Forest Climax Phenomenon: An Invariance of Scale
Abstract
:1. Background
2. Fractal Forest
3. Coexistence
4. Successional Species Turnover
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Seynave, I.; Bailly, A.; Balandier, P.; Bontemps, J.-D.; Cailly, P.; Cordonnier, T.; Deleuze, C.; Dhôte, J.-F.; Ginisty, C.; Lebourgeois, F.; et al. GIS Coop: networks of silvicultural trials for supporting forest management under changing environment. Ann. For. Sci. 2018, 75, 48. [Google Scholar] [CrossRef] [Green Version]
- Cole, L.E. How Quickly do Tropical Forests Recover from Disturbance? 2014. Available online: https://www.kew.org/blogs/kew-science/how-quickly-do-tropical-forests-recover-from-disturbance (accessed on 16 May 2018).
- Yearsley, K.; Parminter, J. Seral Stages Across Forested Landscapes: Relationships to Biodiversity. Res. Prog. Extension Note 18; B.C. Ministry of Forests, 8p. Available online: https://www.for.gov.bc.ca/hfd/pubs/docs/En/En18.pdf (accessed on 28 March 2018).
- Chazdon, R.L. Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation; University of Chicago Press: Chicago, IL, USA, 2014. [Google Scholar]
- Makarieva, A.M.; Gorshkov, V.G.; Li, B.-L. Revisiting forest impact on atmospheric water vapor transport and precipitation. Theor. Appl. Climatol. 2013, 111, 79–96. [Google Scholar] [CrossRef]
- Frank, S.A.; Bascompte, J. Invariance in ecological pattern. bioRxiv 2019, 673590. [Google Scholar] [CrossRef] [Green Version]
- Pulliam, H.R.; Waser, N.M. Ecological invariance and the search for generality in ecology. In The Ecology of Place: Contributions of Place-Based Research to Ecological Understanding; Billick, I., Price, M.V., Eds.; University of Chicago Press: Chicago, IL, USA, 2010; pp. 69–92. [Google Scholar]
- Wendt, H.; Didier, G.; Combrexelle, S.; Abry, P. Multivariate Hadamard self-similarity: Testing fractal connectivity. Physica D 2017, 356–357, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Combrexelle, S.; Wendt, H.; Didier, G.; Abry, P. Multivariate scale-free dynamics: Testing fractal connectivity. In Proceedings of the 42nd IEEE international conference on acoustics, speech and signal processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 3984–3988. [Google Scholar] [CrossRef]
- Li, B.-L. Fractal geometry applications in description and analysis of patch patterns and patch dynamics. Ecol. Model. 2000, 132, 33–50. [Google Scholar] [CrossRef]
- Parrott, L.; Lange, H. An introduction to complexity science. In Managing World Forests as Complex Adaptive Systems; Messier, C., Puettmann, K.J., Coates, K.D., Eds.; Routledge: London, UK, 2013; pp. 17–32. [Google Scholar]
- Kurakin, A. The self-organizing fractal theory as a universal discovery method: The phenomenon of life. Theor. Biol. Med. Model. 2011, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Carlson, J.M.; Doyle, J. Complexity and robustness. Proc. Natl. Acad. Sci. USA 2002, 99, 2538–2545. [Google Scholar] [CrossRef] [Green Version]
- Manrubia, S.C.; Solé, R.V. Self-organized criticality in rainforest dynamics. Chaos Solitons Fractals 1996, 7, 523–541. [Google Scholar] [CrossRef]
- Frank, S.A. Common probability patterns arise from simple invariances. arXiv 2016, arXiv:1602.03559v2. [Google Scholar]
- Nottale, L. Lecture 19. Scale relativity. In Scale Invariance and Beyond. Les Houches Workshop, 10–14 March 1997; EDP Sciences; Dubrulle, B., Graner, F., Sornette, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 249–261. [Google Scholar] [CrossRef]
- Rusbult, C. Einstein’s Theory of Relativity is a Theory of Invariance-Constancy. 2007. Available online: https://www.asa3.org/ASA/education/views/invariance.htm (accessed on 27 October 2019).
- Morin, X.; Fahse, L.; Jactel, H.; Scherer-Lorenzen, M.; García-Valdés, R.; Bugmann, H. Long-term response of forest productivity to climate change is mostly driven by change in tree species composition. Sci. Rep. 2018, 8, 5627. [Google Scholar] [CrossRef] [Green Version]
- Petrokas, R.; Baliuckas, V. Self-sustaining forest. Appl. Ecol. Environ. Res. 2017, 15, 409–426. [Google Scholar] [CrossRef]
- Kirschbaum, M.; Fischlin, A. Climate change impacts on forests. In Climate Change 1995—Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analysis; Watson, R., Zinyowera, M.C., Moss, R.H., Eds.; Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel of Climate Change (IPCC); Cambridge University Press: Cambridge, UK, 1996; pp. 95–129. [Google Scholar]
- MCPFE Resolution H1: General Guidelines for the Sustainable Management of Forests in Europe. In Proceedings of the Second Ministerial Conference on the Protection of Forests in Europe (MCPFE), Helsinki, Finland, 16–17 June 1993.
- Palmer, M.W. The coexistence of species in fractal landscapes. Am. Nat. 1992, 139, 375–397. [Google Scholar] [CrossRef]
- Gustafsson, L.; Baker, S.C.; Bauhus, J.; Beese, W.J.; Brodie, A.; Kouki, J.; Lindenmayer, D.B.; Lõhmus, A.; Martínez Pastur, G.; Messier, C.; et al. Retention forestry to maintain multifunctional forests: A world perspective. BioScience 2012, 62, 633–645. [Google Scholar] [CrossRef] [Green Version]
- Marks-Tarlow, T. Fractal entanglement between observer and observed. Int. J. Semiot. Vis. Rhetor. 2018, 2, 1–14. [Google Scholar] [CrossRef]
- Andronache, I.; Marin, M.; Fischer, R.; Ahammer, H.; Radulovic, M.; Ciobotaru, A.M.; Jelinek, H.F.; Di Ieva, A.; Pintilii, R.D.; Drăghici, C.C.; et al. Dynamics of forest fragmentation and connectivity using particle and fractal analysis. Sci. Rep. 2019, 9, 12228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watt, A.S. Pattern and process in the plant community. J. Ecol. 1947, 35, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Král, K.; Shue, J.; Vrška, T.; Gonzalez-Akre, E.B.; Parker, G.G.; McShea, W.J.; McMahon, S.M. Fine-scale patch mosaic of developmental stages in Northeast American secondary temperate forests: The European perspective. Eur. J. For. Res. 2016, 135, 981–996. [Google Scholar] [CrossRef]
- Wu, J.; Loucks, O.L. From balance-of-nature to hierarchical patch dynamics: A paradigm shift in ecology. Q. Rev. Biol. 1995, 70, 439–466. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Li, H.; Jones, K.B.; Loucks, O.L. (Eds.) Scaling with known uncertainty: A synthesis. In Scaling and Uncertainty Analysis in Ecology: Methods and Applications; Springer: Dordrecht, The Netherlands, 2006; pp. 329–346. [Google Scholar]
- Urban, D.L.; O’Neill, R.V.; Shugart, H.H., Jr. Landscape ecology: A hierarchical perspective can help scientists understand spatial patterns. BioScience 1987, 37, 119–127. [Google Scholar] [CrossRef]
- Huynh, H.N.; Pradana, A.; Chew, L.Y. The complexity of sequences generated by the arc-fractal system. PLoS ONE 2015, 10, e0117365. [Google Scholar] [CrossRef] [Green Version]
- Drake, J.; Fuller, M.; Zimmermann, C.; Gamarra, J. Emergence in ecological systems. In From Energetics to Ecosystems: The Dynamics and Structure of Ecological Systems; Rooney, N., McCann, K., Noakes, D., Eds.; Springer: New York, NY, USA, 2007; pp. 157–184. [Google Scholar]
- Komulainen, T. Self-Similarity and Power Laws; Report 145/2004, 109–122; Helsinki University of Technology, Control Engineering Laboratory: Helsinki, Finland, 2004. [Google Scholar]
- Li, B.-L. Fractal dimensions. In Encyclopedia of Environmetrics; El-Shaarawi, A.H., Piegorsch, W.W., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2002; Volume 2, pp. 821–825. [Google Scholar]
- Salingaros, N.A.; West, B.J. A universal rule for the distribution of sizes. Environ. Plan. B Plan. Des. 1999, 26, 909–923. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.K.; Arjunan, S.P.; Aliahmad, B. Fractals: Applications in Biological Signalling and Image Processing; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Barnsley, M.F. Fractals Everywhere; Academic Press: New York, NY, USA, 1988. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature, 2nd ed.; Macmillan: London, UK, 1983. [Google Scholar]
- Devaney, R.L. An Introduction to Chaotic Dynamical Systems; Benjamin/Cummings: Menlo Park, CA, USA, 1986; pp. 176–202. [Google Scholar]
- Cattani, C. Fractal and fractional. Fractal Fract. 2017, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Halley, J.D.; Winkler, D.A. Critical-like self-organization and natural selection: Two facets of a single evolutionary process? BioSystems 2008, 92, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Rickles, D.; Hawe, P.; Shiell, A. A simple guide to chaos and complexity. J. Epidemiol. Community Health 2007, 61, 933–937. [Google Scholar] [CrossRef]
- Oldershaw, R.L. A Fractal Universe? 2003. Available online: http://www3.amherst.edu/~rloldershaw/NOF.HTM (accessed on 4 February 2019).
- Brier, S. Biosemiotics. In Encyclopedia of Language and Linguistics, 2nd ed.; Elsevier Science: Oxford, UK, 2006; Volume 2, pp. 31–40. [Google Scholar]
- Mindell, A. Quantum Mind: The Edge between Physics and Psychology; Lao Tse Press: Portland, OR, USA, 2000. [Google Scholar]
- Gyr, J. Psychophysics: The self-referent holonomic observer-observed relation. In Origins: Brain and Self Organization. Proceedings of 2nd Appalachian Conference on Behavioral Neurodynamics, Radford, Virginia, October; Pribram, K.H., Ed.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1994; pp. 102–120. [Google Scholar]
- Welch, K. A Fractal Topology of Time: Implications for Consciousness and Cosmology. Ph.D. Thesis, California Institute of Integral Studies, San Francisco, CA, USA, 2010. [Google Scholar]
- Joosten, J.J.; Soler-Toscano, F.; Zenil, H. Fractal dimension versus process complexity. Adv. Math. Phys. 2016, 2016, 5030593. [Google Scholar] [CrossRef] [Green Version]
- Crawley, M.J.; Harral, J.E. Scale dependence in plant biodiversity. Science 2001, 291, 864–868. [Google Scholar] [CrossRef]
- Schoener, T.W.; Spiller, D.A.; Losos, J.B. Natural restoration of the species–area relation for a lizard after a hurricane. Science 2001, 294, 1525–1528. [Google Scholar] [CrossRef]
- Liebovitch, L.S.; Shehadeh, L.A. Introduction to fractals. In Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences; Web Book; Riley, M.A., Orden, G.V., Eds.; National Science Foundation, Directorate for Social, Behavorial and Economic Sciences: Alexandria, VA, USA, 2005; pp. 178–266. [Google Scholar]
- Turcotte, D.L. Fractals and fragmentation. J. Geophys. Res. 1986, 91, 1921–1926. [Google Scholar] [CrossRef]
- Tilebein, M. A complex adaptive systems approach to efficiency and innovation. Kybernetes 2006, 35, 1087–1099. [Google Scholar] [CrossRef]
- Camazine, S.; Deneubourg, J.L.; Franks, N.R.; Sneyd, J.; Théraulaz, G.; Bonabeau, E. Self-Organization in Biological Systems, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Falconer, K.J. Fractals: A Very Short Introduction; Oxford University Press: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- Heylighen, F. The science of self-organization and adaptivity. In Knowledge Management, Organizational Intelligence and Learning, and Complexity; Kiel, L.D., Ed.; Encyclopedia of Life Support Systems (EOLSS); Eolss Publishers: Oxford, UK, 2001; Volume III, pp. 849–874. [Google Scholar]
- Boeing, G. Visual analysis of nonlinear dynamical systems: Chaos, fractals, self-similarity and the limits of prediction. Systems 2016, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Bartone, S. Strange Attractors: Queers, Chaos, and Evolution. 2014. Available online: https://journals.uvic.ca/index.php/adcs/article/view/17821/0 (accessed on 27 March 2018).
- Rietkerk, M.; van de Koppel, J. Regular pattern formation in real ecosystems. Trends Ecol. Evol. 2008, 23, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Decocq, G. Determinism, chaos and stochasticity in plant community successions: Consequences for phytosociology and conservation ecology. In Nature Conservation: Concepts and Practice; Gafta, D., Akeroyd, J.R., Eds.; Springer: Berlin, Germany, 2006; pp. 254–266. [Google Scholar]
- Eckmann, J.P.; Ruelle, D. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 1985, 57, 617. [Google Scholar] [CrossRef]
- Tsallis, C.; Plastino, A.R.; Zheng, W.M. Power-law sensitivity to initial conditions—new entropic representation. Chaos Solitons Fractals 1997, 8, 885–891. [Google Scholar] [CrossRef]
- Anand, M. Towards a Unifying Theory of Vegetation Dynamics. Ph.D. Thesis, The University of Western Ontario, London, ON, Canada, 1997. [Google Scholar]
- Klimenko, A.Y. Intransitivity in theory and in the real world. Entropy 2015, 17, 4364–4412. [Google Scholar] [CrossRef] [Green Version]
- Freire, J.G.; Bonatto, C.; DaCamara, C.C.; Gallas, J.A.C. Multistability, phase diagrams, and intransitivity in the Lorenz-84 low-order atmospheric circulation model. Chaos 2008, 18, 033121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gleick, J. Chaos: Making a New Science, 20th ed.; Penguin Books: New York, NY, USA, 2008. [Google Scholar]
- Lorenz, E.N. Can chaos and intransitivity lead to interannual variability? Tellus 1990, 42, 378–389. [Google Scholar] [CrossRef]
- Crutchfield, J.P.; Farmer, J.D.; Packard, N.H. Shaw RS Chaos. Sci. Am. 1986, 254, 46–57. [Google Scholar] [CrossRef]
- McDonald, S.W.; Grebogi, C.; Ott, E.; Yorke, J.A. Fractal basin boundaries. Physica D 1985, 17, 125–153. [Google Scholar] [CrossRef]
- Allesina, S.; Levine, J.M. A competitive network theory of species diversity. Proc. Natl. Acad. Sci. USA 2011, 108, 5638–5642. [Google Scholar] [CrossRef] [Green Version]
- Richards, P.W. The Tropical Rain Forest: An Ecological Study; Cambridge University Press: New York, NY, USA, 1952. [Google Scholar]
- Rhodes, C.J.; Anderson, R.M. Power laws governing epidemics in isolated populations. Nature 1996, 381, 600–602. [Google Scholar] [CrossRef]
- Haimovici, A.; Marsili, M. Criticality of mostly informative samples: A Bayesian model selection approach. J. Stat. Mech. Theory E 2015, 2015, P10013. [Google Scholar] [CrossRef] [Green Version]
- Graham, B. Nature’s Patterns: Exploring Her Tangled Web, 2nd ed.; FreshVista: New York, NY, USA, 2014. [Google Scholar]
- Laurienti, P.J.; Joyce, K.E.; Telesford, Q.K.; Burdette, J.H.; Hayasaka, S. Universal fractal scaling of self-organized networks. Physica A 2011, 390, 3608–3613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messier, C.; Puettmann, K.J. Forests as complex adaptive systems: Implications for forest management and modelling. L’Italia For. Mont. 2011, 66, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Turcotte, D.L. Self-organized criticality. Rep. Prog. Phys. 1999, 62, 1377–1429. [Google Scholar] [CrossRef]
- Bak, P.; Chen, K.; Creutz, M. Self-organized criticality in the ‘Game of Life’. Nature 1989, 342, 780–782. [Google Scholar] [CrossRef]
- Náther, P.; Markošová, M.; Rudolf, B. Hierarchy in the growing scale-free network with local rules. Phys. A Stat. Mech. Appl. 2009, 388, 5036–5044. [Google Scholar] [CrossRef]
- Chen, Y.G. Zipf’s law, 1/f noise, and fractal hierarchy. Chaos Solitons Fractals 2012, 45, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Mishkovski, I. Hierarchy and vulnerability of complex networks. In ICT Innovations 2013. Advances in Intelligent Systems and Computing (AISC); Trajkovik, V., Anastas, M., Eds.; Springer: Heidelberg, Germany, 2014; Volume 231, pp. 273–281. [Google Scholar]
- Smith, C.G.; Puzio, R.S.; Bergman, A. Hierarchical network structure promotes dynamical robustness. arXiv 2015, arXiv:1412.0709v2. [Google Scholar]
- Barabási, A.-L.; Pósfai, M. Network Science; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z.N.; Barabási, A.-L. The large-scale organization of metabolic networks. Nature 2000, 407, 651–654. [Google Scholar] [CrossRef] [Green Version]
- Broido, A.D.; Clauset, A. Scale-free networks are rare. Nat. Commun. 2019, 10, 1017. [Google Scholar] [CrossRef]
- Donaldson, L.; Wilson, R.J. Maclean IMD Old concepts, new challenges: Adapting landscape-scale conservation to the twenty-first century. Biodivers. Conserv. 2017, 26, 527–552. [Google Scholar] [CrossRef] [Green Version]
- Duan, R.; Huang, M.; Kong, X.; Wang, Z.; Fan, W. Ecophysiological responses to different forest patch type of two codominant tree seedlings. Ecol. Evol. 2015, 5, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, D. Resilience and Regime Change in Ecosystems: Bifurcation and Perturbation Analysis. 2009. Available online: https://math.dartmouth.edu/archive/m53f09/public_html/ (accessed on 22 March 2017).
- Girvetz, E.H.; Greco, S.E. How to define a patch: A spatial model for hierarchically delineating organism-specific habitat patches. Landsc. Ecol. 2007, 22, 1131–1142. [Google Scholar] [CrossRef]
- Petrere, M., Jr.; Giordano, L.C.; De Marco, P., Jr. Empirical diversity indices applied to forest communities in different successional stages. Braz. J. Biol. 2004, 64, 841–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borman, M.M.; Pyke, D.A. Successional theory and the desired plant community approach. Rangelands 1994, 16, 82–84. [Google Scholar]
- Clements, F.E. Nature and structure of the climax. J. Ecol. 1936, 24, 252–284. [Google Scholar] [CrossRef]
- Barbour, M.G.; Billings, W.D. (Eds.) North American Terrestrial Vegetation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Richards, P.W. The secondary succession in the tropical rain forest. Sci. Prog. 1955, 43, 45–57. [Google Scholar]
- Longo, G.; Montevil, M. Extended criticality, phase spaces and enablement in biology. Chaos Solitons Fractals 2013, 55, 64–79. [Google Scholar] [CrossRef]
- Padgett, J. Autocatalysis in Chemistry and the Origin of Life. 2011. Unpublished Paper. Available online: http://home.uchicago.edu/~jpadgett/unpub.html (accessed on 13 June 2014).
- Wu, J.; Li, H. Concepts of scale and scaling. In Scaling and Uncertainty Analysis in Ecology: Methods and Applications; Wu, J., Jones, K.B., Li, H., Loucks, O.L., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 3–15. [Google Scholar]
- Earl, D.J.; Deem, M.W. Evolvability is a selectable trait. Proc. Natl. Acad. Sci. USA 2004, 101, 11531–11536. [Google Scholar] [CrossRef] [Green Version]
- Stauffer, D.; Aharony, A. Introduction to Percolation Theory, 2nd ed.; Taylor & Francis: London, UK, 1994. [Google Scholar]
- Varela, F. Principles of Biological Autonomy; North Holland: New York, NY, USA, 1979. [Google Scholar]
- Varela, F. A calculus for self-reference. Int. J. Gen. Syst. 1975, 2, 5–24. [Google Scholar]
- Van Valen, L. A new evolutionary law. Evol. Theory 1973, 1, 1–30. [Google Scholar]
- Pruessner, G. Self-Organised Criticality: Theory, Models and Characterisation; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Adami, C. Self-organized criticality in living systems. Phys. Lett. A 1995, 203, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Banzhaf, W. Self-organizing systems. In Encyclopedia of Complexity and Systems Science; Meyers, R., Ed.; Springer: New York, NY, USA, 2009; pp. 8040–8050. [Google Scholar]
- Torres-Sosa, C.; Huang, S.; Aldana, M. Criticality is an emergent property of genetic networks that exhibit evolvability. PLoS Comput. Biol. 2012, 8, e1002669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, R.L. What evolvability really is. Br. J. Philos. Sci. 2014, 65, 549–572. [Google Scholar] [CrossRef] [Green Version]
- Brier, S. Cybersemiotics: An evolutionary world view going beyond entropy and information into the question of meaning. Entropy 2010, 12, 1902–1920. [Google Scholar] [CrossRef] [Green Version]
- Peirce, C.S. The Essential Peirce: Selected Philosophical Writings; Indiana University Press: Bloomington, IL, USA, 1998. [Google Scholar]
- Li, A.; Wang, L.; Schweitzer, F. The optimal trajectory to control complex networks. arXiv 2018, arXiv:1806.04229. [Google Scholar]
- Briers, R. Habitat Networks—Reviewing the Evidence Base: Final Report. Contract Report to Scottish Natural Heritage, Contract Number 29752. 2011. Available online: https://www.nature.scot/habitat-networks-reviewing-evidence-base-final-report (accessed on 4 February 2019).
- Ortiz-Barrientos, D.; Baack, E.J. Species integrity in trees. Mol. Ecol. 2014, 23, 4188–4191. [Google Scholar] [CrossRef]
- Kaiser-Bunbury, C.N.; Blüthgen, N. Integrating network ecology with applied conservation: A synthesis and guide to implementation. AoB Plants 2015, 7, plv076. [Google Scholar] [CrossRef]
- Landi, P.; Minoarivelo, H.O.; Brännström, Å.; Hui, C.; Dieckmann, U. Complexity and stability of ecological networks: A review of the theory. Popul. Ecol. 2018, 60, 319–345. [Google Scholar] [CrossRef]
- Ramiadantsoa, T.; Ovaskainen, O.; Rybicki, J.; Hanski, I. Large-scale habitat corridors for biodiversity conservation: A forest corridor in Madagascar. PLoS ONE 2015, 10, e0132126. [Google Scholar] [CrossRef] [Green Version]
- Goetze, D.; Karlowski, U.; Porembski, S.; Tockner, K.; Watve, A.; Riede, K. Spatial and temporal dimensions of biodiversity dynamics. In Biodiversity: Structure and Function. Encyclopedia of Life Support Systems (EOLSS); Barthlott, W., Linsenmair, K.E., Porembski, S., Eds.; Developed under the Auspices of the UNESCO; Eolss Publishers: Oxford, UK, 2014; pp. 166–208. [Google Scholar]
- Kärenlampi, P.P. Symmetry of interactions rules in incompletely connected random replicator ecosystems. Eur. Phys. J. E 2014, 37, 56. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, J.; Grilli, J.; Suweis, S.; Muñoz, M.A.; Banavar, J.R.; Maritan, A. Information-based fitness and the emergence of criticality in living systems. Proc. Natl. Acad. Sci. USA 2014, 111, 10095–10100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robert, A. Find the weakest link. A comparison between demographic, genetic and demo-genetic metapopulation extinction times. BMC Evol. Biol. 2011, 11, 260. [Google Scholar] [CrossRef] [Green Version]
- Dercole, F.; Ferriere, R.; Rinaldi, S. Chaotic Red Queen coevolution in three-species food chains. Proc. R. Soc. B 2010, 277, 2321–2330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dieckmann, U.; Ferrière, R. Adaptive dynamics and evolving biodiversity. In Evolutionary Conservation Biology; Ferrière, R., Dieckmann, U., Couvet, D., Eds.; Cambridge University Press: Cambridge, UK, 2004; pp. 188–224. [Google Scholar]
- Coren, R.L. The Evolutionary Trajezctory: The Growth of Information in the History and Future of Earth; The World Futures General Evolution Studies Series 11; CRC Press: London, UK, 1998. [Google Scholar] [CrossRef]
- Taylor, A.R. Concepts, Theories and Models of Succession in the Boreal Forest of Central Canada. Ph.D. Thesis, Lakehead University, Thunder Bay, ON, Canada, 2009. [Google Scholar]
- Chazdon, R.L.; Chao, A.; Colwell, R.K.; Lin, S.-Y.; Norden, N.; Letcher, S.G.; Clark, D.B.; Finegan, B.; Arroyo, J.P. A novel statistical method for classifying habitat generalists and specialists. Ecology 2011, 92, 1332–1343. [Google Scholar] [CrossRef] [PubMed]
- Rose, B. Tree Ecology. 2005. Available online: http://www.monkey-do.net/sites/default/files/Tree%20ecology.pdf (accessed on 1 September 2015).
- Cannon, J.B.; Peterson, C.J.; O’Brien, J.J.; Brewer, J.S. A review and classification of interactions between forest disturbance from wind and fire. For. Ecol. Manag. 2017, 406, 381–390. [Google Scholar] [CrossRef]
- Saura, S.; Martín-Queller, E.; Hunter, M.L., Jr. Forest landscape change and biodiversity conservation. In Forest Landscapes and Global Change: Challenges for Research and Management; Azevedo, J.C., Pereram, A.H., Pinto, M.A., Eds.; Springer: New York, NY, USA, 2014; pp. 167–198. [Google Scholar] [CrossRef]
- Desrochers, R.E.; Anand, M. Quantifying the components of biocomplexity along ecological perturbation gradients. Biodivers. Conserv. 2005, 14, 3437–3455. [Google Scholar] [CrossRef]
- McCleary, K.; Mowat, G. Using forest structural diversity to inventory habitat diversity of forest-dwelling wildlife in the West Kootenay region of British Columbia. BC J. Ecosyst. Manag. 2002, 2, 1–13. [Google Scholar]
- Michener, W.K.; Baerwald, T.J.; Firth, P.; Palmer, M.A.; Rosenberger, J.L.; Sandlin, E.A.; Zimmerman, H. Defining and unraveling biocomplexity. BioScience 2001, 51, 1018–1023. [Google Scholar] [CrossRef] [Green Version]
- McEvoy, T.J. Introduction to Forest Ecology and Silviculture; The University of Vermont: Burlington, VT, USA, 1995. [Google Scholar]
- Lipsitz, L.A.; Goldberger, A.L. Loss of ‘complexity’ and aging: Potential applications of fractals and chaos theory to senescence. JAMA 1992, 267, 1806–1809. [Google Scholar] [CrossRef]
- Sousa, W.P. The role of disturbance in natural communities. Ann. Rev. Ecol. Syst. 1984, 15, 353–391. [Google Scholar] [CrossRef]
- Gravel, D.; Canham, C.D.; Beaudet, M.; Messier, C. Shade tolerance, canopy gaps and mechanisms of coexistence of forest trees. Oikos 2010, 119, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Vester, H.F.M. Forest development as a basis for management; tree architecture and tree temperaments. In Ecology and Management of Tropical Secondary Forest: Science, People, and Policy; Centro Agronómico Tropical de Investigación y Enseñanza (CATIE): Turrialba, Costa Rica, 1998; pp. 35–48. [Google Scholar]
- Bazzaz, F.A. Regeneration of tropical forests: Physiological responses of pioneer and secondary species. In Rainforest Regeneration and Management; Gomez-Pompa, A., Whitmore, T.C., Hadley, M., Eds.; Man and the Biosphere Series 6; UNESCO: Paris, France, 1991; pp. 91–118. [Google Scholar]
- Whitmore, T.C. Tropical rain forest dynamics and its implications for management. In Rainforest Regeneration and Management; Gomez-Pompa, A., Whitmore, T.C., Hadley, M., Eds.; Man and the Biosphere Series 6; UNESCO: Paris, France, 1991; pp. 67–89. [Google Scholar]
- Van Breugel, M.; Bongers, F.; Martinez-Ramos, M. Species dynamics during early secondary forest succession: Recruitment, mortality and species turnover. Biotropica 2007, 35, 610–619. [Google Scholar] [CrossRef]
- Clark, D.A.; Clark, D.B. Life history diversity of canopy and emergent trees in a neotropical forest. Ecol. Monogr. 1992, 62, 315–344. [Google Scholar] [CrossRef]
- Whitmore, T.C. Canopy gaps and the two major groups of forest trees. Ecology 1989, 70, 536–538. [Google Scholar] [CrossRef]
- Yamamoto, S. Gap regeneration of major tree species in different forest types of Japan. Vegetatio 1996, 127, 203–213. [Google Scholar] [CrossRef]
- Franklin, J. Regeneration and growth of pioneer and shade-tolerant rain forest trees in Tonga. N. Z. J. Bot. 2003, 41, 669–684. [Google Scholar] [CrossRef]
Aspects | Concepts | Verifiers | |
---|---|---|---|
Pattern | Process | ||
Intransitivity | Network | Diversity [70,111] | Robustness [82,83,112,113] |
Criticality | System | Integrity [114] | Fitness [115,116,117,118,119,120,121] |
Evolvability | Trajectory | Complexity [22,107] | Inclusiveness [24,101,122] |
Growth | Establishment | |
---|---|---|
Forest | Gaps | |
Forest | Old-growth specialists (A) | Successional generalists (C) |
Establish and grow in dark forest; shade-tolerant species. Low potential and average growth rates, especially as juveniles. (1) | Establish in gaps, grow best in gaps, but can survive as saplings in closed forest. Higher juvenile growth potential than groups A or B. (3) | |
Advance regeneration/gap filler/understorey tree (III) | Gap coloniser/gap filler/canopy tree/gap maker (II) | |
Gaps | Old-growth generalists (B) | Successional specialists (D) |
Establish in shade but show increased association with gaps as saplings. Growth rates as low as group A as juveniles, increasing with size. (2) | Establish and grow best in gaps at all juvenile stages; shade-intolerant species. Highest growth potential, especially as juveniles. (4) | |
Advance regeneration/gap filler/canopy tree/gap maker (I) | Gap coloniser/canopy tree/gap maker (IV) |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrokas, R. Forest Climax Phenomenon: An Invariance of Scale. Forests 2020, 11, 56. https://doi.org/10.3390/f11010056
Petrokas R. Forest Climax Phenomenon: An Invariance of Scale. Forests. 2020; 11(1):56. https://doi.org/10.3390/f11010056
Chicago/Turabian StylePetrokas, Raimundas. 2020. "Forest Climax Phenomenon: An Invariance of Scale" Forests 11, no. 1: 56. https://doi.org/10.3390/f11010056
APA StylePetrokas, R. (2020). Forest Climax Phenomenon: An Invariance of Scale. Forests, 11(1), 56. https://doi.org/10.3390/f11010056