Fine Root and Soil Nitrogen Dynamics during Stand Development Following Shifting Agriculture in Northeast India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Vegetation Sampling
2.3. Soil Sampling and Analysis
2.4. Determinations of Available Nitrogen and N-Mineralization Rate
2.5. Sampling and Analysis of Fine Roots
2.6. Statistical Analysis
3. Results
3.1. Vegetation
3.2. Soil Physicochemical Properties
3.3. Available N Concentrations
3.4. Nitrification and N-Mineralization Rate
3.5. Fine Root Biomass
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tripathi, S.K.; Kushwaha, C.P.; Singh, K.P. Tropical forest and savanna ecosystems show differential impact of N and P additions on soil organic matter and aggregate structure. Glob. Chang. Biol. 2008, 14, 2572–2581. [Google Scholar] [CrossRef]
- Tripathi, S.K.; Singh, K.P.; Singh, P.K. Temporal changes in spatial pattern of fine-root mass and nutrient concentrations in Indian bamboo savanna. Appl. Veg. Sci. 1999, 2, 229–238. [Google Scholar] [CrossRef]
- Lalnunzira, C.; Brearley, F.Q.; Tripathi, S.K. Root growth dynamics during recovery of tropical mountain forest in North-east India. J. Mt. Sci. 2019, 16, 2335–2347. [Google Scholar] [CrossRef]
- Cairns, M.F. Shifting Cultivation and Environmental Change; Routledge: Abingdon, UK, 2015. [Google Scholar]
- Grogan, P.; Lalnunmawia, F.; Tripathi, S.K. Shifting cultivation in steeply sloped regions: A review of management options and research priorities for Mizoram state, Northeast India. Agrofor. Syst. 2012, 84, 163–177. [Google Scholar] [CrossRef]
- Tripathi, S.K.; Vanlalfakawma, D.C.; Lalnunmawia, F. Shifting cultivation on steep slopes of Mizoram, India: Impact of policy reforms. In Shifting Cultivation Policies: Balancing Environmental and Social Sustainability; Cairns, M., Ed.; CABI Publishing: Wallingford, UK, 2017; pp. 393–413. [Google Scholar]
- Kauffman, J.B.; Sanford, R.L.; Cummings, D.L.; Salcedo, I.H.; Sampaio, E.V.S.B. Biomass and nutrient dynamics associated with sash fires in Neotropical dry forests. Ecology 1993, 74, 140–151. [Google Scholar] [CrossRef]
- Filho, A.A.R.; Adams, C.; Manfredini, S.; Aguilar, R.; Neves, W.A. Dynamics of soil chemical properties in shifting cultivation systems in the tropics: A meta-analysis. Soil Use Manag. 2015, 31, 474–482. [Google Scholar] [CrossRef]
- Booth, M.S.; Stark, J.M.; Rastetter, E. Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data. Ecol. Monogr. 2005, 75, 139–157. [Google Scholar] [CrossRef] [Green Version]
- Lebauer, D.S.; Treseder, K.K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 2008, 89, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Ostertag, R.; DiManno, N.M. Detecting terrestrial nutrient limitation: A global meta-analysis of foliar nutrient concentrations after fertilization. Front. Earth Sci. 2016, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Walker, T.; Syers, J. The fate of phosphorus during pedogenesis. Geoderma 1976, 15, 1–19. [Google Scholar] [CrossRef]
- Vitousek, P.M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 1984, 65, 285–298. [Google Scholar] [CrossRef]
- Davidson, E.A.; De Carvalho, C.J.R.; Figueira, A.M.; Ishida, F.Y.; Ometto, J.P.H.B.; Nardoto, G.B.; Sabá, R.T.; Hayashi, S.N.; Leal, E.C.; Vieira, I.C.G.; et al. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 2007, 447, 995–998. [Google Scholar] [CrossRef]
- Silver, W.L.; Miya, R.K. Global patterns in root decomposition: Comparisons of climate and litter quality effects. Oecologia 2001, 129, 407–419. [Google Scholar] [CrossRef]
- Tripathi, S.K.; Sumida, A.; Ono, K.; Shibata, H.; Uemura, S.; Takahashi, K.; Hara, T. The effects of understorey dwarf bamboo (Sasa kurilensis) removal on soil fertility in a Betula ermanii forest of northern Japan. Ecol. Res. 2005, 21, 315–320. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Chen, H.Y.H. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: Literature review and meta-analyses. Crit. Rev. Plant Sci. 2010, 29, 204–221. [Google Scholar] [CrossRef]
- Finér, L.; Ohashi, M.; Noguchi, K.; Hirano, Y. Factors causing variation in fine root biomass in forest ecosystems. For. Ecol. Manag. 2011, 261, 265–277. [Google Scholar] [CrossRef]
- Keyes, M.R.; Grier, C.C. Above- and below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sites. Can. J. For. Res. 1981, 11, 599–605. [Google Scholar] [CrossRef]
- Wapongnungsang; Tripathi, S. Fine root growth and soil nutrient dynamics during shifting cultivation in tropical semi-evergreen forests of northeast India. J. Environ. Biol. 2019, 40, 45–52. [Google Scholar] [CrossRef]
- Hertel, D.; Leuschner, C.; Harteveld, M.; Wiens, M. Fine root mass, distribution and regeneration in disturbed primary forests and secondary forests of the moist tropics. In The Stability of Tropical Rainforest Margins: Linking Ecological, Economic and Social Constraints of Land Use and Conservation; Tscharntke, T., Leuschner, C., Zeller, M., Guhardja, E., Bidin, A., Eds.; Springer: Berlin, Germany, 2007; pp. 87–106. [Google Scholar]
- Brearley, F.Q. Below-ground secondary succession in tropical forests of Borneo. J. Trop. Ecol. 2011, 27, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Lalnunzira, C.; Tripathi, S.K. Leaf and root production, decomposition and carbon and nitrogen fluxes during stand development in tropical moist forests, north-east India. Soil Res. 2018, 56, 306. [Google Scholar] [CrossRef]
- Champion, H.G.; Seth, S.K. A Revised Survey of the Forest Types of India; Manager of Publications, Government of India: New Delhi, India, 1968. [Google Scholar]
- Misra, R. Ecology Work Book; Oxford & IBH Publishing Co.: New Delhi, India, 1968. [Google Scholar]
- Bouyoucos, G.J. Directions for making mechanical analyses of soils by the hydrometer method. Soil Sci. 1936, 42, 225–230. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1958. [Google Scholar]
- Wetzel, R.G.; Likens, G.E. Limnological Analyses; W. B. Saunders Company: Philadelphia, PA, USA, 1979. [Google Scholar]
- Eno, C.F. Nitrate production in the field by incubating the soil in polyethylene bags. Soil Sci. Soc. Am. J. 1960, 24, 277–279. [Google Scholar] [CrossRef]
- Persson, H. Root dynamics in a young Scots pine stand in central Sweden. Oikos 1978, 30, 508. [Google Scholar] [CrossRef]
- McClaugherty, C.; Aber, J.D.; Melillo, J.M. The role of fine roots in the organicmatter and nitrogen budgets of two forested ecosystems. Ecology 1982, 63, 1481–1490. [Google Scholar] [CrossRef] [Green Version]
- Vogt, K.; Grier, C.; Vogt, D. Production, Turnover, and Nutrient Dynamics of Above- and Belowground Detritus of World Forests. Adv. Ecol. Res. 1986, 15, 303–377. [Google Scholar] [CrossRef]
- Arunachalam, A.; Pandey, H.N.; Tripathi, R.S.; Maithani, K. Biomass and production of fine and coarse roots during regrowth of a disturbed subtropical humid forest in north-east India. Vegetatio 1996, 123, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Upadhaya, K.; Pandey, H.N.; Law, P.S.; Tripathi, R.S. Dynamics of fine and coarse roots and nitrogen mineralization in a humid subtropical forest ecosystem of northeast India. Biol. Fertil. Soils 2005, 41, 144–152. [Google Scholar] [CrossRef]
- Barbhuiya, A.R.; Arunachalam, A.; Pandey, H.N.; Khan, M.L.; Arunachalam, K. Fine root dynamics in undisturbed and disturbed stands of a tropical wet evergreen forest in northeast India. Trop. Ecol. 2012, 53, 69–79. [Google Scholar]
- Yuan, Z.Y.; Chen, H.Y. Fine root dynamics with stand development in the boreal forest. Funct. Ecol. 2012, 26, 991–998. [Google Scholar] [CrossRef]
- Jagodziński, A.M.; Kałucka, I. Fine root biomass and morphology in an age-sequence of post-agricultural Pinus sylvestris L. stands. Dendrobiology 2011, 66, 71–84. [Google Scholar]
- Harris, W.F.; Kinerson, R.S., Jr.; Edwards, N.T. Comparison of belowground biomass of natural deciduous forest and loblolly pine plantations. In The Belowground Ecosystem: A Synthesis of Plant-Associated Processes; Marshall, J.K., Ed.; Colorado State University: Fort Collins, CO, USA, 1977; pp. 29–38. [Google Scholar]
- Srivastava, S.K.; Singh, K.P.; Upadhyay, R.S. Fine root growth dynamics in teak (Tectona grandis Linn. F.). Can. J. For. Res. 1986, 16, 1360–1364. [Google Scholar] [CrossRef]
- Maycock, C.R.; Congdon, R.A. Fine root biomass and soil N and P in north Queensland rain forests. Biotropica 2000, 32, 185–190. [Google Scholar] [CrossRef]
- Powers, J.S.; Treseder, K.K.; Lerdau, M.T. Fine roots, arbuscular mycorrhizal hyphae and soil nutrients in four neotropical rain forests: Patterns across large geographic distances. New Phytol. 2004, 165, 913–921. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.Y.; Chen, H.Y.H. A global analysis of fine root production as affected by soil nitrogen and phosphorus. Proc. Royal Soc. Lond. Ser. B Biol. Sci. 2012, 279, 3796–3802. [Google Scholar] [CrossRef] [Green Version]
- Phillips, R.P.; Fahey, T.J. Fertilization effects on fineroot biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils. New Phytol. 2007, 176, 655–664. [Google Scholar] [CrossRef]
- Aber, J.D.; Melillo, J.M.; Nadelhoffer, K.J.; McClaugherty, C.; Pastor, J. Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: A comparison of two methods. Oecologia 1985, 66, 317–321. [Google Scholar] [CrossRef]
- Singh, J.S.; Raghubanshi, A.S.; Srivastava, S.C. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature 1989, 338, 499–500. [Google Scholar] [CrossRef]
- Roy, S.; Singh, J. Seasonal and spatial dynamics of plant-available N and P pools and N-mineralization in relation to fine roots in a dry tropical forest habitat. Soil Biol. Biochem. 1995, 27, 33–40. [Google Scholar] [CrossRef]
- Hertel, D.; Harteveld, M.A.; Leuschner, C. Conversion of a tropical forest into agroforest alters the fine root-related carbon flux to the soil. Soil Biol. Biochem. 2009, 41, 481–490. [Google Scholar] [CrossRef]
- Singh, S.B.; Mishra, B.P.; Tripathi, S.K. Recovery of plant diversity and soil nutrients during stand development in subtropical forests of Mizoram, Northeast India. Biodiversitas 2015, 16, 205–212. [Google Scholar] [CrossRef]
- Singha, D.; Tripathi, S.K. Variations in fine root growth during age chronosequence of moist tropical forest following shifting cultivation in Mizoram, northeast India. Trop. Ecol. 2017, 58, 769–779. [Google Scholar]
- Liu, B.; Li, H.; Zhu, B.; Koide, R.T.; Eissenstat, D.M.; Guo, D. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 co-existing subtropical tree species. New Phytol. 2015, 208, 125–136. [Google Scholar] [CrossRef]
- Amazonas, N.T.; Martinelli, L.A.; Piccolo, M.D.C.; Rodrigues, R.R. Nitrogen dynamics during ecosystem development in tropical forest restoration. For. Ecol. Manag. 2011, 262, 1551–1557. [Google Scholar] [CrossRef]
- Mylliemngap, W.; Nath, D.; Barik, S.K. Changes in vegetation and nitrogen mineralization during recovery of a montane subtropical broadleaved forest in North-eastern India following anthropogenic disturbance. Ecol. Res. 2015, 31, 21–38. [Google Scholar] [CrossRef]
- Winbourne, J.B.; Feng, A.; Reynolds, L.; Piotto, D.; Hastings, M.G.; Porder, S. Nitrogen cycling during secondary succession in Atlantic Forest of Bahia, Brazil. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Rice, E.L.; Pancholy, S.K. Inhibition of nitrification by climax ecosystems. Am. J. Bot. 1972, 59, 1033–1040. [Google Scholar] [CrossRef]
- Walley, F.; Van Kessel, C.; Pennock, D. Landscape-scale variability of N mineralization in forest soils. Soil Biol. Biochem. 1996, 28, 383–391. [Google Scholar] [CrossRef]
- Sahrawat, K.L. Factors affecting nitrification in soils. Commun. Soil Sci. Plant Anal. 2008, 39, 1436–1446. [Google Scholar] [CrossRef] [Green Version]
- Robertson, G.P.; Vitousek, P.M. Nitrification potentials in primary and secondary succession. Ecology 1981, 62, 376–386. [Google Scholar] [CrossRef]
- Pajares, S.; Bohannan, B.J.M. Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Front. Microbiol. 2016, 7, 1045. [Google Scholar] [CrossRef] [Green Version]
Stand Age (Years) | |||||
---|---|---|---|---|---|
3 | 5 | 15 | 40 | NF | |
Tree density (no. ha−1) | 399 ± 36 a | 933 ± 88 b | 1690 ± 124 c | 2290 ± 169 d | 4290 ± 281 e |
Tree basal area (m2 ha−1) | 2.1 ± 0.5 a | 6.9 ± 0.8 b | 12.3 ± 1.3 c | 41.4 ± 4.8 d | 64.7 ± 6.2 e |
Herb density (no. m−2) | 39.1 ± 3.4 b | 35.4 ± 3.6 b | 33.9 ± 4.2 b | 28.2 ± 2.9 a | 27.6 ± 3.1a |
Stand Age (Years) | |||||
---|---|---|---|---|---|
3 | 5 | 15 | 40 | NF | |
Soil temperature (°C) * | 20.6 ± 1.1 a | 20.4 ± 0.9 a | 19.8 ± 1.2 a | 19.1 ± 0.7 a | 18.7 ± 1.0 a |
Bulk density (g cm−3) | 0.97 ± 0.03 a | 0.92 ± 0.03 b | 0.80 ± 0.02 c | 0.80 ± 0.05 c | 0.69 ± 0.05 d |
Textural class | Sandy Loam | Loamy Sand | Loamy Sand | Loamy sand | Loamy Sand |
Moisture content (%) * | 29.7 ± 1.1 a | 30.1 ± 1.6 a | 30.4 ± 0.8 a | 31.8 ± 1.2 a | 41.3 ± 1.2 b |
pH in water | 4.6 ± 0.2 a | 4.8 ± 0.4 a | 4.8 ± 0.4 a | 4.7 ± 0.1 a | 4.5 ± 0.2 a |
C (mg g–1) * | 23.4 ± 0.3 a | 28.2 ± 0.3 a | 26.5 ± 0.3 a | 27.3 ± 0.3 a | 44.1 ± 0.4 b |
N (mg g–1) * | 2.3 ± 0.02 a | 2.4 ± 0.02 a | 2.0 ± 0.03 a | 2.2 ± 0.02 a | 3.3 ± 0.3 b |
C:N ratio | 10.2 ± 0.6 a | 11.8 ± 1.3 a | 13.2 ± 0.9 a | 12.4 ± 1.1 a | 13.4 ± 0.9 a |
Stand Age (Years) | |||||
---|---|---|---|---|---|
3 | 5 | 15 | 40 | NF | |
NH4-N (μg g−1) * | 5.7 ± 0.5 a | 7.4 ± 0.6 ab | 10.2 ± 0.6 b | 12.4 ± 0.5 b | 16.1 ± 0.8 c |
NO3-N (μg g−1) * | 3.3 ± 0.4 a | 3.8 ± 0.3 ab | 4.8 ± 0.4 ab | 5.6 ± 0.5 bc | 6.7 ± 0.6 c |
NH4-N/NO3-N | 1.7 ± 0.1 a | 1.9 ± 0.05 ab | 2.1 ± 0.04 b | 2.2 ± 0.1 b | 2.4 ± 0.1 c |
Ammonification (μg g−1 month−1) * | 3.1 ± 0.1 a | 3.9 ± 0.1 a | 5.7 ± 0.3 ab | 7.5 ± 0.2 b | 11.4 ± 0.3 c |
Nitrification (μg g−1 month−1) * | 2.1 ± 0.2 a | 2.6 ± 0.1 a | 3.7 ± 0.2 a | 4.7 ± 0.3 ab | 6.5 ± 0.3 b |
N-mineralization (μg g−1 month−1) | 5.2 ± 0.3 a | 6.5 ± 0.2 a | 9.4 ± 0.5 b | 12.2 ± 0.5 b | 17.9 ± 0.6 c |
Ammonification: nitrification | 1.5 ± 0.2 a | 1.5 ± 0.2 a | 1.5 ± 0.2 a | 1.6 ± 0.1 a | 1.8 ± 0.1 a |
Fine Root Parameter | Stand Age (Years) | |||||
---|---|---|---|---|---|---|
Diameter (mm) | 3 | 5 | 15 | 40 | >100 | |
Biomass (g m−2) | <0.5 | 34.4 ± 3.0 a | 49.0 ± 6.6 b | 38.5 ± 11.0 a | 45.0 ± 14.1 b | 87.1 ± 12.6 c |
0.5–2 | 68.3 ± 13.3 a | 101.9 ± 10.8 a | 134.9 ± 12.8 b | 169.8 ± 14.5 b | 242.4 ± 20.3 c | |
Necromass (g m−2) | <0.5 | 40.9 ± 4.4 a | 64.8 ± 7.8 b | 56.1 ± 9.88 b | 84.7 ± 13.3 c | 103.9 ± 11.4 d |
0.5–2 | 30.7 ± 5.7 a | 49.0 ± 8.2 a | 67.3 ± 10.9 b | 66.9 ± 9.7 b | 83.2 ± 6.8 c | |
Total mass (g m−2) | <2 | 174.3 ± 15.1 a | 264.7 ± 16.4 a | 296.8 ± 16.8 a | 366.4 ± 19.4 b | 516.6 ± 21.2 b |
Very fine (<0.5 mm): total (<2 mm) biomass ratio | NA | 0.33 ± 0.03 b | 0.32 ± 0.03 b | 0.22 ± 0.02 a | 0.21 ± 0.02 a | 0.26 ± 0.01 a |
Production (g m−2 year−1) | <2 | 140.4 ± 7.2 a | 216.7 ± 12.5 ab | 244.9 ± 14.7 b | 355.1 ± 24.1 c | 553.8 ± 27.2 c |
Turnover (year−1) | <2 | 0.81 ± 0.07 a | 0.82 ± 0.06 a | 0.83 ± 0.11 a | 0.97 ± 0.13 b | 1.07 ± 0.09 b |
Stand Age (Years) | Soil Property | ||||
---|---|---|---|---|---|
Soil Moisture | Total Mineral N | Nitrification | Ammonification | N-Mineralization | |
3 | 0.535 | −0.619 | 0.487 | 0.882 * | 0.727 |
5 | 0.732 | −0.683 | 0.616 | 0.908 * | 0.803 * |
15 | 0.729 | −0.665 | 0.739 | 0.972 ** | 0.898 * |
40 | 0.499 | −0.643 | 0.978 ** | 0.977 ** | 0.981 ** |
NF | 0.689 | −0.705 | 0.827 * | 0.727 | 0.773 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singha, D.; Brearley, F.Q.; Tripathi, S.K. Fine Root and Soil Nitrogen Dynamics during Stand Development Following Shifting Agriculture in Northeast India. Forests 2020, 11, 1236. https://doi.org/10.3390/f11121236
Singha D, Brearley FQ, Tripathi SK. Fine Root and Soil Nitrogen Dynamics during Stand Development Following Shifting Agriculture in Northeast India. Forests. 2020; 11(12):1236. https://doi.org/10.3390/f11121236
Chicago/Turabian StyleSingha, Dipendra, Francis Q. Brearley, and Shri Kant Tripathi. 2020. "Fine Root and Soil Nitrogen Dynamics during Stand Development Following Shifting Agriculture in Northeast India" Forests 11, no. 12: 1236. https://doi.org/10.3390/f11121236
APA StyleSingha, D., Brearley, F. Q., & Tripathi, S. K. (2020). Fine Root and Soil Nitrogen Dynamics during Stand Development Following Shifting Agriculture in Northeast India. Forests, 11(12), 1236. https://doi.org/10.3390/f11121236