Armillaria altimontana Is Associated with Healthy Western White Pine (Pinus monticola): Potential in Situ Biological Control of the Armillaria Root Disease Pathogen, A. solidipes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Planting Site, Plant Materials, Planting Design, Height and Survival Measurements, and Criteria for Determining Tree Health
2.2. Armillaria Survey and Isolate Collection
2.3. Armillaria Genet and Species Identification
2.4. Statistical Analyses
3. Results
3.1. Armillaria Species, Genets, and Isolates
3.2. Armillaria Association with Disease
3.3. Growth and Survival of Western White Pine in Relation to Armillaria spp.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Worrall, J. Armillaria Root Disease; Shaw, C.G., Kile, G.A., III, Eds.; Agricultural Handbook No. 691; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1991; p. 233.
- Baumgartner, K.; Coetzee, M.P.A.; Hoffmeister, D. Secrets of the subterranean pathosystem of Armillaria. Mol. Plant Pathol. 2011, 12, 515–534. [Google Scholar] [CrossRef] [PubMed]
- Heinzelmann, R.; Dutech, C.; Tsykun, T.; Labbé, F.; Soularue, J.-P.; Prospero, S. Latest advances and future perspectives in Armillaria research. Can. J. Plant Pathol. 2018, 41, 1–23. [Google Scholar] [CrossRef]
- Angwin, P.; Blodgett, J.; Cram, M.; Fairweather, M.; Filip, G.; Fraedrich, S.; Guyon, J.; Kearns, H.; Lockman, B.; Owen, D. Forest Root Diseases across the United States; Lockman, I.B., Kearns, H.S.J., Eds.; Gen. Tech. Rep. RMRS-GTR-342; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2016; 55p.
- McDonald, G.I.; Harvey, A.E.; Tonn, J.R. Fire, competition and forest pests: Landscape treatment to sustain ecosystem function. In Proceedings of the Joint Fire Science Conference and Workshop: Crossing the Millennium: Integrating Spatial Technologies and Ecological Principles for a New Age in Fire Management, Boise, ID, USA, 15–17 June 1999; Neuenschwander, L.F., Ryan, K.C., Gollberg, G.E., Greer, J.D., Eds.; University of Idaho: Moscow, ID, USA, 2000; Volume II, pp. 195–211. [Google Scholar]
- Brazee, N.J.; Ortiz-Santana, B.; Banik, M.T.; Lindner, D.L. Armillaria altimontana, a new species from the western interior of North America. Mycologia 2012, 104, 1200–1205. [Google Scholar] [CrossRef] [PubMed]
- Graham, R.T. Silvics of western white pine. In Silvics of Forest Trees of the United States, Agriculture Handbook 654; Bums, R., Ed.; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1990; pp. 385–394. [Google Scholar]
- Kim, M.-S.; Richardson, B.A.; McDonald, G.I.; Klopfenstein, N.B. Genetic diversity and structure of western white pine (Pinus monticola) in North America: A baseline study for conservation, restoration, and addressing impacts of climate change. Tree Genet. Genomes 2011, 7, 11–21. [Google Scholar] [CrossRef]
- Neuenschwander, L.F.; Byler, J.W.; Harvey, A.E.; McDonald, G.I.; Ortiz, D.S.; Osborne, H.L.; Snyder, G.C.; Zack, A. White pine in the American West: A Vanishing Species—Can We Save It? Gen. Tech. Report RMRS-GTR-35; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station and University of Idaho: Fort Collins, CO, USA, 1999; p. 20. ISBN 0002-9610.
- Mehes, M.; Nkongolo, K.K.; Michael, P. Assessing genetic diversity and structure of fragmented populations of eastern white pine (Pinus strobus) and western white pine (P. monticola) for conservation management. J. Plant Ecol. 2009, 2, 143–151. [Google Scholar] [CrossRef]
- Bingham, R.T.; Hoff, R.J.; Steinhoff, R.J. Genetics of Western White Pine; Res. Pap. WO-RP-012; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1971; p. 18.
- Maloney, P.E.; Eckert, A.J.; Vogler, D.R.; Jensen, C.E.; Mix, A.D.; Neale, D.B. Landscape biology of western white pine: Implications for conservation of a widely-distributed five-needle pine at its southern range limit. Forests 2016, 7, 93. [Google Scholar] [CrossRef]
- Barnes, B.V. Phenotypic variation associated with elevation in western white pine. For. Sci. 1967, 13, 357–364. [Google Scholar]
- Steinhoff, R.J. Variation in Early Growth of Western White Pine in Northern Idaho; Res. Pap. INT-222; U.S. Department of Agriculture, Intermountain Research Station: Ogden, UT, USA, 1979; p. 22.
- Steinhoff, R.J.; Joyce, D.G.; Fins, L. Isozyme variation in Pinus monticola. Can. J. For. Res. 1983, 13, 1122–1132. [Google Scholar] [CrossRef]
- Rehfeldt, G.E.; Hoff, R.J.; Steinhoff, R.J. Geographic patterns of genetic variation in Pinus monticola. Bot. Gaz. 1984, 145, 229–239. [Google Scholar] [CrossRef]
- Richardson, B.A.; Rehfeldt, G.E.; Kim, M.-S. Congruent climate-related genecological responses from molecular markers and quantitative traits for western white pine (Pinus monticola). Int. J. Plant Sci. 2009, 170, 1120–1131. [Google Scholar] [CrossRef]
- Kim, M.-S.; Brunsfeld, S.J.; McDonald, G.I.; Klopfenstein, N.B. Effect of white pine blister rust (Cronartium ribicola) and rust-resistance breeding on genetic variation in western white pine (Pinus monticola). Theor. Appl. Genet. 2003, 106, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- King, J.N.; David, A.; Noshad, D.; Smith, J. A review of genetic approaches to the management of blister rust in white pines. For. Pathol. 2010, 40, 292–313. [Google Scholar] [CrossRef]
- Hunt, R.S.; Geils, B.W.; Hummer, K.E. White pines, Ribes, and blister rust: Integration and action. For. Pathol. 2010, 40, 402–417. [Google Scholar] [CrossRef]
- McDonald, G.I.; Martin, N.; Harvey, A. Armillaria in the Northern Rockies: Pathogenicity and host susceptibility on pristine and disturbed sites; Res. Pap. INT-371; U.S. Department of Agriculture, Intermountain Research Station: Ogden, UT, USA, 1987; p. 5.
- McDonald, G.I.; Martin, N.E. Armillaria in the Northern Rockies: Delineation of Isolates into Clones; Res. Pap. INT-385; U.S. Department of Agriculture, Intermountain Research Station: Ogden, UT, USA, 1988; p. 13.
- Rizzo, D.M.; Harrington, T.C. Delineation and biology of clones of Armillaria ostoyae, Armillaria gemina and Armillaria calvescens. Mycologia 1993, 85, 164–174. [Google Scholar] [CrossRef]
- Rizzo, D.M.; Blanchette, R.A.; May, G. Distribution of Armillaria ostoyae genets in a Pinus resinosa—Pinus banksiana forest. Can. J. Bot 1995, 787, 776–787. [Google Scholar] [CrossRef]
- Dettman, J.R.; van der Kamp, B.J. The population structure of Armillaria ostoyae and Armillaria sinapina in the central interior of British Columbia. Can. J. Bot. 2001, 79, 600–611. [Google Scholar] [CrossRef]
- Prospero, S.; Rigling, D.; Holdenrieder, O. Population structure of Armillaria species in managed Norway spruce stands in the Alps. New Phytol. 2003, 158, 365–373. [Google Scholar] [CrossRef]
- Shaw, C.G., III; Roth, L.F. Persistence and distribution of a clone of Armillaria mellea in a ponderosa pine forest. Phytopathology 1976, 66, 1210–1213. [Google Scholar] [CrossRef]
- Korhonen, K. Infertility and clonal size in the Armillariella mellea complex. Karstenia 1978, 18, 31–42. [Google Scholar] [CrossRef]
- Mallett, K.I.; Hopkin, A.A.; Blenis, P.V. Vegetative incompatibility in diploid isolates of Armillaria North American Biological Species I and V. Can. J. Bot. 1989, 67, 3083–3089. [Google Scholar] [CrossRef]
- Guillaumin, J.-J.; Anderson, J.B.; Korhonen, K. Life cycle, interfertility and biological species. In Armillaria Root Disease; Agriculture Handbook No. 691; Shaw, C.G., Kile, G.A., Eds.; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1991; pp. 10–20. [Google Scholar]
- Guillaumin, J.-J.; Anderson, J.B.; Legrand, P.; Ghahari, S.; Berthelay, S. A comparison of different methods for the identification of genetics of Armillaria spp. New Phytol. 1996, 133, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Harrington, T.C.; Worrall, J.J.; Baker, F.A. Armillaria. In Methods for Research on Soilborne Phytopathogenic Fungi; Singleton, L.L., Mihail, J.D., Rush, C.M., Eds.; American Phytopathological Society: St. Paul, MN, USA, 1992; pp. 81–85. [Google Scholar]
- Worrall, J.J. Population-structure of Armillaria species in several forest types. Mycologia 1994, 86, 401–407. [Google Scholar] [CrossRef]
- Legrand, P.; Ghahari, S.; Guillaumin, J.-J. Occurrence of genets of Armillaria spp. in four mountain forests in Central France: The colonization strategy of Armillaria ostoyae. New Phytol. 1996, 133, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Mallett, K.; Hiratsuka, Y. Nature of the “Black Line” produced between different biological species of Armillaria mellea complex. Can. J. Bot. 1985, 64, 2588–2590. [Google Scholar] [CrossRef]
- Ross-Davis, A.L.; Hanna, J.W.; Kim, M.-S.; Klopfenstein, N.B. Advances toward DNA-based identification and phylogeny of North American Armillaria species using elongation factor-1 alpha gene. Mycoscience 2012, 53, 161–165. [Google Scholar] [CrossRef]
- Bivand, R.S.; Wong, D.W.S. Comparing implementations of global and local indicators of spatial association. TEST 2018, 27, 716–748. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.-S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Funda, T.; Lstibůrek, M.; Klápště, J.; Permedlová, I.; Kobliha, J. Addressing spatial variability in provenance experiments exemplified in two trials with black spruce | Hodnocení provenienčních experimentů se zohledněním prostorových autokorelací na příkladu dvou ploch se smrkem černým. J. For. Sci. 2007, 53, 47–56. [Google Scholar] [CrossRef]
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-PLUS; Springer: New York, NY, USA, 2000; ISBN 0-387-98957-9. [Google Scholar]
- Banghar, M. pbnm: Parametric Bootstrap Test of Nested Models. R Package version 0.3.0.9003. 2015. [Google Scholar]
- Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means, R package version 1.2.3; 2018. Available online: https://CRAN.R-project.org/package=emmeans.
- Herberich, E.; Sikorski, J.; Hothorn, T. A robust procedure for comparing multiple means under heteroscedasticity in unbalanced designs. PLoS ONE 2010, 5, e9788. [Google Scholar] [CrossRef] [PubMed]
- Schwandt, J.W.; Lockman, I.B.; Kliejunas, J.T.; Muir, J.A. Current health issues and management strategies for white pines in the western United States and Canada. For. Pathol. 2010, 40, 226–250. [Google Scholar] [CrossRef]
- Shaw, C.G., III; Roth, L.F. Control of Armillaria Root-Rot in Managed Coniferous Forest—Literature-Review. Eur. J. For. Pathol. 1978, 8, 163–174. [Google Scholar] [CrossRef]
- Morrison, D.J.; Pellow, K.W.; Norris, D.J.; Nemec, A.F.L. Visible versus actual incidence of Armillaria root disease in the southern interior of British Columbia. Can. J. For. Res. 2000, 30, 405–414. [Google Scholar] [CrossRef]
- Hanna, J.W.; Kim, M.-S.; Klopfenstein, N.B.; Ramsey, A.C.; Omdal, D.W.; Mulvey, R.L.; Goodrich, B.A.; Ferguson, B.A.; Winton, L.M.; Goheen, E.M.; et al. Toward a west-wide model of Armillaria root disease: New surveys needed in western Oregon, western Washington, and Alaska. In Proceedings of the 64th Annual Western International Forest Disease Work Conference, Sitka, AK, USA, 9–13 May 2016; pp. 107–114. [Google Scholar]
- van der Kamp, B.J. Rate of spread of Armillaria ostoyae in the central interior of British Columbia. Can. J. For. Res. 1993, 23, 1239–1241. [Google Scholar] [CrossRef]
- Warwell, M.; Denner, J.; Andrea, A.; Graham, R. Chapter 3. Columbia Mountains/Northern Rockies (Omernik Ecoregion 6.2.3) Represented by the Priest River Experimental Forest, Idaho. In Synthesis of Research and Monitoring of Biological Responses to Stream Nutrients at Experimental Forests and Ranges; Gen. Tech. Rep.; Douglas, R., Ed.; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, in press.
- Wellner, C.A. Frontiers of Forestry Research—Priest River Experimental Forest, 1911–1976; U.S. Dept. of Agriculture, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1976; p. 148.
- Graham, K.L. History of the Priest River Experiment Station; Gen. Tech. Rep. RMRS-GTR-129; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2004; p. 78.
- Ferguson, B.A.; Dreisbach, T.A.; Parks, C.G.; Filip, G.M.; Schmitt, C.L. Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon. Can. J. For. Res. 2003, 33, 612–623. [Google Scholar] [CrossRef]
- Hanna, J.W. Armillaria ostoyae: Genetic Characterization and Distribution in the Western United States. Master’s Thesis, University of Idaho, Moscow, ID, USA, 2005; p. 116. [Google Scholar]
- McDonald, G.I.; Evans, J.S.; Moeur, M.; Rice, T.M.; Strand, E.K. Using digital terrain modeling and satellite imagery to map interactions among fire and forest microbes. In Proceedings of Fire Conference 2000: The First National Congress on Fire Ecology, Prevention, and Management. Miscellaneous Publication No. 13; Galley, K.E.M., Klinger, R.C., Sugihara, N.G., Eds.; Tall Timbers Research Station: Tallahassee, FL, USA, 2003; pp. 100–110. [Google Scholar]
- Hardin, G. The competitive exclusion principle. Science 1960, 131, 1292–1297. [Google Scholar] [CrossRef]
- Raziq, F. Biological and integrated control of the root rot caused by Armillaria mellea. In Armillaria Root Rot: Biology and Control of Honey Fungus; Fox, R.T.V., Ed.; Intercept Ltd.: Andover, UK, 1998; Chapter 10; pp. 183–201. [Google Scholar]
- Chapman, B.; Xiao, G.; Myers, S. Early results from field trials using Hypholoma fasciculare to reduce Armillaria ostoyae root disease. Can. J. Bot. 2004, 82, 962–969. [Google Scholar] [CrossRef]
- Cox, K.D.; Scherm, H. Interaction dynamics between saprobic lignicolous fungi and Armillaria in controlled environments: Exploring the potential for competitive exclusion of Armillaria on peach. Biol. Control 2006, 37, 291–300. [Google Scholar] [CrossRef]
- Shaw, C.G., III. Root disease threat minimal in young strands of western hemlock and Sitka spruce in southeastern Alaska USA. Plant Dis. 1989, 73, 573–577. [Google Scholar] [CrossRef]
- Baumgartner, K.; Rizzo, D.M. Ecology of Armillaria spp. in mixed-hardwood forests of California. Plant Dis. 2001, 85, 947–951. [Google Scholar] [CrossRef] [PubMed]
- Bruhn, J.N.; Wetteroff, J.J.; Mihail, J.D.; Kabrick, J.M.; Pickens, J.B. Distribution of Armillaria species in upland Ozark Mountain forests with respect to site, overstory species composition and oak decline. For. Pathol. 2000, 30, 43–60. [Google Scholar] [CrossRef]
- McDonald, G.I. Is stumping a wise solution for the long-term: The problem of phenotype-environment mismatch. In Proceedings of the 59th Annual Western International Forest Disease Work Conference, Leavenworth, WA, USA, 11–14 October 2011; pp. 53–64. [Google Scholar]
- Baker, K.; Cook, R.J. Biological Control of Plant Pathogens; W.H. Freeman and Co.: San Francisco, CA, USA, 1974; p. 433. [Google Scholar]
- Silva, A.; Elad, Y.; Chet, I. Boligical control effects of a New Isolate of Trichoderma harzianum on Pythium aphanidermatum. Phytopathology 1984, 74, 498–501. [Google Scholar] [CrossRef]
- Raziq, F.; Fox, R.T.V. Combinations of fungal antagonists for biological control of Armillaria root rot of strawberry plants. Biol. Agric. Hortic. 2005, 23, 45–57. [Google Scholar] [CrossRef]
- Reaves, J.L.; Shaw, C.G., III; Mayfield, J.E. The effects of Trichoderma-spp. isolated from burned and non-burned forest soils on the growth and development of Armillaria ostoyae in culture. Northwest Sci. 1990, 64, 39–44. [Google Scholar]
- Hagle, S.K.; Shaw, C.G., III. Avoiding and reducing losses from Armillaria root disease. In Armillaria Root Disease; Agriculture Handbook No. 691; Shaw, C.G., III, Kile, G.A., Eds.; USDA Forest Service: Washington, DC, USA, 1991; Chapter 11; pp. 157–173. [Google Scholar]
- Raziq, F. Biological and integrated control of Armillaria root rot. In Armillaria Root Rot: Biology and Control of Honey Fungus; Fox, R.T.V., Ed.; Intercept Ltd.: Andover, UK, 2000; pp. 183–201. [Google Scholar]
- Dumas, M.T. Inhibition of Armillaria by bacteria isolated from soils of the boreal mixed wood forest of Ontario. Eur. J. For. Pathol. 1992, 22, 11–18. [Google Scholar] [CrossRef]
- Reaves, J.L.; Crawford, R.H. In vitro antagonism by Ulocladium botrytis of Phellinus weirii, Heterobasidion annosum, and Armillaria ostoyae. Eur. J. For. Pathol. 1994, 24, 364–375. [Google Scholar] [CrossRef]
- DeLong, R.L.; Lewis, K.J.; Simard, S.W.; Gibson, S. Fluorescent pseudomonad population sizes baited from soils under pure birch, pure Douglas-fir, and mixed forest stands and their antagonism toward Armillaria ostoyae in vitro. Can. J. For. Res. 2002, 32, 2146–2159. [Google Scholar] [CrossRef]
- Baumgartner, K.; Warnock, A.E. A soil inoculant inhibits Armillaria mellea in vitro and improves productivity of grapevines with root disease. Plant Dis. 2006, 90, 439–444. [Google Scholar] [CrossRef] [PubMed]
- de Vasconcellos, R.L.F.; Cardoso, E.J.B.N. Rhizospheric streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as PGPR for Pinus taeda. BioControl 2009, 54, 807–816. [Google Scholar] [CrossRef]
- Mesanza, N.; Iturritxa, E.; Patten, C.L. Native rhizobacteria as biocontrol agents of Heterobasidion annosum s.s. and Armillaria mellea infection of Pinus radiata. Biol. Control 2016, 101, 8–16. [Google Scholar] [CrossRef]
- Brazee, N.J.; Hulvey, J.P.; Wick, R.L. Evaluation of partial tef1, rpb2, and nLSU sequences for identification of isolates representing Armillaria calvescens and Armillaria gallica from northeastern North America. Fungal Biol. 2011, 115, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Elías-Román, R.D.; Guzmán-Plazola, R.A.; Klopfenstein, N.B.; Alvarado-Rosales, D.; Calderón-Zavala, G.; Mora-Aguilera, J.A.; Kim, M.-S.; García-Espinosa, R. Incidence and phylogenetic analyses of Armillaria spp. associated with root disease in peach orchards in the State of Mexico, Mexico. For. Pathol. 2013, 43, 390–401. [Google Scholar] [CrossRef]
- Klopfenstein, N.B.; Stewart, J.E.; Ota, Y.; Hanna, J.W.; Richardson, B.A.; Ross-Davis, A.L.; Elías-Román, R.D.; Korhonen, K.; Keča, N.; Iturritxa, E.; et al. Insights into the phylogeny of Northern Hemisphere Armillaria: Neighbor-net and Bayesian analyses of translation elongation factor 1-α gene sequences. Mycologia 2017, 109, 75–91. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.E.; Kim, M.-S.; Klopfenstein, N.B. Molecular genetic approaches toward understanding forest-associated fungi and their interactive roles within forest ecosystems. Curr. For. Rep. 2018, 4, 72–84. [Google Scholar] [CrossRef]
- Kim, M.-S.; Ross-Davis, A.L.; Stewart, J.E.; Hanna, J.W.; Warwell, M.V.; Cleaver, C.; McDonald, G.I.; Page-Dumroese, D.S.; Moltzan, B.; Klopfenstein, N.B. Can Metagenetic studies of soil microbial communities provide insights toward developing novel management approaches for Armillaria root disease? In Proceedings of the 63rd annual Western International Forest Disease Work Conference, Newport, OR, USA, 21–25 September 2015; pp. 129–131. [Google Scholar]
Species | Genet | # of Isolates | GenBank Accession No. a |
---|---|---|---|
A. altimontana | G1 | 63 | MH879011 |
G2 | 947 | MH879012 | |
Total | 1010 | ||
A. solidipes | |||
G3 | 11 | MH879013 | |
G4 | 26 | MH879014 | |
G5 | 19 | MH879015 | |
G6 | 27 | MH879016 | |
G7 | 128 | MH879017 | |
Total | 211 | ||
A. altimontana & A. solidipes | |||
Total | 1221 |
Living Trees | Dead Trees | # of Trees | |
---|---|---|---|
Clean (no Armillaria) b | 797 (45.3%) | 19 (1.1%) | 816 |
Epiphytic rhizomorphs (no disease) c | 807 (45.9%) | 4 (0.2%) | 811 |
Diseased d | 105 (6%) | 26 (1.5%) | 131 |
Species | Genet | # of Isolates not Associated with Disease b | # of Isolates Associated with Disease b | Total # of Isolates/Genet |
---|---|---|---|---|
A. altimontana | G1 | 43 | 0 | 43 |
G2 | 723 | 14 | 737 | |
Total | 766 (98.2%) c | 14 (1.8%) d | 780 | |
A. solidipes | G3 | 2 | 7 | 9 |
G4 | 18 | 4 | 22 | |
G5 | 6 | 8 | 14 | |
G6 | 3 | 22 | 25 | |
G7 | 12 | 80 | 92 | |
Total | 41 (25.3%) c | 121 (74.7%) d | 162 |
Trait | Model | Test df (Chi Df) | Test Deviance (Chisq) | p-Value |
---|---|---|---|---|
Height | Armillaria status (F) | 3 | 31.92 | <0.0001 |
Region (F) | 3 | 9.86 | 0.0198 | |
Armillaria status × region (F) | 9 | 4.75 | 0.8552 | |
Family within provenance and region (R) | 1 | 37.505 | <0.0001 | |
Row within block (R) | 1 | 10.447 | 0.0012 | |
Column within block (R) | 1 | 104.35 | <0.0001 | |
DBH | Armillaria status (F) | 3 | 21.453 | <0.0001 |
Family within provenance and region (R) | 1 | 24.221 | <0.0001 | |
Site density (R) | 1 | 9.095 | 0.0026 | |
Row within block (R) | 1 | 3.429 | 0.0641 | |
Column within block (R) | 1 | 23.297 | <0.0001 | |
Survival | Armillaria status (F) | 3 | 102.36 | <0.0001 |
Family within provenance and region (R) | 1 | 31.087 | <0.0001 | |
Row within block (R) | 1 | 24.8 | <0.0001 | |
Column within block (R) | 1 | 24.607 | <0.0001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warwell, M.V.; McDonald, G.I.; Hanna, J.W.; Kim, M.-S.; Lalande, B.M.; Stewart, J.E.; Hudak, A.T.; Klopfenstein, N.B. Armillaria altimontana Is Associated with Healthy Western White Pine (Pinus monticola): Potential in Situ Biological Control of the Armillaria Root Disease Pathogen, A. solidipes. Forests 2019, 10, 294. https://doi.org/10.3390/f10040294
Warwell MV, McDonald GI, Hanna JW, Kim M-S, Lalande BM, Stewart JE, Hudak AT, Klopfenstein NB. Armillaria altimontana Is Associated with Healthy Western White Pine (Pinus monticola): Potential in Situ Biological Control of the Armillaria Root Disease Pathogen, A. solidipes. Forests. 2019; 10(4):294. https://doi.org/10.3390/f10040294
Chicago/Turabian StyleWarwell, Marcus V., Geral I. McDonald, John W. Hanna, Mee-Sook Kim, Bradley M. Lalande, Jane E. Stewart, Andrew T. Hudak, and Ned B. Klopfenstein. 2019. "Armillaria altimontana Is Associated with Healthy Western White Pine (Pinus monticola): Potential in Situ Biological Control of the Armillaria Root Disease Pathogen, A. solidipes" Forests 10, no. 4: 294. https://doi.org/10.3390/f10040294
APA StyleWarwell, M. V., McDonald, G. I., Hanna, J. W., Kim, M.-S., Lalande, B. M., Stewart, J. E., Hudak, A. T., & Klopfenstein, N. B. (2019). Armillaria altimontana Is Associated with Healthy Western White Pine (Pinus monticola): Potential in Situ Biological Control of the Armillaria Root Disease Pathogen, A. solidipes. Forests, 10(4), 294. https://doi.org/10.3390/f10040294