | |||||
---|---|---|---|---|---|
Soil Physical Properties | Un | A | B | C | D |
BD (g cm−3) | 0.91 ± 0.01 c | 1.11 ± 0.01 a | 1.13 ± 0.01 a | 1.04 ± 0.01 ab | 1.03 ± 0.01 b |
PR (MPa) | 1.56 ± 0.03 c | 3.21 ± 0.03 a | 2.81 ± 0.03 b | 2.76 ± 0.03 b | 1.93 ± 0.03 bc |
TP (%) | 59.22 ± 0.38 a | 52.93 ± 0.42 ab | 49.65 ± 0.42 b | 52.21 ± 0.42 ab | 53.45 ± 0.42 a |
Source of Variation | Seedling Density | Seedling Height | ||
---|---|---|---|---|
F Test | p Value | F Test | p Value | |
Age of skid trail × control | 10.93 ** | 0.004 | 8.31 * | 0.034 |
Traffic × control | 11.46 ** | 0.001 | 6.35 ** | 0.007 |
Slope × control | 8.96 ** | 0.002 | 7.16 * | 0.027 |
Wheel track × control | 6.70 ns | 0.059 | 7.60 ** | 0.002 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sohrabi, H.; Jourgholami, M.; Tavankar, F.; Venanzi, R.; Picchio, R. Post-Harvest Evaluation of Soil Physical Properties and Natural Regeneration Growth in Steep-Slope Terrains. Forests 2019, 10, 1034. https://doi.org/10.3390/f10111034
Sohrabi H, Jourgholami M, Tavankar F, Venanzi R, Picchio R. Post-Harvest Evaluation of Soil Physical Properties and Natural Regeneration Growth in Steep-Slope Terrains. Forests. 2019; 10(11):1034. https://doi.org/10.3390/f10111034
Chicago/Turabian StyleSohrabi, Hadi, Meghdad Jourgholami, Farzam Tavankar, Rachele Venanzi, and Rodolfo Picchio. 2019. "Post-Harvest Evaluation of Soil Physical Properties and Natural Regeneration Growth in Steep-Slope Terrains" Forests 10, no. 11: 1034. https://doi.org/10.3390/f10111034