Does Land Use Change Affect Green Space Water Use? An Analysis of the Haihe River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Preprocessing
2.3. Data Analysis Methods
2.3.1. Land Use Transition Matrix
2.3.2. Water Use Efficiency (WUE)
2.3.3. Contribution Rates of Changes in Land Use
3. Results
3.1. Land Use Changes in the Haihe River Basin
3.2. Temporal and Spatial Variations of WUE, NPP, and ET
3.2.1. Interannual Variations
3.2.2. Spatial Distributions
3.3. Effects of LUCC on Green Space WUE
3.3.1. Spatial Distribution of WUE Variation
3.3.2. Contribution Rates of Changes in Land Use/Cover to WUE
4. Discussion
4.1. Reasons for Land Use/Cover Change
4.2. The Improvement of WUE in the Haihe River Basin
4.3. Suggestions
4.4. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Luo, S.; Wu, H.; Wang, G.; Han, D.; Lü, H.; Shao, J. Attribution Analysis for Runoff Change on Multiple Scales in a Humid Subtropical Basin Dominated by Forest, East China. Forests 2019, 10, 184. [Google Scholar] [CrossRef]
- Kummu, M.; Guillaume, J.H.; de Moel, H.; Eisner, S.; Florke, M.; Porkka, M.; Siebert, S.; Veldkamp, T.I.; Ward, P.J. The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Sci. Rep. 2016, 6, 38495. [Google Scholar] [CrossRef] [PubMed]
- UN-Water/Coordinating the UN’s Work on Water and Sanitation. Available online: http://www.unwater.org/ (accessed on 1 May 2019).
- Sun, G.; Vose, J. Forest Management Challenges for Sustaining Water Resources in the Anthropocene. Forests 2016, 7, 68. [Google Scholar] [CrossRef]
- Liu, J.; Yang, W. Water Sustainability for China and Beyond. Science 2012, 337, 649–650. [Google Scholar] [CrossRef] [PubMed]
- Gupta, J.; van der Zaag, P. Interbasin water transfers and integrated water resources management: Where engineering, science and politics interlock. Phys. Chem. Earth. 2008, 33, 28–40. [Google Scholar] [CrossRef]
- Braga, B.P.F.; Lotufo, J.G. Integrated River Basin Plan in Practice: The São Francisco River Basin. Int. J. Water. Resour. D. 2008, 24, 37–60. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Wang, G.; Mang, S.; Riehl, B.; Huang, J.; Wang, G.; Xu, L.; Huang, K.; Innes, J. Climate change impacts and forest adaptation in the Asia–Pacific region: From regional experts’ perspectives. J. For. Res. 2018, 3. [Google Scholar] [CrossRef]
- Zhang, X.; Mi, F.; Lu, N.; Yan, N.; Kuglerova, L.; Yuan, S.; Peng, Q.; Ma, O.Z. Green space water use and its impact on water resources in the capital region of China. Phys. Chem. Earth. 2017, 101, 185–194. [Google Scholar] [CrossRef]
- Choumert, J. An empirical investigation of public choices for green spaces. Land Use Policy 2010, 27, 1123–1131. [Google Scholar] [CrossRef] [Green Version]
- Byomkesh, T.; Nakagoshi, N.; Dewan, A.M. Urbanization and green space dynamics in Greater Dhaka, Bangladesh. Landsc. Ecol. Eng. 2012, 8, 45–58. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, L.; Liu, C.; Yu, J. Towards better water security in North China. Water Resour. Manag. 2007, 21, 233–247. [Google Scholar] [CrossRef]
- Ministry of Water Resources of the People’s Republic of China. Available online: http://www.mwr.gov.cn/ (accessed on 4 May 2019).
- Imperial, M. Using Collaboration as a Governance StrategyLessons from Six Watershed Management Programs. Adm. Soc. 2005, 37, 281–320. [Google Scholar] [CrossRef]
- Thieme, M.L.; Rudulph, J.; Higgins, J.; Takats, J.A. Protected areas and freshwater conservation: A survey of protected area managers in the Tennessee and Cumberland River Basins, USA. J. Environ. Manag. 2012, 109, 189–199. [Google Scholar] [CrossRef]
- Xie, H.; Wang, P.; Huang, H. Ecological Risk Assessment of Land Use Change in the Poyang Lake Eco-economic Zone, China. Int. J. Environ. Res. Public. Health 2013, 10, 328–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Zhang, Y.; Yu, J.; Fu, G.; Ao, F. Vegetation dynamics induced by groundwater fluctuations in the lower Heihe River Basin, northwestern China. J. Plant. Ecol. 2011, 4, 77–90. [Google Scholar] [CrossRef]
- Twine, T.; Kucharik, C.J.; Foley, J.A. Effects of El Niño–Southern Oscillation on the Climate, Water Balance, and Streamflow of the Mississippi River Basin. J. Climate 2005, 18, 4840–4861. [Google Scholar] [CrossRef]
- Keys, P.; Wang-Erlandsson, L.; Gordon, L. Revealing Invisible Water: Moisture Recycling as an Ecosystem Service. PLoS ONE 2016, 11, e0151993. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Harlan, S.L.; Stefanov, W.L.; Martin, C.A. Ecosystem services and urban heat riskscape moderation: Water, green spaces, and social inequality in Phoenix, USA. Ecol. Appl. 2011, 21, 2637–2651. [Google Scholar] [CrossRef]
- Netzer, M.S.; Sidman, G.; Pearson, T.R.H.; Walker, S.M.; Srinivasan, R. Combining Global Remote Sensing Products with Hydrological Modeling to Measure the Impact of Tropical Forest Loss on Water-Based Ecosystem Services. Forests 2019, 10, 413. [Google Scholar] [CrossRef]
- Zhang, B.; Xie, G.; Zhang, C.; Zhang, J. The economic benefits of rainwater-runoff reduction by urban green spaces: A case study in Beijing, China. J. Environ. Manag. 2012, 100, 65–71. [Google Scholar] [CrossRef]
- Hao, C.L.; Yan, D.H.; Qin, T.L.; Zhang, C.; Yin, J. Water Ecosystem Services and their Value—A Case Study in Luan River Basin, North China. Appl. Mech. Mater. 2013, 448, 225–234. [Google Scholar] [CrossRef]
- Schuch, G.; Serrao-Neumann, S.; Morgan, E.; Low Choy, D. Water in the city: Green open spaces, land use planning and flood management—An Australian case study. Land Use Policy 2017, 63, 539–550. [Google Scholar] [CrossRef]
- EAMUS, D. The interaction of rising CO2 and temperatures with water use efficiency. Plant Cell Environ. 1991, 14, 843–852. [Google Scholar] [CrossRef]
- Keenan, T.F.; Hollinger, D.Y.; Bohrer, G.; Dragoni, D.; Munger, J.W.; Schmid, H.P.; Richardson, A.D. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 2013, 499, 324–327. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, H.; Batelaan, O.; McVicar, T.R.; Long, D.; Piao, S.; Liang, W.; Liu, B.; Jin, Z.; Simmons, C.T. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Sci. Rep. 2016, 6, 23284. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Rosegrant, M.W.; Ringler, C. Physical and economic efficiency of water use in the river basin: Implications for efficient water management. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef]
- Gleick, P.H.; Christian-Smith, J.; Cooley, H. Water-use efficiency and productivity: Rethinking the basin approach. Water Int. 2011, 36, 784–798. [Google Scholar] [CrossRef]
- Multsch, S.; Elshamy, M.E.; Batarseh, S.; Seid, A.H.; Frede, H.G.; Breuer, L. Improving irrigation efficiency will be insufficient to meet future water demand in the Nile Basin. J. Hydrol. Reg. Stud. 2017, 12, 315–330. [Google Scholar] [CrossRef]
- Bai, Y.; Ouyang, Z.; Zheng, H.; Xu, W.; Zhang, C.; Zhuang, C.; Chen, S.; Jiang, B. Ecosystems patterns and dynamics in Haihe river basin. Acta Ecol. Sin. 2010, 30, 327–334. [Google Scholar]
- Ji, Y.; Chen, L.; Sun, R. Temporal and Spatial Variability of Water Supply Stress in the Haihe River Basin, Northern China. J. Am. Water Resour. Assoc. 2012, 45, 999–1007. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, J.; Hu, Y.; Moiwo, J. Sustainability of Water-Use and Food Production in the Haihe Catchment; Springer: Dordrecht, The Netherlands, 2010; pp. 231–239. [Google Scholar]
- Haihe River Water Conservancy Commission (MWR). Available online: http://www.hwcc.gov.cn/ (accessed on 15 January 2019).
- Zhu, Y.; Drake, S.; Lü, H.; Xia, J. Analysis of Temporal and Spatial Differences in Eco-environmental Carrying Capacity Related to Water in the Haihe River Basins, China. Water Resour. Manag. 2010, 24, 1089–1105. [Google Scholar] [CrossRef]
- Liu, J.; Yun, L.; Liya, S.; Zhiguo, C.; Baoqiang, Z. Public participation in water resources management of Haihe river basin, China: The analysis and evaluation of status quo. Procedia Environ. Sci. 2010, 2, 1750–1758. [Google Scholar]
- Chu, J.; Xia, J.; Xu, C.; Li, L.; Wang, Z. Spatial and temporal variability of daily precipitation in Haihe River basin, 1958–2007. J. Geogr. Sci. 2010, 20, 248–260. [Google Scholar] [CrossRef]
- Yang, Y.; Tian, F. Abrupt change of runoff and its major driving factors in Haihe River Catchment, China. J. Hydrol. 2009, 374, 373–383. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, X.; Li, W.; Luo, Y.; Zhang, M. A coupled surface-water/groundwater model for haihe river basin. Prog. Geogr. 2011, 30, 1345–1353. [Google Scholar]
- Wang, X.-j.; Zhang, J.-y.; Yang, Z.-f.; Shahid, S.; He, R.-m.; Xia, X.-h.; Liu, H.-w. Historic water consumptions and future management strategies for Haihe River basin of Northern China. Mitig. Adapt. Strat. Glob. Change 2015, 20, 371–387. [Google Scholar] [CrossRef]
- Wu, G.; Chen, S.; Su, R.; Jia, M.; Li, W. Temporal trend in surface water resources in Tianjin in the Haihe River Basin, China. Hydrol. Process. 2011, 25, 2141–2151. [Google Scholar] [CrossRef]
- Resource and Environment Data Cloud Platform. Available online: http://www.resdc.cn (accessed on 20 December 2018).
- MODIS Web. Available online: https://modis.gsfc.nasa.gov/ (accessed on 11 November 2018).
- Wang, X.; Zheng, D.; Shen, Y. Land use change and its driving forces on the Tibetan Plateau during 1990–2000. Catena 2008, 72, 56–66. [Google Scholar] [CrossRef]
- Liu, R.; Zhu, D. Methods for Detecting Land Use Changes Based on the Land Use Transition Matrix. Resour. Sci. 2010, 32, 1544–1550. [Google Scholar]
- Zhu, Q.; Jiang, H.; Peng, C.; Liu, J.; Wei, X.; Fang, X.; Liu, S.; Zhou, G.; Yu, S. Evaluating the effects of future climate change and elevated CO2 on the water use efficiency in terrestrial ecosystems of China. Ecol. Model. 2011, 222, 2414–2429. [Google Scholar] [CrossRef]
- Balestra, P. On the Efficiency of Ordinary Least-Squares in Regression Models. Publ. Amer. Statistical Assoc. 1970, 65, 1330–1337. [Google Scholar] [CrossRef]
- Clark-Carter, D. Standard Deviation; Springer: Dordrecht, The Netherlands, 2008; p. 1334. [Google Scholar]
- Lu, L.; Zhou, S.; Zhou, B.; Dai, L.; Chang, T.; Bao, G.; Zhou, H.; Li, Z. Land Use Transformation and Its Eco-environmental Responsein Process of the Regional Development: A Case Study of Jiangsu Province. Sci. Geogr. Sin. 2013, 33, 1442–1449. [Google Scholar]
- Wen, L.; Wang, Y.; Zhang, G.; Liu, H.; Wang, C. Land use and land cover changes in Haihe river basin of China. J. Northeast. Agric. Univ. 2012, 136–141. [Google Scholar]
- Zhu, Z.; Guo, W.; Zhang, H. Mapping Analysis of Land-use Changes in Haihe River Basin. J. Anhui Agric. Sci. 2012, 40, 8292–8295. [Google Scholar]
- Zeng, X.; Zhang, W.; Liu, X.; Cao, J.; Shen, H.; Zhao, X.; Zhang, N.; Bai, Y.; Yi, M. Change of soil organic carbon after cropland afforestation in ‘Beijing-Tianjin Sandstorm Source Control’ program area in China. Chin. Geogr. Sci. 2014, 24, 461–470. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Chen, E.; Zhang, Y.; Luo, Y. Ecological Benefit Evaluation of Three-north Shelter Forest Project Based on GIS—A Case Study in Zhongyang County, Shanxi Province. Bull. Soil Water Conserv. 2011, 31, 171–175. [Google Scholar]
- Zhang, Y.; Liu, M.; Bai, Y.; Zhang, Y. Application of ecological conservation cooperation for Beijng-Tianjin-Hebei regional integration. Resour. Sci. 2015, 37, 1529–1535. [Google Scholar]
- Lin, Y.; Fan, J.; Wen, Q.; Liu, S.; Li, B. Primary exploration of ecological theories and technologies for delineation of ecological redline zones. Acta Ecol Sin 2016, 36, 1244–1252. [Google Scholar]
- Bai, Y.; Wu, J.; Xing, Q.; Pan, Q.; Huang, J.; Yang, D.; Han, X. Primary Production and Rain Use Efficiency across a Precipitation Gradient on the Mongolia Plateau. Ecology 2008, 89, 2140–2153. [Google Scholar] [CrossRef] [PubMed]
- Rafique, R.; Zhao, F.; Jong, R.d.; Zeng, N.; Asrar, G.R. Global and Regional Variability and Change in Terrestrial Ecosystems Net Primary Production and NDVI: A Model-Data Comparison. Remote Sens. 2016, 8, 177. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, Y.; Wang, Z. The spatial—temporal variations of vegetation cover in the Haihe river basinfrom 2000 to 2013. J. Arid Land Resour. Environ. 2016, 30, 65–70. [Google Scholar]
- Feng, T.; Zhang, F.; Li, C.; Qu, Y.; Zhu, F. Spatial distribution of prime farmland based on cultivated land quality comprehensive evaluation at county scale. Trans. Chin. Soc. Agric. Eng. 2014, 30, 200–210. [Google Scholar]
- Yan, E.; Lin, H.; Dang, Y.; Xia, C. The spatiotemporal changes of vegetation cover in Beijing-Tianjin sandstorm source control region during 2000—2012. Acta Ecol Sin 2014, 34, 5007–5020. [Google Scholar]
- Yu, W.Y.; Ji, R.P.; Feng, R.; Zhao, X.L.; Zhang, Y.S. Response of water stress on photosynthetic characteristics and water use efficiency of maize leaves in different growth stage. Acta Ecol Sin 2015, 35, 2902–2909. [Google Scholar]
- Ding, X. Analysis of Water Resources Utilization Efficiency in Grain Production. Econ. Res. Guide 2018, 30–35. [Google Scholar]
- Pan, C.; Li, Y.; Peng, Y.; Gao, R.; Wu, J. Soil water holding capacity under four typical ecosystems in Wuyunjie Nature Reserve of Hunan Province. Acta Ecol. Sin 2012, 32, 538–547. [Google Scholar] [Green Version]
- Wang, H.; Pan, X.; Luo, J.; Luo, Z.; Chang, C.; Shen, Y. Using remote sensing to analyze spatiotemporal variations in crop planting in the North China Plain. Chin. J. Eco-Agric. 2015, 1199–1209. [Google Scholar]
- National Bureau of Statistics, China. Available online: http://www.stats.gov.cn/ (accessed on 20 April 2019).
- Fu, Q.; Liu, Y.; Li, T.; Cui, S.; Liu, D.; Cheng, K. Analysis of Water Utilization in Grain Production from Water Footprint Perspective in Heilongjiang Province. Trans. Chin. Soc. Agric. Mach. 2017, 48, 184–192. [Google Scholar]
- Gu, X.; Zhu, M. A Comparative study on Establishment Mode of Farmers’ Water-saving Irrigation Cooperative Based on Technology Diffusion Perspective. Water Saving Irrig. 2018, 278, 100–103. [Google Scholar]
- Fan, M.; Shen, J.; Yuan, L.; Jiang, R.-F.; Chen, X.; Davies, W.J.; Zhang, F. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J. Exp. Bot. 2011, 63, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, F.C.; Fernandes, M.R.; Ferreira, M.T. Riparian vegetation metrics as tools for guiding ecological restoration in riverscapes. Knowl. Manag. Aquat. Ecosyst. 2011, 402, 251–264. [Google Scholar]
- Ren, X. A gradient analysis of urban green space ecosystem services and human well-being. Master’s Thesis, Zhejiang University, Hangzhou, China, 2013. [Google Scholar]
- Zhou, X.; Wang, Y.-C. Spatial–temporal dynamics of urban green space in response to rapid urbanization and greening policies. Landsc. Urban. Plann. 2011, 100, 268–277. [Google Scholar] [CrossRef]
- Zheng, C.-Y.; Yu, Z.-W.; Shi, Y.; Cui, S.-M.; Wang, D.; Zhang, Y.-L.; Zhao, J.-Y. Effects of Tillage Practices on Water Consumption, Water Use Efficiency and Grain Yield in Wheat Field. J. Integr. Agric. 2014, 13, 2378–2388. [Google Scholar] [CrossRef] [Green Version]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Larson, N.; Sekhri, S.; Sidhu, R. Adoption of water-saving technology in agriculture: The case of laser levelers. Water Resour. Econ. 2016, 14, 44–64. [Google Scholar] [CrossRef]
- Ma, W.; Shi, P.; Zong, N.; Zhao, G.; Chai, X.; Geng, S. Water conservation capacity of forest ecosystems in Taihang Mountain. Chin. J. Eco-Agric. 2017, 25, 478–489. [Google Scholar]
- Wielinga, B.; Waterworth, R.; Brack, C. Fertiliser and irrigation effects on wood density at various heights for Pinus radiata. Eur. J. For. Res. 2008, 127, 63–70. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Zhao, S.; Ma, H.; Qi, G.; Guo, S. The Depth of Water Taken up by Walnut Trees during Different Phenological Stages in an Irrigated Arid Hilly Area in the Taihang Mountains. Forests 2019, 10, 121. [Google Scholar] [CrossRef]
- Chang, G.; Wang, L.; Meng, L.; Zhang, W. Farmers’ attitudes toward mandatory water-saving policies: A case study in two basins in northwest China. J. Environ. Manag. 2016, 181, 455–464. [Google Scholar] [CrossRef] [PubMed]
T2 | Total (T1) | ||||
---|---|---|---|---|---|
A1 | A2 | …… | An | ||
A1 | P11 | P12 | …… | P1n | P1 |
A2 | P21 | P22 | …… | P2n | P2 |
⋮ ⋮ | ⋮ ⋮ | ⋮ ⋮ | Pij | ⋮ ⋮ | ⋮ ⋮ |
An | Pn1 | Pn2 | …… | Pnn | Pn |
Total (T2) | P1 | P2 | …… | Pn | Total |
Land Use Transition Matrix (Unit: km2) | 2015 | ||||||
---|---|---|---|---|---|---|---|
2005 | Grassland | Farmland | Artificial Surface | Woodland | Water | Bare Land | Total (2005) |
Grassland | 61,055.2 | 132.7 | 246.6 | 115.4 | 43.7 | 12.7 | 61,606.3 |
Farmland | 261.7 | 157,734.1 | 2728.1 | 306.4 | 501.3 | 35.4 | 161,567.1 |
Artificial Surface | 37.7 | 999.5 | 20,937.3 | 32.9 | 126.3 | 12.6 | 22,146.3 |
Woodland | 72.8 | 119.6 | 121.0 | 60,526.4 | 12.9 | 1.7 | 60,854.3 |
Water | 16.2 | 462.1 | 232.1 | 14.9 | 5754.8 | 20.4 | 6500.4 |
Bare Land | 137.4 | 64.9 | 69.6 | 1.0 | 48.6 | 2921.4 | 3242.8 |
Total (2015) | 61,580.9 | 159,512.8 | 24,334.8 | 60,997.0 | 6487.6 | 3004.2 | 315,917.3 |
Land Use Transformation Types | Contributions Rates (, %) | Proportion (%) | |
---|---|---|---|
WUE increase | Artificial surface → Farmland | 0.01343 | 81.13 |
Woodland → Farmland | 0.00118 | 7.15 | |
Woodland → Grassland | 0.00055 | 3.31 | |
Artificial surface → Grassland | 0.00042 | 2.52 | |
Grassland → Farmland | 0.00032 | 1.91 | |
Bare land → Farmland | 0.00024 | 1.42 | |
Bare land → Grassland | 0.00017 | 1.04 | |
Artificial surface → Bare land | 0.00012 | 0.75 | |
Artificial surface → Woodland | 0.00012 | 0.70 | |
WUE decrease | Farmland → Artificial surface | 0.03667 | 81.15 |
Farmland → Woodland | 0.00304 | 6.72 | |
Grassland → Artificial surface | 0.00273 | 6.04 | |
Grassland → Woodland | 0.00087 | 1.92 | |
Bare land → Artificial surface | 0.00068 | 1.51 | |
Farmland → Grassland | 0.00062 | 1.38 | |
Woodland → Artificial surface | 0.00043 | 0.95 | |
Farmland → Bare land | 0.00013 | 0.29 | |
Grassland → Bare land | 0.00002 | 0.04 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhang, X.; Bai, Y.; Mi, F. Does Land Use Change Affect Green Space Water Use? An Analysis of the Haihe River Basin. Forests 2019, 10, 545. https://doi.org/10.3390/f10070545
Zhao Y, Zhang X, Bai Y, Mi F. Does Land Use Change Affect Green Space Water Use? An Analysis of the Haihe River Basin. Forests. 2019; 10(7):545. https://doi.org/10.3390/f10070545
Chicago/Turabian StyleZhao, Yu, Xuanchang Zhang, Yang Bai, and Feng Mi. 2019. "Does Land Use Change Affect Green Space Water Use? An Analysis of the Haihe River Basin" Forests 10, no. 7: 545. https://doi.org/10.3390/f10070545
APA StyleZhao, Y., Zhang, X., Bai, Y., & Mi, F. (2019). Does Land Use Change Affect Green Space Water Use? An Analysis of the Haihe River Basin. Forests, 10(7), 545. https://doi.org/10.3390/f10070545