The Wood of Scots Pine (Pinus sylvestris L.) from Post-Agricultural Lands Has Suitable Properties for the Timber Industry
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Dimensional Features
3.2. Density and Selected Mechanical Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wodzicki, T.J. Mechanism of xylem differentiation in Pinus sylvestris L. J. Exp. Bot. 1971, 22, 670–687. [Google Scholar] [CrossRef]
- Tulik, M.; Kłosińska, T.; Iqbal, M.; Grochowina, A. Figures of the wood of Khaya ivorensis and Millettia laurentii. Wood Res. 2011, 56, 613–620. [Google Scholar]
- Zobel, B.J.; Jett, J.B. Genetics of Wood Production; Springer Series of Wood Science: Berlin, Germany, 1995. [Google Scholar]
- Plomion, C.; Leprovost, G.; Stokes, A. Wood formation in trees. Plant Physiol. 2011, 127, 1513–1523. [Google Scholar] [CrossRef]
- Larson, P.R. The vascular cambium. In Development and Structure; Springer: Berlin, Germany, 1994. [Google Scholar]
- Denne, M.P.; Dodd, R. Environmental control of xylem differentiation. In Xylem Cell Development; Barnett, J.R., Ed.; Castle House Publications LTD: Tunbridge Wells, UK, 1981; pp. 236–255. [Google Scholar]
- Wodzicki, T.J. Natural factors affecting wood structure. Wood Sci. Technol. 2001, 35, 5–26. [Google Scholar] [CrossRef]
- Tulik, M.; Rusin, A. Microfibril angle in wood of Scots pine trees (Pinus sylvestris) after Chernobyl accident. Environ. Pollut. 2005, 134, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Tulik, M.; Yaman, B.; Köse, N. Comparative tree-ring anatomy of Fraxinus excelsior with Chalara dieback. J. For. Res. 2018, 29, 1741–1749. [Google Scholar] [CrossRef]
- Mather, A. Afforestation. Policies, Planning and Progress; Belhaven Press: London, UK, 1993. [Google Scholar]
- Szwagrzyk, J. Sukcesja leśna na gruntach porolnych; stan obecny, prognozy i wątpliwości (Forest succession on former agricultural land; current state, forecasts and doubts). Sylwan 2004, 148, 53–59. [Google Scholar]
- Vadell, E.; de-Miguel, S.; Pemán, J. Large-scale reforestation and afforestation policy in Spain: A historical review of its underlying ecological, socioeconomic and political dynamics. Land Use Policy 2016, 55, 37–48. [Google Scholar] [CrossRef]
- Meyer, F.H. Distribution of ectomycorrhizae in native and man-made forest. In Ectomycorrhizae—Their Ecology and Physiology; Marks, G.C., Kozłowski, T.T., Eds.; Academic Press: London, UK; New York, NY, USA, 1973; pp. 79–105. [Google Scholar]
- Peterken, G.F. A method for assessing woodland flora for conservation using indicator species. Biol. Conserv. 1974, 6, 239–245. [Google Scholar] [CrossRef]
- Peterken, G.F. Habitat conservation priorities in British and European woodlands. Biol. Conserv. 1977, 11, 223–236. [Google Scholar] [CrossRef]
- Rackham, O. Ancient Woodland, Its History, Vegetation and Uses in England; Edward Arnold: London, UK, 1980; p. 402. [Google Scholar]
- Smykała, J. Historia, rozmiar i rozmieszczenie zalesień gruntów porolnych w Polsce w latach 1945–1987 (History, size and distribution of afforestation of former agricultural land in Poland in 1945–1987). Sylwan 1990, 134, 1–7. [Google Scholar]
- Bialobok, S.; Boratyński, A.; Bugała, W. Biologia sosny zwyczajnej. In Polska Akademia Nauk; Instytut Dendroligii: Poznań-Kórknik, Poland, 1993. [Google Scholar]
- Honnay, O.; Bossuyt, B.; Verheyen, K.; Butaye, J.; Jacquemyn, H. Ecological perspectives for the restoration of plant communities in European temperate forests. Biodivers. Conserv. 2002, 11, 213–242. [Google Scholar] [CrossRef]
- Tochi, E.C. Carbon sequestration: How much can forestry sequester CO2? For. Res. Eng. Int. J. 2018, 2, 148–150. [Google Scholar] [CrossRef] [Green Version]
- Jelonek, T.; Pazdrowski, W.; Tomczak, A. Właściwości drewna sosny zwyczajnej (Pinus sylvestris L.) na gruntach porolnych w północnej Polsce (Properties of Scots pine (Pinus sylvestris L.) on former agricultural lands in northern Poland). Leśne Prace Badaw. 2009, 70, 277–286. [Google Scholar]
- Machado, J.S.; Louzada, J.L.; Santos, A.J.A.; Nunes, L.; Anjos, O.; Rodrigues, J.; Simões, R.M.S.; Pereira, H. Variation of wood density and mechanical properties of blackwood (Acacia Melanoxylon, R. Br.). Mater. Des. 2014, 56, 975–980. [Google Scholar] [CrossRef]
- De Mil, T.; Tarelkin, Y.; Hahn, S.; Hubau, W.; Deklerck, V.; Debeir, O.; Van Acker, J.; De Cannière, C.; Beeckman, H.; Van den Bulcke, J. Wood Density Profiles and Their Corresponding Tissue Fractions in Tropical Angiosperm Trees. Forests 2018, 9, 763. [Google Scholar] [CrossRef] [Green Version]
- Ciurzycki, W.; Marciszewska, K. Flora of pine forests on former farmlands and in ancient forests in the Chojnów Forest District. Ann. WULS–SGGW For. Wood Technol. 2016, 93, 30–36. [Google Scholar]
- Ciurzycki, W.; Marciszewska, K. Vegetation of pine forests on former farmlands and in ancient forests in the Chojnów Forest District. Ann. WULS–SGGW For. Wood Technol. 2016, 93, 37–43. [Google Scholar]
- Kondracki, J. Geografia Polski. Mezoregiony Fizyczno-Geograficzne (Polish Geography. Physico-Geographical Mesoregions); PWN: Warsaw, Poland, 1994. [Google Scholar]
- Kondracki, J.; Richling, A. Regiony fizycznogeograficzne. In Atlas Rzeczypospolitej Polskiej. Główny Geodeta Kraju (Atlas of the Republic of Poland. Chief Land Surveyor); Poznaj Świat: Warsaw, Poland, 1994. [Google Scholar]
- Szafer, W.; Zarzycki, K. Szata Roślinna Polski T. II (Plant cover in Poland Vol. II); PWN: Warsaw, Poland, 1977; p. 347. [Google Scholar]
- Niedzielska, B. Zmienność gęstości oraz podstawowych cech makroskopowej struktury drewna jodły (Abies alba Mill.) w granicach jej naturalnego występowania w Polsce (Variability of density and basic features of the macroscopic structure of fir wood (Abies alba Mill.) within its natural occurrence in Poland). In Zeszyty Naukowe Akademii Rolniczej im. H. Kołłątaja w Krakowie (Scientific Notebooks of the Agricultural University of H. Kołłątaj in Krakow); Uniwersytet Rolniczy w Krakowie: Kraków, Poland, 1995; Volume 198. [Google Scholar]
- Pazdrowski, W. Wartość techniczna drewna sosny zwyczajnej (Pinus sylvestris L.) w zależności od jakości pni drzew w drzewostanach rębnych (Technical value of Scots pine (Pinus sylvestris L.) wood depending on the quality of tree trunks in forest stands). In Rocznik Akademii Rolniczej w Poznaniu, Rozprawy Naukowe (Yearbook of the Agricultural University in Poznań, Scientific Dissertations); Uniwersytet Przyrodniczy w Poznaniu: Kraków, Poland, 1988; Volume 170. [Google Scholar]
- PN-D-04101:1979 Drewno. Oznaczanie Gęstości. (Wood. Determination of Density); Polski Komitet Normalizacyjny: Warszawa, Poland, 1979.
- PN-D-04103:1968 Fizyczne i Mechaniczne Własności Drewna. Oznaczanie Wytrzymałości na Zginanie Statyczne. (Physical and Mechanical Properties of Wood. Determination of Static Bending Strength); Polski Komitet Normalizacyjny: Warszawa, Poland, 1968.
- PN-D-04117:1963 Fizyczne i Mechaniczne Własności Drewna. Oznaczanie Współczynnika Sprężystości Przy Zginaniu Statycznym. (Physical and Mechanical Properties of Wood. Determination of the Modulus of Elasticity in Static Bending); Polski Komitet Normalizacyjny: Warszawa, Poland, 1963.
- PN-D-04102:1979 Drewno. Oznaczanie Wytrzymałości na Ściskanie Wzdłuż Włókien. (Wood. Determination of Compressive Strength Along Fibers); Polski Komitet Normalizacyjny: Warszawa, Poland, 1979.
- PN-D-04100:1977 Drewno. Oznaczanie Wilgotności. (Wood. Determination of Moisture Content); Polski Komitet Normalizacyjny: Warszawa, Poland, 1977.
- ISO 4471:1982 Wood. Sampling Sample Trees and Logs for Determination of Physical and Mechanical Properties of Wood in Homogeneous Stands; International Organization for Standardization: Geneva, Switzerland, 1982.
- ISO 13061-1:2014 Physical and Mechanical Properties of Wood. Test Methods for small Clear Wood Specimens. Part 1: Determination of Moisture Content for Physical and Mechanical Tests; International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 13061-2:2014 Physical and Mechanical Properties of Wood. Test methods for small Clear Wood Specimens. Part 2: Determination of Density for Physical and Mechanical Tests; International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 13061-3:2014 Physical and Mechanical Properties of Wood. Test Methods for Small Clear Wood Specimens. Part 3: Determination of Ultimate Strength in Static Bending; International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 13061-4:2014 Physical and Mechanical Properties of Wood. Test Methods for small clear wood Specimens. Part 4: Determination of Modulus of Elasticity in Static Bending; International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO/DIS 13061-17:2014 Physical and Mechanical Properties of Wood. Test Methods for Small Clear Wood Specimens. Part 17: Determination of Ultimate Stress in Compression Parallel to Grain; International Organization for Standardization: Geneva, Switzerland, 2014.
- Campbell, R.; McCarroll, D.; Robertson, I.; Loader, N.J.; Grudd, H.; Gunnarson, B. Blue intensity in Pinus sylvestris tree rings: A manual for a new palaeoclimate proxy. Tree Ring Res. 2011, 67, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Zobel, B.J.; Sprague, J.R. Juvenile Wood in Forest Trees; Springer Science & Business Media: Berlin, Germany, 2012; p. 304. [Google Scholar]
- Kollmann, F. Technologie des Holzes und der Holzwerkstoffe; Springer: Berlin-Göttingen-Heidelberg, Germany, 1951. [Google Scholar]
- Dzbeński, W. Jakościowa klasyfikacja iglastej tarcicy obrzynanej w świetle wymagań stawianych konstrukcjom drewnianym (Qualitative classification of softwood timber edged in light of the requirements for wooden constructions). Przemysł Drzewny 1970, 4, 1–7. [Google Scholar]
- Krzysik, F. Nauka o Drewnie, 1st ed.; PWN: Warsaw, Poland, 1957; pp. 615–623. [Google Scholar]
Planting Sites | Country | Latitude | Longitude | Habitat Type of Forest | Prior Land Use |
---|---|---|---|---|---|
Sękocin Forest Administration Region, compartment 40b | Poland | 20°53′10″ E | 52°06′40″ N | fresh coniferous forest | ancient forest |
Sękocin Forest Administration Region, compartment 56a | Poland | 20°53′10″ E | 52°06′40″ N | fresh coniferous forest | former farmland |
Uwieliny Forest Administration Region, compartment 214g | Poland | 21°02′49″ E | 51°58′15″ N | fresh mixed coniferous forest | ancient forest |
Bogatki Forest Administration Region, compartment 447 | Poland | 20°57′43″ E | 52°00′37″ N | fresh mixed coniferous forest | former farmland |
Feature | Fresh Coniferous Forest on Post-Agricultural Soil | Mixed Forest on Post-Agricultural Soil | Fresh Coniferous Forest in the Ancient Forest | Mixed Forest in the Ancient Forest |
---|---|---|---|---|
Diameter with bark [mm] | 202 (22) | 221 (24) | 217 (24) | 301 (43) |
Diameter without bark [mm] | 187 (22) | 204 (23) | 198 (22) | 274 (39) |
Heartwood diameter [mm] | 75 (12) | 104 (11) | 73 (16) | 149 (33) |
Bark thickness [mm] | 8 (2) | 8 (3) | 10 (3) | 13 (4) |
Width of heartwood [mm] | 56 (11) | 50 (7) | 63 (10) | 63 (18) |
Width of sapwood [mm] | 37 (6) | 52 (6) | 36 (8) | 74 (16) |
Feature | Factor | SS | DF | MS | F | p |
---|---|---|---|---|---|---|
Diameter with bark | Intercept | 2,217,468 | 1 | 2,217,468 | 2536.391 | 0.000000 * |
Forest Habitat Type (1) | 26,010 | 1 | 26,010 | 29.751 | 0.000004 * | |
Land use (2) | 22,468 | 1 | 22,468 | 25.699 | 0.000012 * | |
1 * 2 | 10,433 | 1 | 10,433 | 11.933 | 0.001429 * | |
Error | 31,473 | 36 | 874 | - | - | |
Diameter without bark | Intercept | 1,864,944 | 1 | 1,864,944 | 2490.309 | 0.000000 * |
1 | 21,856 | 1 | 21,856 | 29.184 | 0.000004 * | |
2 | 16,524 | 1 | 16,524 | 22.065 | 0.000038 * | |
1 * 2 | 8497 | 1 | 8497 | 11.347 | 0.001813 * | |
Error | 26,960 | 36 | 749 | - | - | |
Heartwood diameter | Intercept | 402,804.9 | 1 | 402,804.9 | 1001.379 | 0.000000 * |
1 | 27,984.1 | 1 | 27,984.1 | 69.569 | 0.000000 * | |
2 | 4494.4 | 1 | 4494.4 | 11.173 | 0.001946 * | |
1 * 2 | 5475.6 | 1 | 5475.6 | 13.612 | 0.000738 * | |
Error | 14,481.0 | 36 | 402.3 | - | - | |
Bark thickness | Intercept | 3900.625 | 1 | 3900.625 | 449.352 | 0.000000 * |
1 | 50.625 | 1 | 50.625 | 5.832 | 0.020943 * | |
2 | 112.225 | 1 | 112.225 | 12.928 | 0.000963 * | |
1 * 2 | 21.025 | 1 | 21.025 | 2.422 | 0.128385 NS | |
Error | 312.500 | 36 | 8.681 | - | - | |
Width of heartwood | Intercept | 133,980.6 | 1 | 133,980.6 | 877.2352 | 0.000000 * |
1 | 93.0 | 1 | 93.0 | 0.6091 | 0.440236 NS | |
2 | 990.0 | 1 | 990.0 | 6.4822 | 0.015320 * | |
1 * 2 | 87.0 | 1 | 87.0 | 0.5698 | 0.455251 NS | |
Error | 5498.3 | 36 | 152.7 | - | - | |
Width of sapwood | Intercept | 100,902.0 | 1 | 100,902.0 | 1030.343 | 0.000000 * |
1 | 6943.2 | 1 | 6943.2 | 70.899 | 0.000000 * | |
2 | 1134.2 | 1 | 1134.2 | 11.582 | 0.001647 * | |
1 * 2 | 1334.0 | 1 | 1334.0 | 13.622 | 0.000735 * | |
Error | 3525.5 | 36 | 97.9 | - | - |
Feature | Fresh Coniferous Forest on Post-Agricultural Soil | Mixed Forest on Post-Agricultural Soil | Fresh Coniferous Forest in the Ancient Forest | Mixed Forest in the Ancient Forest |
---|---|---|---|---|
Width of annual rings in mature wood zone [mm] | 1.28 (0.27) | 1.2 (0.23) | 1.33 (0.25) | 0.98 (0.30) |
Width of annual rings in juvenile wood zone [mm] | 1.90 (0.34) | 2.16 (0.35) | 1.69 (0.41) | 2.59 (0.76) |
Average width of annual rings [mm] | 1.46 (0.17) | 1.53 (0.17) | 1.43 (0.18) | 1.47 (0.28) |
Feature | Factor | SS | DF | MS | F | p |
---|---|---|---|---|---|---|
Width of annual rings in mature wood zone | Intercept | 57.69604 | 1 | 57.69604 | 848.457 | 0.000000 * |
Forest Habitat Type (1) | 0.44944 | 1 | 0.44944 | 6.609 | 0.014425 * | |
Soil Type (2) | 0.07744 | 1 | 0.07744 | 1.139 | 0.293009 NS | |
1 * 2 | 0.19044 | 1 | 0.19044 | 2.806 | 0.102901 NS | |
Error | 2.44804 | 36 | 0.06800 | - | - | |
Width of annual rings in juvenile wood zone | Intercept | 174.1393 | 1 | 174.1393 | 710.824 | 0.000000 * |
1 | 3.4223 | 1 | 3.4223 | 13.969 | 0.000643 * | |
2 | 0.1188 | 1 | 0.1188 | 0.485 | 0.490650 NS | |
1 * 2 | 1.0433 | 1 | 1.0433 | 4.259 | 0.046317 * | |
Error | 8.8194 | 36 | 0.2450 | |||
Average width of annual rings | Intercept | 86.99550 | 1 | 86.99550 | 2087.989 | 0.000000 * |
1 | 0.03192 | 1 | 0.03192 | 0.766 | 0.387206 NS | |
2 | 0.02352 | 1 | 0.02352 | 0.565 | 0.457310 NS | |
1 * 2 | 0.00182 | 1 | 0.00182 | 0.044 | 0.835513 NS | |
Error | 1.49993 | 36 | 0.04166 | - | - |
Feature | Fresh Coniferous Forest on Post-Agricultural Soil | Mixed Forest on Post-Agricultural Soil | Fresh Coniferous Forest in the Ancient Forest | Mixed Forest in the Ancient Forest |
---|---|---|---|---|
Density [kg/m3] | 591 (32) | 563 (32) | 597 (43) | 556 (36) |
Compressive strength along tracheids [MPa] | 69.4 (5.4) | 62.3 (7.8) | 67.5 (9.7) | 57.3 (5.6) |
Modulus of elasticity [GPa] | 11.98 (0.87) | 11.00 (1.56) | 11.96 (1.83) | 9.71 (1.25) |
Bending strength [MPa] | 117 (11) | 104 (16) | 112 (23) | 99 (13) |
Feature | Factor | SS | DF | MS | F | p |
---|---|---|---|---|---|---|
Density | Intercept | 13,401,781 | 1 | 13,401,781 | 13,690.18 | 0.000000 * |
Forest Habitat Type (1) | 8716 | 1 | 8716 | 8.90 | 0.005086 * | |
Land use (2) | 8 | 1 | 8 | 0.01 | 0.928959 NS | |
1 * 2 | 22 | 1 | 22 | 0.02 | 0.881597 NS | |
Error | 35,242 | 36 | 979 | - | - | |
Compressive strength along tracheids | Intercept | 170,046.1 | 1 | 170,046.1 | 2783.004 | 0.000000 * |
1 | 815.0 | 1 | 815.0 | 13.339 | 0.000820 * | |
2 | 68.2 | 1 | 68.2 | 1.116 | 0.297858 NS | |
1 * 2 | 29.7 | 1 | 29.7 | 0.486 | 0.490304 NS | |
Error | 2199.7 | 36 | 61.1 | - | - | |
Modulus of elasticity | Intercept | 5209.409 | 1 | 5209.409 | 1335.168 | 0.000000 * |
1 | 26.929 | 1 | 26.929 | 6.902 | 0.012571 * | |
2 | 1.484 | 1 | 1.484 | 0.380 | 0.541273 NS | |
1 * 2 | 5.021 | 1 | 5.021 | 1.287 | 0.264136 NS | |
Error | 140.461 | 36 | 3.902 | - | - | |
Bending strength | Intercept | 465,272.2 | 1 | 465,272.2 | 1564.679 | 0.000000 * |
1 | 2767.2 | 1 | 2767.2 | 9.306 | 0.004270 * | |
2 | 442.0 | 1 | 442.0 | 1.486 | 0.230693 NS | |
1 * 2 | 326.1 | 1 | 326.1 | 1.097 | 0.301985 NS | |
Error | 10,704.9 | 36 | 297.4 | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozakiewicz, P.; Jankowska, A.; Mamiński, M.; Marciszewska, K.; Ciurzycki, W.; Tulik, M. The Wood of Scots Pine (Pinus sylvestris L.) from Post-Agricultural Lands Has Suitable Properties for the Timber Industry. Forests 2020, 11, 1033. https://doi.org/10.3390/f11101033
Kozakiewicz P, Jankowska A, Mamiński M, Marciszewska K, Ciurzycki W, Tulik M. The Wood of Scots Pine (Pinus sylvestris L.) from Post-Agricultural Lands Has Suitable Properties for the Timber Industry. Forests. 2020; 11(10):1033. https://doi.org/10.3390/f11101033
Chicago/Turabian StyleKozakiewicz, Paweł, Agnieszka Jankowska, Mariusz Mamiński, Katarzyna Marciszewska, Wojciech Ciurzycki, and Mirela Tulik. 2020. "The Wood of Scots Pine (Pinus sylvestris L.) from Post-Agricultural Lands Has Suitable Properties for the Timber Industry" Forests 11, no. 10: 1033. https://doi.org/10.3390/f11101033
APA StyleKozakiewicz, P., Jankowska, A., Mamiński, M., Marciszewska, K., Ciurzycki, W., & Tulik, M. (2020). The Wood of Scots Pine (Pinus sylvestris L.) from Post-Agricultural Lands Has Suitable Properties for the Timber Industry. Forests, 11(10), 1033. https://doi.org/10.3390/f11101033