Understory Vegetation Dynamics across a Poplar Plantation Chronosequence in Reclaimed Coastal Saline Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling Design and Field Measurement
2.3. Laboratory Analyses
2.4. Data Analysis
2.4.1. Species Diversity Indices
2.4.2. Influence of Stand Age and Environmental Factors on Understory Abundance, Diversity, and Composition
2.4.3. Structural Equation Modeling
3. Results
3.1. Influence of Stand Age on Understory Abundance and Diversity
3.2. Influence of Soil Factors on the Understory Abundance, Diversity, and Composition
3.3. Structural Equation Modeling
4. Discussion
4.1. Influence of Stand Age on Understory Abundance and Diversity
4.2. Influence of Soil Factors on Understory Abundance, Diversity and Composition
4.3. Structural Equation Modeling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- MacLean, D.A.; Wein, R.W. Changes in understory vegetation with increasing stand age in New Brunswick forests: Species composition, cover, biomass, and nutrients. Can. J. Bot. 1977, 55, 2818–2831. [Google Scholar] [CrossRef]
- Gilliam, F.S. The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience 2007, 57, 845–858. [Google Scholar] [CrossRef]
- Muller, R.N. Nutrient relations of the herbaceous layer in deciduous forest ecosystems. In The Herbaceous Layer in Forests of Eastern North America; Oxford University Press: New York, NY, USA, 2003; pp. 15–37. [Google Scholar]
- Kumar, P.; Chen, H.Y.; Thomas, S.C.; Shahi, C. Effects of coarse woody debris on plant and lichen species composition in boreal forests. J. Veg. Sci. 2017, 28, 389–400. [Google Scholar] [CrossRef]
- Kumar, P.; Chen, H.Y.; Thomas, S.C.; Shahi, C. Linking resource availability and heterogeneity to understorey species diversity through succession in boreal forest of Canada. J. Ecol. 2018, 106, 1266–1276. [Google Scholar] [CrossRef]
- Gerber, J.F. Conflicts over industrial tree plantations in the South: Who, how and why? Glob. Environ. Chang. 2011, 21, 165–176. [Google Scholar] [CrossRef]
- Licata, J.A.; Gyenge, J.E.; Fernández, M.E.; Schlichter, T.M.; Bond, B.J. Increased water use by ponderosa pine plantations in northwestern Patagonia, Argentina compared with native forest vegetation. For. Ecol. Manag. 2008, 255, 753–764. [Google Scholar] [CrossRef]
- Weih, M.; Karacic, A.; Munkert, H.; Verwijst, T.; Diekmann, M. Influence of young poplar stands on floristic diversity in agricultural landscapes (Sweden). Basic Appl. Ecol. 2003, 4, 149–156. [Google Scholar] [CrossRef]
- Fang, S.; Xu, X.; Yu, X.; Li, Z. Poplar in wetland agroforestry: A case study of ecological benefits, site productivity, and economics. Wetl. Ecol. Manag. 2005, 13, 93–104. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Xie, Y.; Li, X.; Li, F.; Hou, Z. Effects of young poplar plantations on understory plant diversity in the Dongting Lake wetlands, China. Sci. Rep. 2014, 4, 6339. [Google Scholar] [CrossRef]
- Wang, H.F.; Lencinas, M.V.; Friedman, C.R.; Wang, X.K.; Qiu, J.X. Understory plant diversity assessment of Eucalyptus plantations over three vegetation types in Yunnan, China. New For. 2011, 42, 101–116. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Han, H.; Shi, Z.; Yang, X. Biomass Accumulation and Carbon Sequestration in an Age-Sequence of Mongolian Pine Plantations in Horqin Sandy Land, China. Forests 2019, 10, 197. [Google Scholar] [CrossRef]
- Ge, X.M.; Tian, Y.; Tang, L.Z. Nutrient Distribution Indicated Whole-Tree Harvesting as a Possible Factor Restricting the Sustainable Productivity of a Poplar Plantation System in China. PLoS ONE 2015, 10, e0125303. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.W.; Fang, S.Y.; Chen, H.Y.H.; Zhu, R.W.; Peng, S.L.; Ruan, H.H. Soil Aggregation and Organic Carbon Dynamics in Poplar Plantations. Forests 2018, 9, 508. [Google Scholar] [CrossRef]
- Hart, S.A.; Chen, H.Y. Understory vegetation dynamics of North American boreal forests. Crit. Rev. Plant Sci. 2006, 25, 381–397. [Google Scholar] [CrossRef]
- Pugnaire, F.I.; Luque, M.T. Changes in plant interactions along a gradient of environmental stress. Oikos 2001, 93, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Hylander, K.; Dynesius, M.; Jonsson, B.G.; Nilsson, C. Substrate form determines the fate of bryophytes in riparian buffer strips. Ecol. Appl. 2005, 15, 674–688. [Google Scholar] [CrossRef]
- Kumar, P.; Chen, H.Y.; Searle, E.B.; Shahi, C. Dynamics of understorey biomass, production and turnover associated with long-term overstorey succession in boreal forest of Canada. For. Ecol. Manag. 2018, 427, 152–161. [Google Scholar] [CrossRef]
- Hart, S.A.; Chen, H.Y. Fire, logging, and overstory affect understory abundance, diversity, and composition in boreal forest. Ecol. Monogr. 2008, 78, 123–140. [Google Scholar] [CrossRef]
- Reiners, W.A. Twenty years of ecosystem reorganization following experimental deforestation and regrowth suppression. Ecol. Monogr. 1992, 62, 503–523. [Google Scholar] [CrossRef]
- Gilliam, F.S.; Turrill, N.L. Herbaceous layer cover and biomass in a young. Bull. Torrey Bot. Club 1993, 120, 445–450. [Google Scholar] [CrossRef]
- Bartels, S.F.; Chen, H.Y.H. Is understory plant species diversity driven by resource quantity or resource heterogeneity? Ecology 2010, 91, 1931–1938. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B.; Frelich, L.E.; Voldseth, R.A.; Bakken, P.; Adair, E.C. Understorey diversity in southern boreal forests is regulated by productivity and its indirect impacts on resource availability and heterogeneity. J. Ecol. 2012, 100, 539–545. [Google Scholar] [CrossRef]
- Halpern, C.B.; Lutz, J.A. Canopy closure exerts weak controls on understory dynamics: A 30-year study of overstory–understory interactions. Ecol. Monogr. 2013, 83, 221–237. [Google Scholar] [CrossRef]
- Bartels, S.F.; Chen, H.Y.H. Dynamics of epiphytic macrolichen abundance, diversity and composition in boreal forest. J. Appl. Ecol. 2015, 52, 181–189. [Google Scholar] [CrossRef]
- Chen, H.Y.H.; Biswas, S.R.; Sobey, T.M.; Brassard, B.W.; Bartels, S.F. Reclamation strategies for mined forest soils and overstorey drive understorey vegetation. J. Appl. Ecol. 2018, 55, 926–936. [Google Scholar] [CrossRef]
- Brockerhoff, E.G.; Ecroyd, C.E.; Leckie, A.C.; Kimberley, M.O. Diversity and succession of adventive and indigenous vascular understorey plants in Pinus radiata plantation forests in New Zealand. For. Ecol. Manag. 2003, 185, 307–326. [Google Scholar] [CrossRef]
- Tabari, M.; Rostamabadi, A.; Salehi, A. Comparison of Plant Diversity and Stand Characteristics in Alnus subcordata CA Mey and Taxodium distichum (L.) LC Rich. Ecol. Balk. 2011, 3, 15–24. [Google Scholar]
- Kumar, P. Patterns and Mechanisms of Understorey Vegetation Associated with Stand Development in Boreal Forests. Ph.D. Thesis, Lakehead University, Thunder Bay, ON, Canada, 2018. [Google Scholar]
- Archaux, F.; Chevalier, R.; Berthelot, A. Towards practices favourable to plant diversity in hybrid poplar plantations. For. Ecol. Manag. 2010, 259, 2410–2417. [Google Scholar] [CrossRef]
- Franklin, J.; Steadman, D.W. Forest plant and bird communities in the Lau Group, Fiji. PLoS ONE 2010, 5, e15685. [Google Scholar] [CrossRef]
- Gazol, A.; Ibanez, R. Variation of plant diversity in a temperate unmanaged forest in northern Spain: Behind the environmental and spatial explanation. Plant Ecol. 2010, 207, 1–11. [Google Scholar] [CrossRef]
- Boothroyd-Roberts, K.; Gagnon, D.; Truax, B. Can hybrid poplar plantations accelerate the restoration of forest understory attributes on abandoned fields? For. Ecol. Manag. 2013, 287, 77–89. [Google Scholar] [CrossRef]
- Laughlin, D.C.; Abella, S.R.; Covington, W.W.; Grace, J.B. Species richness and soil properties in Pinus ponderosa forests: A structural equation modeling analysis. J. Veg. Sci. 2007, 18, 231–242. [Google Scholar] [CrossRef]
- Yorks, T.E.; Dabydeen, S.; Smallidge, P.J. Understory vegetation-environment relationships in clearcut and mature secondary forests of western Maryland. Northeast. Nat. 2000, 7, 205–221. [Google Scholar] [CrossRef]
- Ramovs, B.; Roberts, M. Understory vegetation and environment responses to tillage, forest harvesting, and conifer plantation development. Ecol. Appl. 2003, 13, 1682–1700. [Google Scholar] [CrossRef]
- Taverna, K.; Peet, R.K.; Phillips, L.C. Long-term change in ground-layer vegetation of deciduous forests of the North Carolina Piedmont, USA. J. Ecol. 2005, 93, 202–213. [Google Scholar] [CrossRef]
- Bartels, S.F.; Chen, H.Y.H. Interactions between overstorey and understorey vegetation along an overstorey compositional gradient. J. Veg. Sci. 2013, 24, 543–552. [Google Scholar] [CrossRef]
- Gilliam, F.S. The Herbaceous Layer in Forests of Eastern North America; Oxford University Press: New York, NY, USA, 2014. [Google Scholar]
- Vellend, M.; Verheyen, K.; Jacquemyn, H.; Kolb, A.; van Calster, H.; Peterken, G.; Hermy, M. Extinction debt of forest plants persists for more than a century following habitat fragmentation. Ecology 2006, 87, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Jules, M.J.; Sawyer, J.O.; Jules, E.S. Assessing the relationships between stand development and understory vegetation using a 420-year chronosequence. For. Ecol. Manag. 2008, 255, 2384–2393. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.Y.; Tan, Y.; Fan, H.; Ruan, H. Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal Eastern China. Sci. Rep. 2016, 6, 20816. [Google Scholar] [CrossRef]
- Xu, W.; Wang, G.; Deng, F.; Zou, X.; Ruan, H.; Chen, H.Y.H. Responses of soil microbial biomass, diversity and metabolic activity to biochar applications in managed poplar plantations on reclaimed coastal saline soil. Soil Use Manag. 2018, 34, 597–605. [Google Scholar] [CrossRef]
- Dobriyal, P.; Qureshi, A.; Badola, R.; Hussain, S.A. A review of the methods available for estimating soil moisture and its implications for water resource management. J. Hydrol. 2012, 458, 110–117. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Hu, G.; Ni, J. Effects of topographical and edaphic factors on the distribution of plant communities in two subtropical karst forests, southwestern China. J. Mt. Sci. 2013, 10, 95–104. [Google Scholar] [CrossRef]
- Magurran, A.E. Ecological Diversity and Its Measurement; Princeton University Press: Princeton, NJ, USA, 1988. [Google Scholar]
- Anderson, M.J. Permutational Multivariate Analysis of Variance; Department of Statistics, University of Auckland: Auckland, New Zealand, 2005; Volume 26, pp. 32–46. [Google Scholar]
- Oksanen, J.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; Ó Hara, R.; Simpson, G.; Solymos, P.; Stevens, M.; Wagner, H. Vegan: Community Ecology Package. R package Version 2.0-10. 2019. Available online: http://cran.r-project.org/ (accessed on 20 May 2019).
- Kruskal, J.B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 1964, 29, 1–27. [Google Scholar] [CrossRef]
- Kruskal, J.B. Nonmetric multidimensional scaling: A numerical method. Psychometrika 1964, 29, 115–129. [Google Scholar] [CrossRef]
- Minchin, P.R. An evaluation of the relative robustness of techniques for ecological ordination. In Theory and Models in Vegetation Science; Springer: Berlin, Germany, 1987; pp. 89–107. [Google Scholar]
- Kenkel, N.C.; Orlóci, L. Applying metric and nonmetric multidimensional scaling to ecological studies: Some new results. Ecology 1986, 67, 919–928. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018.
- Bollen, K.A. Structural Equations with Latent Variables; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Grace, J.B.; Anderson, T.M.; Olff, H.; Scheiner, S.M. On the specification of structural equation models for ecological systems. Ecol. Monogr. 2010, 80, 67–87. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, D. Evaluating and modifying covariance structure models: A review and recommendation. Multivar. Behav. Res. 1990, 25, 137–155. [Google Scholar] [CrossRef]
- Rosseel, Y. Lavaan: An R package for structural equation modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef]
- Li, Y.; Qin, H.; Xie, Y.; Wang, W.; Chen, X.; Zhang, C. Physiological mechanism for the reduction in soil water in poplar (Populusdeltoides) plantations in Dongting Lake wetlands. Wetl. Ecol. Manag. 2014, 22, 25–33. [Google Scholar] [CrossRef]
- Rowland, S.; Prescott, C.; Grayston, S.; Quideau, S.; Bradfield, G. Recreating a functioning forest soil in reclaimed oil sands in northern Alberta: An approach for measuring success in ecological restoration. J. Environ. Qual. 2009, 38, 1580–1590. [Google Scholar] [CrossRef]
- Pinno, B.; Hawkes, V. Temporal trends of ecosystem development on different site types in reclaimed boreal forests. Forests 2015, 6, 2109. [Google Scholar] [CrossRef]
- Parrotta, J.A. Influence of overstory composition on understory colonization by native species in plantations on a degraded tropical site. J. Veg. Sci. 1995, 6, 627–636. [Google Scholar] [CrossRef]
- Kuksina, N.; Ulanova, G. Plant species diversity in spruce forest after clear cutting disturbance: 16 year monitoring in Russian Tajo, proceeding of reforestation and management of biodiversity. Finl. August 2000, 18, 21–24. [Google Scholar]
- Yirdaw, E.; Luukkanen, O. Photosynthetically active radiation transmittance of forest plantation canopies in the Ethiopian highlands. For. Ecol. Manag. 2004, 188, 17–24. [Google Scholar] [CrossRef]
- Duan, W.J.; Ren, H.; Fu, S.L.; Wang, J.; Zhang, J.P.; Yang, L.; Huang, C. Community Comparison and Determinant Analysis of Understory Vegetation in Six Plantations in South China. Restor. Ecol. 2010, 18, 206–214. [Google Scholar] [CrossRef]
- Son, Y.; Lee, Y.Y.; Jun, Y.C.; Kim, Z.S. Light availability and understory vegetation four years after thinning in a Larixleptolepis plantation of central Korea. J. For. Res. 2004, 9, 133–139. [Google Scholar] [CrossRef]
- Chen, S.; Wang, W.; Xu, W.; Wang, Y.; Wan, H.; Chen, D.; Tang, Z.; Tang, X.; Zhou, G.; Xie, Z.; et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl. Acad. Sci. USA 2018, 115, 4027–4032. [Google Scholar] [CrossRef] [Green Version]
- Christian, D.P.; Niemi, G.J.; Hanowski, J.M.; Collins, P. Perspectives on biomass energy tree plantations and changes in habitat for biological organisms. Biomass Bioenergy 1994, 6, 31–39. [Google Scholar] [CrossRef]
- Diaz, M.; Carbonell, R.; Santos, T.; Telleria, J. Breeding bird communities in pine plantations of the Spanish plateaux: Biogeography, landscape and vegetation effects. J. Appl. Ecol. 1998, 35, 562–574. [Google Scholar] [CrossRef]
- Taki, H.; Yamaura, Y.; Okabe, K.; Maeto, K. Plantation vs. natural forest: Matrix quality determines pollinator abundance in crop fields. Sci. Rep. 2011, 1, 132. [Google Scholar] [CrossRef]
- Barbier, S.; Gosselin, F.; Balandier, P. Influence of tree species on understory vegetation diversity and mechanisms involved—A critical review for temperate and boreal forests. For. Ecol. Manag. 2008, 254, 1–15. [Google Scholar] [CrossRef]
- Vockenhuber, E.A.; Scherber, C.; Langenbruch, C.; Meißner, M.; Seidel, D.; Tscharntke, T. Tree diversity and environmental context predict herb species richness and cover in Germany’s largest connected deciduous forest. Perspect. Plant Ecol. Evol. Syst. 2011, 13, 111–119. [Google Scholar] [CrossRef]
- Černý, T.; Doležal, J.; Janeček, Š.; Šrůtek, M.; Valachovič, M.; Petřík, P.; Altman, J.; Bartoš, M.; Song, J.S. Environmental correlates of plant diversity in Korean temperate forests. Acta Oecol. 2013, 47, 37–45. [Google Scholar] [CrossRef]
- Deckers, B.; Hermy, M.; Muys, B. Factors affecting plant species composition of hedgerows: Relative importance and hierarchy. Acta Oecol. Int. J. Ecol. 2004, 26, 23–37. [Google Scholar] [CrossRef]
- Jiang, Y.; Kang, M.; Zhu, Y.; Xu, G. Plant biodiversity patterns on Helan Mountain, China. Acta Oecol. 2007, 32, 125–133. [Google Scholar] [CrossRef]
- Zhang, J.T.; Dong, Y. Factors affecting species diversity of plant communities and the restoration process in the loess area of China. Ecol. Eng. 2010, 36, 345–350. [Google Scholar] [CrossRef]
- Hokkanen, P.J. Environmental patterns and gradients in the vascular plants and bryophytes of eastern Fennoscandian herb-rich forests. For. Ecol. Manag. 2006, 229, 73–87. [Google Scholar] [CrossRef]
- Chipman, S.J.; Johnson, E.A. Understory vascular plant species diversity in the mixedwood boreal forest of western Canada. Ecol. Appl. 2002, 12, 588–601. [Google Scholar] [CrossRef]
- Chen, H.Y.H.; Legare, S.; Bergeron, Y. Variation of the understory composition and diversity along a gradient of productivity in Populustremuloides stands of northern British Columbia, Canada. Can. J. Bot. Rev. Can. Bot. 2004, 82, 1314–1323. [Google Scholar] [CrossRef]
- Hume, A.; Chen, H.Y.H.; Taylor, A.R.; Kayahara, G.J.; Man, R. Soil C: N: P dynamics during secondary succession following fire in the boreal forest of central Canada. For. Ecol. Manag. 2016, 369, 1–9. [Google Scholar] [CrossRef]
- Mills, S.E.; Macdonald, S.E. Predictors of moss and liverwort species diversity of microsites in conifer-dominated boreal forest. J. Veg. Sci. 2004, 15, 189–198. [Google Scholar] [CrossRef]
Categories | Index | Stand Age (Years) | ANOVA Statistics | ||||
---|---|---|---|---|---|---|---|
8 | 12 | 18 | CV (%) | F | p | ||
Herb | Abundance | a | b | a | 23.0 | 12.16 | <0.001 |
Shannon | a | b | b | 8.6 | 26.30 | <0.001 | |
Shrub | Abundance | b | a | c | 54.5 | 41.49 | <0.001 |
Shannon | a | a | b | 57.1 | 24.55 | <0.001 | |
Soil properties | Total C | 15.8 ± 0.2b | 17.4 ± 0.2a | 17.2 ± 0.2a | 7.9 | 17.31 | <0.001 |
Total N | 0.81 ± 0.05a | 0.69 ± 0.05a | 0.86 ± 0.05a | 35.7 | 2.71 | 0.072 | |
C:N ratio | 20.5 ± 2.0b | 31.2 ± 2.0a | 24.9 ± 2.0ab | 45.4 | 7.42 | 0.001 | |
Soil moisture | 0.22 ± 0.005b | 0.24 ± 0.005a | 0.23 ± 0.005ab | 13.0 | 4.61 | 0.013 | |
Soil pH | 8.24 ± 0.01b | 8.19 ± 0.01c | 8.32 ± 0.01a | 1.0 | 30.43 | <0.001 |
Variable | Total Carbon | Total Nitrogen | C:N Ratio | Soil Moisture | Soil pH | |
---|---|---|---|---|---|---|
Herb | Abundance | −0.10 | 0.15 | −0.23 | −0.18 | 0.35 * |
Shannon | −0.36 * | 0.15 | −0.32 * | −0.12 | 0.00 | |
Shrub | Abundance | −0.02 | −0.23 | 0.30 * | 0.10 | −0.61 *** |
Shannon | −0.27 | −0.12 | 0.05 | −0.07 | −0.57 *** |
Variable | Herb | Shrub | ||
---|---|---|---|---|
F-Value | R2 | F-Value | R2 | |
Age | 21.59 *** | 0.51 | 13.19 *** | 0.39 |
Total carbon (C) | 4.46 ** | 0.09 | 3.28 ** | 0.07 |
Total nitrogen (N) | 0.86 | 0.02 | 0.93 | 0.02 |
C:N ratio | 2.01 | 0.04 | 1.55 | 0.03 |
Soil moisture | 1.60 | 0.04 | 1.46 | 0.03 |
Soil pH | 5.09 *** | 0.11 | 5.40 *** | 0.11 |
Vegetation | Variable | NMDS1 | NMDS2 | R2 | p-Value |
---|---|---|---|---|---|
Herb | Total carbon (C) | 0.97 | −0.24 | 0.28 | 0.002 |
Total nitrogen (N) | −0.11 | 0.99 | 0.03 | 0.500 | |
C:N ratio | 0.73 | −0.68 | 0.11 | 0.090 | |
Soil moisture | 0.89 | −0.45 | 0.07 | 0.240 | |
Soil pH | 0.41 | 0.91 | 0.31 | 0.002 | |
Shrub | Total carbon (C) | 0.74 | 0.67 | 0.16 | 0.026 |
Total nitrogen (N) | 0.66 | −0.75 | 0.03 | 0.571 | |
C:N ratio | 0.04 | 0.99 | 0.04 | 0.395 | |
Soil moisture | 0.51 | 0.86 | 0.08 | 0.195 | |
Soil pH | 0.81 | −0.59 | 0.27 | 0.002 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poudel, D.R.; Chen, H.Y.H.; KC, M.; Ge, Z.; Bown, H.E.; Ruan, H. Understory Vegetation Dynamics across a Poplar Plantation Chronosequence in Reclaimed Coastal Saline Soil. Forests 2019, 10, 764. https://doi.org/10.3390/f10090764
Poudel DR, Chen HYH, KC M, Ge Z, Bown HE, Ruan H. Understory Vegetation Dynamics across a Poplar Plantation Chronosequence in Reclaimed Coastal Saline Soil. Forests. 2019; 10(9):764. https://doi.org/10.3390/f10090764
Chicago/Turabian StylePoudel, Daya Ram, Han Y. H. Chen, Mohan KC, Zhiwei Ge, Horacio E. Bown, and Honghua Ruan. 2019. "Understory Vegetation Dynamics across a Poplar Plantation Chronosequence in Reclaimed Coastal Saline Soil" Forests 10, no. 9: 764. https://doi.org/10.3390/f10090764
APA StylePoudel, D. R., Chen, H. Y. H., KC, M., Ge, Z., Bown, H. E., & Ruan, H. (2019). Understory Vegetation Dynamics across a Poplar Plantation Chronosequence in Reclaimed Coastal Saline Soil. Forests, 10(9), 764. https://doi.org/10.3390/f10090764