Influence of Different Thinning Treatments on Stand Resistance to Snow and Wind in Loblolly Pine (Pinus taeda L.) Coastal Plantations of Northern Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
- Amount and type of snow damage was different from wind damage.
- Amount of snow and wind damage decreased by increasing stand age.
- Thinning can reduce or increase snow and wind damage depending on the time of heavy snowfall and strong winds and the intensity of thinning.
- However, heavy thinning reduced the risk of snow damage, but it may increase the risk of wind damage.
- Young dense stands were more susceptible to snow damage, while old stands were more susceptible to wind damage.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pöyry, J. Global Outlook for Plantations; ABARE Research Report 99.9; ABARE: Canberra, Australia, 1999. [Google Scholar]
- Wang, G.; Liu, F. The influence of gap creation on the regeneration of Pinus tabuliformis planted forest and its role in the near-natural cultivation strategy for planted forest management. For. Ecol. Manag. 2011, 262, 413–423. [Google Scholar] [CrossRef]
- Fahey, R.T.; Lorimer, C.G. Persistence of pine species in late-successional forests: Evidence from habitat-related variation in stand age structure. J. Veg. Sci. 2014, 25, 584–600. [Google Scholar] [CrossRef]
- Suvanto, S.; Henttonen, H.M.; Nöjd, P.; Mäkinen, H. High-resolution topographical information improves tree-level storm damage models. Can. J. For. Res. 2018, 48, 721–728. [Google Scholar] [CrossRef] [Green Version]
- Musvuugwa, T.; de Beer, Z.W.; Dreyer, L.L.; Duong, T.; Marincowitz, S.; Oberlander, K.C.; Roets, F. New ophiostomatoid fungi from wounds on storm-damaged trees in Afromontane forests of the Cape Floristic Region. Mycol. Progress 2020, 19, 81–95. [Google Scholar] [CrossRef]
- Held, H.; Gerstengarbe, F.; Pardowitz, T.; Pinto, J.G.; Ulbrich, U.; Born, K.; Donat, M.G.; Karremann, M.K.; Leckebusch, G.C.; Ludwig, P.; et al. Projections of global warming-induced impacts on winter storm losses in the German private household sector. Clim. Chang. 2013, 121, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.J.; Matsuzaki, T.; Feng-qin, L.; Gonda Yutaka, G. Theoretical derivation of risk-ratios for assessing wind damage in a coastal forest. J. For. Res. 2002, 13, 309–315. [Google Scholar]
- Tavankar, F.; Bonyad, A.; Karamdost Marian, B. Snow damages on trees in natural and managed stands of the Caspian forests, North of Iran. Iran J. For. 2015, 7, 419–431. [Google Scholar]
- Tavankar, F.; Lo Monaco, A.; Nikooy, M.; Venanzi, R.; Bonyad, A.; Picchio, R. Snow damages on trees of an uneven age in mixed broadleaf forests: Effects of topographical conditions and tree characteristics. J. For. Res. 2019, 30, 1383–1394. [Google Scholar] [CrossRef]
- Jones-Held, S.; Held, M.E.; Winstead, J.E.; William, S.; Bryant, W.S. Immediate and delayed effects of severe winds on an old-growth forest in Kentucky: A forty-year retrospective. Forests 2019, 10, 271. [Google Scholar] [CrossRef] [Green Version]
- Ruel, J.C. Ecosystem management of eastern Canadian boreal forests: Potential impacts on wind damage. Forests 2020, 11, 578. [Google Scholar] [CrossRef]
- Snepsts, G.; Kitenberga, M.; Didzis Elferts, D.; Donis, J.; Jansons, A. Stem damage modifies the impact of wind on Norway spruces. Forests 2020, 11, 463. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, B.A.; Quine, C.P. Management of forests to reduce the risk of abiotic damage–a review with particular reference to the effects of strong winds. For. Ecol. Manag. 2000, 135, 261–277. [Google Scholar] [CrossRef]
- Yang, M.; Défossez, P.; Dupont, S. A root-to-foliage tree dynamic model for gusty winds during windstorm conditions. Agric. For. Meteorol. 2020, 287, 107949. [Google Scholar] [CrossRef]
- Nykänen, M.L.; Peltola, H.; Quine, C.; Kellomäki, S.; Broadgate, M. Factors affecting snow damage of trees with particular reference to European conditions. Silva Fenn. 1997, 31, 193–213. [Google Scholar] [CrossRef] [Green Version]
- Beese, W.J.; Rollerson, T.P.; Peters, C.M. Quantifying wind damage associated with variable retention harvesting in coastal British Columbia. For. Ecol. Manag. 2019, 443, 117–131. [Google Scholar] [CrossRef]
- Fox, T.R.; Jokela, E.J.; Allen, H.L. The development of pine plantation Silviculture in the Southern United States. J. For. 2007, 337–347. [Google Scholar]
- Pellikka, P.; Järvenpää, E. Forest Stand Characteristics and Wind and Snow Induced Forest Damage in Boreal Forest. In Proceedings of the International Conference Wind Effects on Trees, Karlsruhe, Germany, 16–18 September 2003. [Google Scholar]
- Carle, J.B.; Vuorinen, A.P.; Del Lungo, A. Status and trends in global forest plantation development. Balt. For. 2002, 8, 71–78. [Google Scholar]
- Fakhari, M.A.; Babaei, M.; Saeedi Zand, M. Investigation on snow damage on plantations in Sourdar-Vatashan region (Chamestan, Mazandran). Iran. J. For. Poplar Res. 2010, 18, 447–457. [Google Scholar]
- Samdaliri, H.; Jourgholami, M.; Fathi, J.; Zalnezhad, H. Study of the influencing factors on the early snow damage in the natural forest stands (Case study: Patom district in Kheyrud forests). J For. Wood Prod. 2020, 73, 77–86. [Google Scholar]
- Baker, B.J.; Langdon, G. Loblolly pine Pinus taeda L. Silv. N. Am. 1990, 1, 497–512. [Google Scholar]
- Tavankar, F.; Nikooy, M.; Lo Monaco, A.; Latterini, F.; Venanzi, R.; Picchio, R. Short-term recovery of residual tree damage during successive thinning operations. Forests 2020, 11, 731. [Google Scholar] [CrossRef]
- Bonyad, A.; Rahimnejad, S. Volume table estimation of loblolly pine in the north of Iran. Pajouhesh-va-Sazand 2004, 66, 43–47. [Google Scholar]
- Valinger, E.; Pettersson, N. Wind and snow damage in a thinning and fertilization experiment in Picea abies in southern Sweden. Forestry 1996, 69, 25–33. [Google Scholar] [CrossRef]
- Zhu, J.J.; Li, X.; Liu, Z.G.; Cao, W.; Gonda, Y.; Matsuzaki, T. Factors affecting the snow and wind induced damage of a mountain secondary forest in northeastern China. Silva Fenn. 2006, 40, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Wallentin, C.; Nilsson, U. Storm and snow damage in a Norway spruce thinning experiment in southern Sweden. Forestry 2014, 87, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Zimová, S.; Dobor, L.; Hlásny, T.; Rammer, W.; Seidl, R. Reducing rotation age to address increasing disturbances in Central Europe: Potential and limitations. For. Ecol. Manag. 2020, 475, 118408. [Google Scholar] [CrossRef]
- Gregow, H.; Laaksonen, A.; Alper, M.E. Increasing large scale windstorm damage in Western, Central and Northern European forests, 1951–2010. Sci. Rep. 2017, 7, 46397. [Google Scholar] [CrossRef] [Green Version]
- Anyomi, K.A.; Mitchell, S.J.; Perera, A.H.; Ruel, J.-C. Windthrow dynamics in Boreal Ontario: A simulation of the vulnerability of several stand types across a range of wind speeds. Forests 2017, 8, 233. [Google Scholar] [CrossRef] [Green Version]
- Kuboyama, H.; Oka, H. Climate risks and age-related damage probabilities—effects on the economically optimal rotation length for forest stand management in Japan. Silva Fenn. 2000, 34, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Slodicäk, M.; Novak, J. Silvicultural measures to increase the mechanical stability of pure secondary Norway spruce stands before conversion. For. Ecol. Manag. 2006, 224, 252–257. [Google Scholar] [CrossRef]
- Peltola, H.; Kellomäki, S. A mechanistic model for calculating windthrow and stem breakage of Scots pines at stand age. Silva Fenn. 1993. [Google Scholar] [CrossRef] [Green Version]
- Castedo-Dorado, F.; Gorgoso, J.G.; López, C.A. Daños producidos por la nieve en masas de Pinus radiata D. Don en zonas de media montaña lucense. In Recomendaciones Selvícolas; Rojo, A., Crecente, F., Ferreiro-Abelairas, H., Barrio, M., Eds.; Congreso de Ordenación y Gestión Sostenible de Montes: Santiago de Compostela, Spain, 2000; pp. 457–465. [Google Scholar]
- Päätalo, M.L.; Peltola, H.; Kellomäki, S. Modeling the risk of snow damage to forests under short-term snow loading. For. Ecol. Manag. 1999, 116, 51–70. [Google Scholar] [CrossRef]
- Wonn, H.T.; O’Hara, K.L. Height-diameter ratios and stability relationships for four northern Rocky Mountain tree species. West J. Appl. For. 2001, 16, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Valinger, E.; Fridman, J. Factors affecting the probability of windthrow at stand level as a result of Gudrun winter storm in southern Sweden. For. Ecol. Manag. 2011, 262, 398–403. [Google Scholar] [CrossRef]
- Cucchi, V.; Meredieu, C.; Stokes, A.; de Coligny, F.; Suarez, J.; Gardiner, B.A. Modelling the windthrow risk for simulated forest stands of Maritime pine (Pinus pinaster Ait.). For. Ecol. Manag. 2005, 213, 184–196. [Google Scholar] [CrossRef]
- Bošel’a, M.; Konôpka, B.; Šebeˇn, V.; Vladoviˇc, J.; Tobin, B. Modelling height to diameter ratio—an opportunity to increase Norway spruce stand stability in the Western Carpathians Modelovanie štíhlostného kvocientu—Možnosti zvýšenia statickej stability smrekových porastov v Západných Karpatoch. Cent. Eur. For. J. 2014, 60, 71–80. [Google Scholar]
- Martín-Alcón, S.; Gonzales-Olabarria, J.R.; Coll, L. Wind and snow damage in the Pyrenees pin forests: Effects of stand attributes and location. Silva Fenn. 2010, 44, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Cucchi, V.; Bert, D. Wind-firmness in Pinus pinaster Aı ¨t. stands in Southwest France: Influence of stand density, fertilisation and breeding in two experimental stands damaged during the 1999 storm. Ann. For. Sci. 2003, 60, 209–226. [Google Scholar] [CrossRef] [Green Version]
- Sampson, G.R.; Wurtz, T.L. Record interior Alaska snowfall effect on tree breakage. North. J. Appl. For. 1994, 11, 138–140. [Google Scholar] [CrossRef]
- Päätalo, M.L. Risk of snow damage in unmanaged and managed stands of Scots Pine, Norway spruce and Birch. Scand. J. For. Res. 2000, 15, 530–541. [Google Scholar] [CrossRef]
- Nielsen, J.L.; Rood, S.B.; Pearce, D.W.; Letts, M.G.; Jiskoot, H. Streamside trees: Responses of male, female and hybrid cottonwoods to flooding. Tree Physiol. 2010, 30, 1479–1488. [Google Scholar] [CrossRef] [Green Version]
- Montero, G.; Cañellas, I.; Ortega, C.; del Río, M. Results from a thinning regime experiment in a Scots pine (Pinus sylvestris L.) natural regeneration stand in the Sistema Ibérico mountain range (Spain). For. Ecol. Manag. 2001, 145, 151–161. [Google Scholar] [CrossRef]
- Ni Dhubhain, A.; Walshe, J.; Bulfin, M.; Keane, M.; Mills, P. The initial development of a windthrow risk model for Sitka spruce in Ireland. Forestry 2001, 74, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Cameron, A.D. Importance of early selective thinning in the development of long-term stand stability and improved log quality: A review. Forestry 2002, 75, 25–35. [Google Scholar] [CrossRef]
- Bertolotto, P.; Calienno, L.; Conforti, M.; D’Andrea, E.; Lo Monaco, A.; Magnani, E.; Marinšek, A.; Micali, M.; Picchio, R.; Sicuriello, F.; et al. Assessing indicators of forest ecosystem health. Ann. Silv. Res. 2016, 40, 64–69. [Google Scholar]
- Gardiner, B.; Berry, P.; Moulia, B. Review: Wind impacts on plant growth, mechanics and damage. Plant Sci. 2016, 245, 94–118. [Google Scholar] [CrossRef]
- Picchio, R.; Proto, A.R.; Civitarese, V.; Di Marzio, N.; Latterini, F. Recent contributions of some fields of the electronics in development of forest operations technologies. Electronics 2019, 8, 1465. [Google Scholar] [CrossRef] [Green Version]
Stand | Age (Year) | Plantation Area (ha) | Age at Thinning (year) | Thinning Intensity (%) of Basal Area | No. of Plot | Total Plot Area (ha) | Sampling Intensity (%) |
---|---|---|---|---|---|---|---|
NYU1 | 17 | 3.1 | - | - | 5 | 0.3125 | 10.1 |
NYU2 | 17 | 2.4 | - | - | 4 | 0.25 | 10.4 |
NYU3 | 17 | 2.1 | - | - | 3 | 0.1875 | 8.9 |
NYN1 | 15 | 2.0 | 7 | 15 | 3 | 0.1875 | 9.4 |
NYN2 | 15 | 2.0 | 7 | 15 | 3 | 0.1875 | 9.4 |
NYN3 | 15 | 2.1 | 7 | 15 | 3 | 0.1875 | 8.9 |
NYH1 | 16 | 2.2 | 7 | 35 | 3 | 0.1875 | 8.5 |
NYH2 | 16 | 2.1 | 7 | 35 | 2 | 0.125 | 6.0 |
NYH3 | 16 | 2.0 | 7 | 35 | 2 | 0.125 | 6.3 |
PMU1 | 34 | 4.8 | - | - | 7 | 0.4375 | 9.1 |
PMU2 | 34 | 5.2 | - | - | 8 | 0.5 | 9.6 |
PMU3 | 34 | 6.2 | - | - | 10 | 0.625 | 10.1 |
PMN1 | 32 | 4.2 | 17 | 15 | 6 | 0.375 | 8.9 |
PMN2 | 32 | 4.2 | 17 | 15 | 6 | 0.375 | 8.9 |
PMN3 | 32 | 4.3 | 17 | 15 | 7 | 0.4375 | 10.2 |
PMH1 | 30 | 3.3 | 17 | 35 | 5 | 0.3125 | 9.5 |
PMH2 | 30 | 3.0 | 17 | 35 | 5 | 0.3125 | 10.4 |
PMH3 | 30 | 3.4 | 17 | 35 | 5 | 0.3125 | 9.2 |
POU1 | 48 | 2.1 | - | - | 3 | 0.1875 | 8.9 |
POU2 | 48 | 2.6 | - | - | 4 | 0.25 | 9.6 |
POU3 | 48 | 2.1 | - | - | 3 | 0.1875 | 8.9 |
PON1 | 52 | 3.1 | 33 | 15 | 5 | 0.3125 | 10.1 |
PON2 | 52 | 2.6 | 33 | 15 | 4 | 0.25 | 9.6 |
PON3 | 52 | 3.1 | 33 | 15 | 5 | 0.3125 | 10.1 |
POH1 | 50 | 4.2 | 33 | 35 | 6 | 0.375 | 8.9 |
POH2 | 50 | 4.2 | 33 | 35 | 6 | 0.375 | 8.9 |
POH3 | 50 | 4.4 | 33 | 35 | 7 | 0.4375 | 9.9 |
Total | - | 87.0 | 130 | - | |||
Average | - | - | - | - | - | 9.3 |
Stand | Average DBH (cm) | Average Tree Height (m) | Density (Stem ha−1) | Basal Area (m2 ha−1) | Stand Volume (m3 ha−1) |
---|---|---|---|---|---|
NYU | 11.7 ± 2.1b | 13.1 ± 2.2c | 1832 ± 21a | 19.58 ± 2.11b | 168.0 ± 15.8c |
NYN | 13.4 ± 1.7ab | 12.0 ± 2.0c | 1536 ± 20b | 21.60 ± 1.95ab | 196.3 ± 17.0b |
NYH | 15.4 ± 2.0a | 12.3 ± 2.1c | 1329 ± 23c | 24.85 ± 2.14a | 223.5 ± 24.4a |
F-value | 8.95 ** | 1.57 ns | 29.08 ** | 10.62 ** | 39.50 ** |
PMU | 23.0 ± 1.6c | 19.3 ± 2.5b | 551 ± 19a | 22.84 ± 1.06c | 301.5 ± 26.2c |
PMN | 28.3 ± 1.7b | 19.9 ± 2.4b | 488 ± 14b | 28.15 ± 1.80b | 339.1 ± 25.8b |
PMH | 34.9 ± 3.1a | 20.1 ± 2.6b | 387 ± 18c | 37.02 ± 2.30a | 433.0 ± 30.8a |
F-value | 41.50 ** | 1.45 ns | 37.24 ** | 21.68 ** | 62.60 ** |
POU | 36.7 ± 2.8c | 28.3 ± 2.7a | 515 ± 15a | 54.39 ± 3.17c | 1044.2 ± 42.6c |
PON | 42.0 ± 2.8b | 28.1 ± 1.9a | 429 ± 13b | 59.47 ± 3.01b | 1113.4 ± 50.4b |
POH | 48.4 ± 2.5a | 28.3 ± 1.5a | 357±15c | 65.42 ± 3.44a | 1223.0 ± 50.6a |
F-value | 25.47 ** | 1.28 ns N.S. | 18.47 ** | 27.40 ** | 35.61 ** |
Cause of Damage | Young Stand (Naturally Regenerated) | Middle-Aged Stand (Planted) | Old Stand (Planted) | |||
---|---|---|---|---|---|---|
Den DF | F-Value | Den DF | F-Value | Den DF | F-Value | |
Snow | 2 | 21.138 | 2 | 15.305 | 2 | 11.704 |
Wind | 2 | 25.070 | 2 | 46.245 | 2 | 27.320 |
Total damage | 2 | 32.560 | 2 | 30.491 | 2 | 17.844 |
Stand | Damage by Snow (%) | Damage by Wind (%) | t-Value | p-Value |
NYU | 21.4 ± 3.4 | 9.3 ± 0.9 | 10.324 | 0.0001 |
NYN | 11.8 ± 1.5 | 3.6 ± 0.6 | 14.802 | 0.0001 |
NYH | 5.0 ± 0.9 | 0.4 ± 0.1 | 15.707 | <0.0001 |
PMU | 8.2 ± 1.1 | 5.3 ± 0.6 | 8.060 | 0.0013 |
PMN | 6.6 ± 1.0 | 0 | - | - |
PMH | 9.1 ± 1.4 | 2.1 ± 0.4 | 16.142 | <0.0001 |
POU | 4.8 ± 0.6 | 2.2 ± 0.4 | 11.347 | 0.0001 |
PON | 1.3 ± 0.2 | 0 | - | - |
POH | 1.8 ± 0.3 | 0 | - | - |
All stands | 7.8 ± 3.1 | 2.5 ± 1.3 | 6.659 | 0.00 |
Stand | Tree Uprooted | Stem Breakage | Branch Breakage | Tree Bent | Overall Damage | Undamaged |
---|---|---|---|---|---|---|
Stem Slenderness Coefficient (H/D) | ||||||
NYU | 119.4 ± 6.0a | 115.6 ± 7.0ab | 110.6 ± 9.2b | 119.3 ± 7.5a | 118.2 ± 9.0a | 110.0 ± 9.2b |
NYN | 115.0 ± 9.8a | 110.6 ± 6.8ab | 108.5 ± 7.7b | 113.4 ± 9.2a | 113.1 ± 7.2a | 92.0 ± 7.4c |
NYH | 114.7 ± 9.0a | 114.3 ± 5.9a | 103.4 ± 5.4b | 110.5 ± 6.0a | 106.0 ± 7.4b | 83.4 ± 7.2c |
PMU | 98.3 ± 3.3b | 96.5 ± 3.7b | 89.5 ± 6.3c | 102.0 ± 4.5a | 96.5 ± 4.1b | 86.6 ± 5.3c |
PMN | - | 92.3 ± 7.1a | 88.5 ± 6.6a | 88.0 ± 6.2a | 89.3 ± 6.3a | 73.3 ± 6.5b |
PMH | 85.2 ± 4.7ab | 88.1 ± 5.2a | 80.7 ± 5.4b | 84.8 ± 9.2ab | 84.5 ± 6.0ab | 56.2 ± 4.5c |
POU | 88.2 ± 6.9a | 85.4 ± 3.7a | 79.6 ± 6.3b | - | 81.5 ± 7.1b | 70.3 ± 6.4c |
PON | - | - | 70.3 ± 6.4a | - | 70.3 ± 6.4a | 68.2 ± 5.5b |
POH | - | - | 76.3 ± 5.5a | - | 76.3 ± 5.5a | 64.9 ± 7.3b |
Relative Crown Wide (CD/CL) | ||||||
NYU | 0.39 ± 0.08a | 0.38 ± 0.07a | 0.39 ± 0.07a | 0.35 ± 0.05a | 0.33 ± 0.05a | 0.26 ± 0.04b |
NYN | 0.38 ± 0.05a | 0.37 ± 0.06a | 0.38 ± 0.10a | 0.39 ± 0.07a | 0.39 ± 0.05a | 0.29 ± 0.05b |
NYH | 0.41 ± 0.07a | 0.40 ± 0.07a | 0.39 ± 0.05a | 0.38 ± 0.04a | 0.39 ± 0.03a | 0.33 ± 0.05b |
PMU | 0.50 ± 0.08a | 0.52 ± 0.05a | 0.55 ± 0.06a | 0.51 ± 0.10a | 0.54 ± 0.06a | 0.35 ± 0.10a |
PMN | 0.50 ± 0.05a | 0.52 ± 0.08a | 0.55 ± 0.07a | 0.53 ± 0.05a | 0.53 ± 0.06a | 0.42 ± 0.08a |
PMH | 0.49 ± 0.07a | 0.50 ± 0.08a | 0.53 ± 0.09a | 0.49 ± 0.06a | 0.50 ± 0.07a | 0.44 ± 0.06a |
POU | 0.51 ± 0.04a | 0.53 ± 0.05a | 0.52 ± 0.04a | - | 0.53 ± 0.06a | 0.33 ± 0.05b |
PON | - | - | 0.62 ± 0.08a | - | 0.62 ± 0.08a | 0.45 ± 0.05b |
POH | - | - | 0.73 ± 0.07a | - | 0.73 ± 0.07a | 0.51 ± 0.08b |
Relative Crown Length (CL/H) | ||||||
NYU | 0.24 ± 0.05a | 0.24 ± 0.04a | 0.27 ± 0.05a | 0.25 ± 0.04a | 0.25 ± 0.05a | 0.15 ± 0.04b |
NYN | 0.30 ± 0.05a | 0.26 ± 0.07a | 0.31 ± 0.07a | 0.29 ± 0.07a | 0.29 ± 0.07a | 0.18 ± 0.03b |
NYH | 0.30 ± 0.07a | 0.34 ± 0.056a | 0.29 ± 0.07a | 0.32 ± 0.07a | 0.32 ± 0.07a | 0.22 ± 0.05b |
PMU | 0.34 ± 0.08a | 0.27 ± 0.07a | 0.35 ± 0.09a | 0.32 ± 0.07a | 0.32 ± 0.08a | 0.17 ± 0.07b |
PMN | 0.30 ± 0.09a | 0.30 ± 0.09a | 0.29 ± 0.09a | 0.30 ± 0.08a | 0.30 ± 0.07a | 0.20 ± 0.08b |
PMH | 0.31 ± 0.09a | 0.32 ± 0.06a | 0.34 ± 0.08a | 0.32 ± 0.09a | 0.32 ± 0.08a | 0.25 ± 0.09b |
POU | 0.29 ± 0.07a | 0.26 ± 0.07a | 0.28 ± 0.07a | 0.26 ± 0.06a | 0.28 ± 0.09a | 0.19 ± 0.07b |
PON | - | - | 0.33 ± 0.09a | - | 0.33 ± 0.09a | 0.22 ± 0.06b |
POH | - | - | 0.32 ± 0.09a | - | 0.32 ± 0.09a | 0.24 ± 0.05b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picchio, R.; Tavankar, F.; Latterini, F.; Jourgholami, M.; Karamdost Marian, B.; Venanzi, R. Influence of Different Thinning Treatments on Stand Resistance to Snow and Wind in Loblolly Pine (Pinus taeda L.) Coastal Plantations of Northern Iran. Forests 2020, 11, 1034. https://doi.org/10.3390/f11101034
Picchio R, Tavankar F, Latterini F, Jourgholami M, Karamdost Marian B, Venanzi R. Influence of Different Thinning Treatments on Stand Resistance to Snow and Wind in Loblolly Pine (Pinus taeda L.) Coastal Plantations of Northern Iran. Forests. 2020; 11(10):1034. https://doi.org/10.3390/f11101034
Chicago/Turabian StylePicchio, Rodolfo, Farzam Tavankar, Francesco Latterini, Meghdad Jourgholami, Behroz Karamdost Marian, and Rachele Venanzi. 2020. "Influence of Different Thinning Treatments on Stand Resistance to Snow and Wind in Loblolly Pine (Pinus taeda L.) Coastal Plantations of Northern Iran" Forests 11, no. 10: 1034. https://doi.org/10.3390/f11101034
APA StylePicchio, R., Tavankar, F., Latterini, F., Jourgholami, M., Karamdost Marian, B., & Venanzi, R. (2020). Influence of Different Thinning Treatments on Stand Resistance to Snow and Wind in Loblolly Pine (Pinus taeda L.) Coastal Plantations of Northern Iran. Forests, 11(10), 1034. https://doi.org/10.3390/f11101034