Changes in the Soil Bacterial Community in a Chronosequence of Temperate Walnut-Based Intercropping Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Soil Sampling
2.3. Soil Physicochemical Property Measurement
2.4. Soil DNA Extractions and Sequencing of Bacterial 16S rRNA
2.5. Bioinformatics Analyses
2.6. Statistical Analyses
3. Result
3.1. Soil Physicochemical Properties
3.2. Soil Bacterial Community Structure and Diversity
3.3. Influence of Soil Physicochemical Properties on Bacterial Community
4. Discussion
4.1. Bacterial Communities along Agroforestry Chronosequence
4.2. Drivers of Bacterial Community Variation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bhagwat, S.A.; Willis, K.J.; Birks, H.J.; Whittaker, R.J. Agroforestry: A refuge for tropical biodiversity? Trends Ecol. Evol. 2008, 23, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Tsonkova, P.; Quinkenstein, A.; Freese, D. Ecological benefits provided by alley cropping systems for production of woody biomass in the temperate region: A review. Agrofor. Syst. 2012, 85, 133–152. [Google Scholar] [CrossRef]
- Gao, G.; Fu, B.; Wang, S.; Liang, W.; Jiang, X. Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Sci. Total Environ. 2016, 557, 331–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, L.; Bi, H.; Gao, L.; Zhu, Q.; Ma, W.; Cui, W.; Wilcox, B. Soil moisture and soil nutrient content in walnut-crop intercropping systems in the Loess Plateau of China. Arid Soil Res. Rehabil. 2012, 26, 285–296. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, Y.; Jing, C.; Jiang, Z.; Zhang, S. Photosynthesis, growth and yield of soybean and maize in a tree-based agroforestry intercropping system on the Loess Plateau. Agrofor. Syst. 2009, 76, 569–577. [Google Scholar] [CrossRef]
- Wang, L.; Zhong, C.; Gao, P.; Xi, W.; Zhang, S. Soil infiltration characteristics in agroforestry systems and their relationships with the temporal distribution of rainfall on the Loess Plateau in China. PLoS ONE 2015, 10, e124767. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Meng, P.; Zhang, J.; Yin, C.; Sun, S. Changes in soil organic carbon and total nitrogen in croplands converted to walnut-based agroforestry systems and orchards in southeastern Loess Plateau of China. Environ. Monit. Assess. 2015, 187, 688. [Google Scholar] [CrossRef] [PubMed]
- Eo, J.; Park, K.C. Long-term effects of imbalanced fertilization on the composition and diversity of soil bacterial community. Agric. Ecosyst. Environ. 2016, 231, 176–182. [Google Scholar] [CrossRef]
- Lemanceau, P.; Maron, P.A.; Mazurier, S.; Mougel, C.; Pivato, B.; Plassart, P.; Ranjard, L.; Revellin, C.; Tardy, V.; Wipf, D. Understanding and managing soil biodiversity: A major challenge in agroecology. Agron. Sustain. Dev. 2015, 35, 67–81. [Google Scholar] [CrossRef]
- Ashworth, A.J.; Debruyn, J.M.; Allen, F.L.; Radosevich, M.; Owens, P.R. Microbial community structure is affected by cropping sequences and poultry litter under long-term no-tillage. Soil Biol. Biochem. 2017, 114, 210–219. [Google Scholar] [CrossRef]
- Bardhan, S.; Jose, S.; Udawatta, R.P.; Fritschi, F. Microbial community diversity in a 21-year-old temperate alley cropping system. Agrofor. Syst. 2013, 87, 1031–1041. [Google Scholar] [CrossRef]
- Fischer, J.; Zerger, A.; Gibbons, P.; Stott, J.; Law, B.S. Tree decline and the future of Australian farmland biodiversity. Proc. Natl. Acad. Sci. USA 2010, 107, 19597–19602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jose, S.; Gillespie, A.R.; Pallardy, S.G. Interspecific interactions in temperate agroforestry. Agrofor. Syst. 2004, 61, 237–255. [Google Scholar]
- Banerjee, S.; Baah Acheamfour, M.; Carlyle, C.N.; Bissett, A.; Richardson, A.E.; Siddique, T.; Bork, E.W.; Chang, S.X. Determinants of bacterial communities in Canadian agroforestry systems. Environ. Microbiol. 2016, 18, 1805–1816. [Google Scholar] [CrossRef]
- Lacombe, S.; Bradley, R.L.; Hamel, C.; Beaulieu, C. Do tree-based intercropping systems increase the diversity and stability of soil microbial communities? Agric. Ecosyst. Environ. 2009, 131, 25–31. [Google Scholar] [CrossRef]
- Vallejo, V.E.; Arbeli, Z.; Terán, W.; Lorenz, N.; Dick, R.P.; Roldan, F. Effect of land management and Prosopis juliflora (Sw.) DC trees on soil microbial community and enzymatic activities in intensive silvopastoral systems of Colombia. Agric. Ecosyst. Environ. 2012, 150, 139–148. [Google Scholar] [CrossRef]
- Unger, I.M.; Goyne, K.W.; Kremer, R.J.; Kennedy, A.C. Microbial community diversity in agroforestry and grass vegetative filter strips. Agrofor. Syst. 2013, 87, 395–402. [Google Scholar] [CrossRef]
- Deng, Q.; Cheng, X.; Hui, D.; Zhang, Q.; Li, M.; Zhang, Q. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China. Sci. Total Environ. 2016, 541, 230–237. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microb. 2009, 75, 5111–5120. [Google Scholar] [CrossRef]
- Nie, Y.; Wang, M.; Zhang, W.; Ni, Z.; Hashidoko, Y.; Shen, W. Ammonium nitrogen content is a dominant predictor of bacterial community composition in an acidic forest soil with exogenous nitrogen enrichment. Sci. Total Environ. 2017, 624, 407–415. [Google Scholar] [CrossRef]
- Deakin, G.; Tilston, E.L.; Bennett, J.; Passey, T.; Harrison, N.; Fernández-Fernández, F.; Xu, X. Spatial structuring of soil microbial communities in commercial apple orchards. Appl. Soil Ecol. 2018, 130, 1–12. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Mago, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, A. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar]
- Anderson, M.J.; Walsh, D.C.I. Permanova, Anosim, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol. Monogr. 2013, 83, 557–574. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, X.; Wu, Y.; Zhang, L.; Cheng, J.; Wei, G.; Lin, Y. Natural revegetation of a semiarid habitat alters taxonomic and functional diversity of soil microbial communities. Sci. Total Environ. 2018, 635, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Liu, G.B.; Zhang, J.Y.; Xue, S. Long-term effects of vegetational restoration on soil microbial communities on the Loess Plateau of China. Restor. Ecol. 2016, 24, 794–804. [Google Scholar] [CrossRef]
- Dong, L.; Huang, Y.; Sun, H.; An, S. The restoration age of Robinia pseudoacacia plantation impacts soil microbial biomass and microbial community structure in the Loess Plateau. Catena 2018, 165, 192–200. [Google Scholar]
- Liu, J.; Yang, Z.; Peng, D.; Zhu, H.; Yang, G.; Ha, V.N.; Zhong, Z. Response of soil microbial community dynamics to Robinia pseudoacacia L. afforestation in the loess plateau: A chronosequence approach. Plant Soil 2018, 423, 327–338. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, G.; Xue, S.; Wang, G. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biol. Biochem. 2016, 97, 40–49. [Google Scholar] [CrossRef]
- Zak, D.R.; Holmes, W.E.; White, D.C.; Peacock, A.D.; Tilman, D. Plant diversity, soil microbial communities, and ecosystem function: Are there any links? Ecology 2003, 84, 2042–2050. [Google Scholar] [CrossRef]
- Zhong, Y.; Yan, W.; Shangguan, Z. Impact of long-term N additions upon coupling between soil microbial community structure and activity, and nutrient-use efficiencies. Soil Biol. Biochem. 2015, 91, 151–159. [Google Scholar] [CrossRef]
- Hu, H.; Chen, X.; Hou, F.; Wu, Y.; Cheng, Y. Bacterial and fungal community structures in Loess Plateau grasslands with different grazing intensities. Front. Microbiol. 2017, 8, 606. [Google Scholar]
- Subhash, Y.; Rajeev, K.; Saxena, A.K.; Arora, D.K. Diversity and phylogeny of plant growth-promoting bacilli from moderately acidic soil. J. Basic Microb. 2015, 51, 98–106. [Google Scholar]
- Tian, H.; Wang, H.; Hui, X.; Wang, Z.; Drijber, R.A.; Liu, J. Changes in soil microbial communities after 10 years of winter wheat cultivation versus fallow in an organic-poor soil in the Loess Plateau of China. PLoS ONE 2017, 12, e0184223. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Dowd, S.E.; Sun, Y.; Wester, D.; Allen, V. Pyrosequencing analysis for characterization of soil bacterial populations as affected by an integrated livestockcotton production system. Appl. Soil Ecol. 2010, 45, 13–25. [Google Scholar] [CrossRef]
- Battistuzzi, F.U.; Hedges, S.B. A major clade of prokaryotes with ancient adaptations to life on land. Mol. Biol. Evol. 2009, 26, 335–343. [Google Scholar] [CrossRef]
- Arnesen, L.P.S.; Fagerlund, A.; Granum, P.E. From soil to gut: Bacillus cereus and its food poisoning toxins. Fems Microbiol. Rev. 2008, 32, 579–606. [Google Scholar] [CrossRef] [Green Version]
- Araujo, A.S.F.; Leite, L.F.C.; Iwata, B.D.F.; de Freitas Iwata, B.; de Andrade Lira, M.; Xavier, G.R. Microbiological process in agroforestry systems. A review. Agron. Sustain. Dev. 2012, 32, 215–226. [Google Scholar] [CrossRef]
- Stevenson, A.; Hallsworth, J.E. Water and temperature relations of soil Actinobacteria. Environ. Microbiol. Rep. 2015, 6, 744–755. [Google Scholar] [CrossRef]
- Lin, B.B. Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agric. For. Meteorol. 2007, 144, 85–94. [Google Scholar] [CrossRef]
- Kaur, B.; Gupta, S.R.; Singh, G. Soil carbon microbial activity and nitrogen availability in agroforestry systems on moderately alkali sols in northern India. Appl. Soil Ecol. 2000, 15, 283–294. [Google Scholar] [CrossRef]
- Wang, L. Effect Mechanism Underground on Productivity of Walnut-Wheat Intercropping System. Ph.D. Thesis, Northwest A&F University, Yangling, China, 2016. [Google Scholar]
- Ketema, H.; Yimer, F. Soil property variation under agroforestry based conservation tillage and maize based conventional tillage in Southern Ethiopia. Soil Tillage Res. 2014, 141, 25–31. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Z.; Jie, G.; Fu, B.; Huang, Y. The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China. Catena 2007, 70, 200–208. [Google Scholar] [CrossRef]
- Jia, X.; Shao, M.; Zhu, Y.; Luo, Y. Soil moisture decline due to afforestation across the Loess Plateau, China. J. Hydrol. 2017, 546, 113–122. [Google Scholar] [CrossRef]
- Kerfahi, D.; Tripathi, B.M.; Dong, K.; Go, R.; Adams, J.M. Rainforest conversion to rubber plantation may not result in lower soil diversity of bacteria, fungi, and nematodes. Microb. Ecol. 2016, 72, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Thomson, B.C.; Tisserant, E.; Plassart, P.; Uroz, S.; Griffiths, R.I.; Hannula, S.E.; Buée, M.; Mougel, C.; Ranjard, L.; Veen, J.A.V. Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites. Soil Biol. Biochem. 2015, 88, 403–413. [Google Scholar] [CrossRef]
- Wang, J.; Ren, C.; Cheng, H.; Zou, Y.; Bughio, M.A.; Li, Q. Conversion of rainforest into agroforestry and monoculture plantation in China: Consequences for soil phosphorus forms and microbial community. Sci. Total Environ. 2017, 595, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Takeshi, T.; Seishi, I.; Chiaki, N.; Kiwamu, M.; Katsuhiko, A.; Satoshi, T.; Shigeaki, H. Molecular diversity of bacterial chitinases in arable soils and the effects of environmental factors on the chitinolytic bacterial community. Soil Biol. Biochem. 2009, 41, 473–480. [Google Scholar]
- Landesman, W.J.; Nelson, D.M.; Fitzpatrick, M.C. Soil properties and tree species drive ß-diversity of soil bacterial communities. Soil Biol. Biochem. 2014, 76, 201–209. [Google Scholar] [CrossRef]
- Chu, H.; Fierer, N.; Lauber, C.L.; Caporaso, J.G.; Knight, R.; Grogan, P. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ. Microbiol. 2010, 12, 2998–3006. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef]
- Liu, J.; Sui, Y.; Yu, Z.; Shi, Y.; Chu, H.; Jin, J.; Liu, X.; Wang, G. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biol. Biochem. 2014, 70, 113–122. [Google Scholar] [CrossRef]
- Sengupta, A.; Dick, W.A. Bacterial community diversity in soil under two tillage practices as determined by pyrosequencing. Microb. Ecol. 2015, 70, 853–859. [Google Scholar] [CrossRef]
- Helgason, B.L.; Walley, F.L.; Germida, J.J. No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Appl. Soil Ecol. 2010, 46, 390–397. [Google Scholar] [CrossRef]
Plot | Altitudem | Slope Aspect | Tree Age Year | Tree Diameter * cm | Tree Canopy Diameter m | Tree Height m |
---|---|---|---|---|---|---|
Block 1 | ||||||
1 | 648 | N | NA | NA | NA | NA |
2 | 635 | N | 5 | 7.08 | 0.92 | 3.18 |
3 | 620 | N | 9 | 14.20 | 2.20 | 5.70 |
4 | 648 | N | 14 | 16.02 | 2.43 | 7.20 |
Block 2 | ||||||
1 | 594 | S | NA | NA | NA | NA |
2 | 600 | S | 5 | 8.10 | 1.23 | 3.73 |
3 | 594 | S | 9 | 13.53 | 2.02 | 5.43 |
4 | 600 | S | 14 | 15.60 | 2.23 | 6.77 |
Block 3 | ||||||
1 | 589 | S | NA | NA | NA | NA |
2 | 594 | S | 5 | 7.88 | 1.17 | 3.33 |
3 | 600 | S | 9 | 14.10 | 1.89 | 4.88 |
4 | 620 | N | 14 | 14.48 | 2.17 | 6.06 |
Plot | Raw Read Number | Clean Read Number |
---|---|---|
Block-1 | ||
C | 41,842 | 3,2196 |
AF5 | 36,725 | 25,531 |
AF9 | 18,552 | 14,845 |
AF14 | 24,830 | 17,550 |
Block-2 | ||
C | 29,841 | 22,638 |
AF5 | 35,911 | 28,070 |
AF9 | 19,026 | 14,847 |
AF14 | 25,688 | 20,885 |
Block-3 | ||
C | 28,844 | 21,768 |
AF5 | 23,592 | 18,187 |
AF9 | 29,201 | 23,483 |
AF14 | 29,803 | 24,056 |
Age | pH | Wc % | BD g·cm−3 | SOC g·kg−1 | DOC mg·kg−1 | TN g·kg−1 | N-NH4+ mg·kg−1 | N-NO3− mg·kg−1 | AP mg·kg−1 |
---|---|---|---|---|---|---|---|---|---|
C | 7.58(0.05) | 15.13(0.77) | 1.23(0.03) | 11.09(0.41) | 125.6(10.92) | 1.49(0.05) | 1.72(0.24) | 10.91(0.63) | 9.21(2.3) |
AF5 | 7.78(0.01) | 18.72(0.87) | 1.24(0.02) | 9.91(0.21) | 75.2(4.82) | 1.30(0.10) | 2.16(0.28) | 9.32(0.46) | 10.32(4.48) |
AF9 | 7.95(0.12) | 21.50(0.94) | 1.34(0.03) | 8.94(0.19) | 87.2(4.09) | 1.20(0.05) | 2.07(0.04) | 7.89(0.25) | 7.55(1.22) |
AF14 | 8.17(0.04) | 21.16(0.92) | 1.32(0.02) | 10.90(0.60) | 77.6(1.60) | 1.48(0.14) | 2.89(0.32) | 14.32(0.97) | 15.28(7.85) |
P values from two-way analysis of variance | |||||||||
Age | 0.013 | 0.103 | 0.034 | 0.412 | 0.014 | 0.167 | 0.132 | 0.159 | 0.852 |
Block | 0.957 | 0.591 | 0.426 | 0.483 | 0.944 | 0.606 | 0.424 | 0.282 | 0.743 |
Age | Richness | Diversity | ||
---|---|---|---|---|
Nobs | Chao1 | Shannon | Simpson | |
C | 1484 | 3244 | 6.30 | 0.76 |
AF5 | 1622 | 3525 | 7.06 | 0.84 |
AF9 | 1724 | 3753 | 7.63 | 0.86 |
AF14 | 2162 | 4417 | 9.60 | 0.97 |
P values from two-way analysis of variance | ||||
Age | 0.019 | 0.016 | 0.013 | 0.055 |
Block | 0.006 | 0.063 | 0.002 | 0.005 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, P.; Zheng, X.; Wang, L.; Liu, B.; Zhang, S. Changes in the Soil Bacterial Community in a Chronosequence of Temperate Walnut-Based Intercropping Systems. Forests 2019, 10, 299. https://doi.org/10.3390/f10040299
Gao P, Zheng X, Wang L, Liu B, Zhang S. Changes in the Soil Bacterial Community in a Chronosequence of Temperate Walnut-Based Intercropping Systems. Forests. 2019; 10(4):299. https://doi.org/10.3390/f10040299
Chicago/Turabian StyleGao, Pengxiang, Xiaofeng Zheng, Lai Wang, Bin Liu, and Shuoxin Zhang. 2019. "Changes in the Soil Bacterial Community in a Chronosequence of Temperate Walnut-Based Intercropping Systems" Forests 10, no. 4: 299. https://doi.org/10.3390/f10040299
APA StyleGao, P., Zheng, X., Wang, L., Liu, B., & Zhang, S. (2019). Changes in the Soil Bacterial Community in a Chronosequence of Temperate Walnut-Based Intercropping Systems. Forests, 10(4), 299. https://doi.org/10.3390/f10040299