Weathering Behaviour of Cunninghamia lanceolata (Lamb.) Hook. under Natural Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wood Sample Preparation
2.2. Density
2.3. Weathering Conditions
2.4. Low-Vacuum Scanning Electron Microscopy
2.5. Colour Measurements
3. Results and Discussion
3.1. Wood Density
3.2. LVSEM Analysis
3.3. Discoloration of Wood Surface
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fu, L.; Yu, Y.; Robert, R.M. Taxodiaceae. Flora China 1999, 4, 54–61. [Google Scholar]
- Ken, F. Tropical Plants Database, Tropical.Theferns.Info. Available online: tropical.theferns.info/viewtropical.php?id=Cunninghamia+lanceolata (accessed on 11 December 2020).
- Jøker, D. Cunninghamia Lanceolata (Lamb.) Hook. SEED LEAFLET, No.43 October 2000. Available online: https://sl.ku.dk/rapporter/seed-leaflets/filer/cunninghamia-lanceolata-43.pdf (accessed on 11 December 2020).
- Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Simons, A. Cunninghamia Lanceolata (Lamb.) Hook. Agroforestry Database 4.0. 2009, pp. 1–5. Available online: http://apps.worldagroforestry.org/treedb2/AFTPDFS/Cunninghamia_lanceolata.PDF (accessed on 11 December 2020).
- Minghe, L.; Ritchie, G.A. Eight hundred years of clonal forestry in China: I. traditional afforestation with Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.). New For. 1999, 18, 131–142. [Google Scholar] [CrossRef]
- Zhou, W.F.; Huang, Z.X.; Xu, P.; Zhu, J.Z.; Liu, D.L. Determination of Chemical Constituents of the Essential Oil from the Root of Cunninghamia lanceolata. Fine Chem. China 2007, 24, 1095–1098. [Google Scholar]
- Xing, J.-Q.; Ikuo, M.; Wakako, O. Natural resistance of two plantation woods Populus × canadensis cv. and Cunninghamia lanceolata to decay fungi and termites. For. Stud. China 2005, 7, 36–39. [Google Scholar] [CrossRef]
- Luo, L.; Wu, Y.; He, X.; Qin, W. Analysis of Building Materials for Wind and Rain Bridge. Materials Science, Energy Technology and Power Engineering III (MEP 2019). In Proceedings of the AIP Conference Proceedings, Hohhot, China, 28–29 July 2019; AIP Publishing: Melville, NY, USA, 2019; Volume 2154, p. 020050. [Google Scholar] [CrossRef]
- Cai, L.; Ferretto, P.W.; Deng, Y. A Study of the Timber Structure of Drum Towers of Chinese Dong Minority Architecture and Its Development Evolution. In Proceedings of the 20th IIWC International Conference and Symposium, Falun, Sweden, 13–16 April 2016; pp. 51–61. Available online: http://iiwc.icomos.org/assets/cai-ferretto-deng-falun.pdf (accessed on 11 December 2020).
- Hon, N.S.; Feist, W.C. Weathering characteristics of hardwood surfaces. Wood Sci. Technol. 1986, 20, 169–183. [Google Scholar]
- Evans, P.D. A note on assessing the deterioration of thin wood veneers during weathering. Wood Fiber Sci. 1988, 20, 487–492. [Google Scholar]
- Anderson, E.L.; Pawlak, Z.; Owen, N.L.; Feist, W.C. Infrared studies of wood weathering. Part II: Hardwoods. Appl. Spectrosc. 1991, 45, 648–652. [Google Scholar] [CrossRef]
- Nzokou, P.; Kamdem, D.P.; Temiz, A. Effect of accelerated weathering on discoloration and roughness of finished ash wood surfaces in comparison with red oak and hard maple. Prog. Org. Coat. 2011, 71, 350–354. [Google Scholar] [CrossRef]
- Agnieszka, J. The study of changes in color of wood angelim pedra (Hymenolobium sp.) and piquia (Caryocar sp.) during artificial weathering. For. Wood Technol. 2013, 82, 339–343. [Google Scholar]
- Zborowska, M.; Stachowiak-Wencek, A.; Waliszewska, B.; Prądzyński, W. Comparative studies of ipe (Tabebuia spp.) wood photodegradation cause by treatment with outdoor and indoor UV-A light irradiation. For. Wood Technol. 2014, 88, 292–296. [Google Scholar]
- Jankowska, A.; Artur, W.; Mazurek, A. The influence of artificial weathering on changes in color of selected coniferous wood species. For. Wood Technol. 2014, 85, 95–100. [Google Scholar]
- Akachuku, A.E. The possibility of tree selection and breeding for genetic improvement of wood properties of Gmelina arborea. For. Sci. 1984, 30, 275–283. [Google Scholar]
- Watanabe, U.; Norimoto, M.; Fujita, M.; Gril, J. Transverse shrinkage anisotropy of coniferous wood investigated by the power spectrum analysis. J. Wood Sci. 1998, 44, 9–14. [Google Scholar] [CrossRef]
- Ivković, M.; Gapare, W.J.; Abarquez, A.; Ilic, J.; Powell, M.B.; Wu, H.X. Prediction of wood stiffness, strength, and shrinkage in juvenile wood of radiata pine. Wood Sci. Technol. 2009, 43, 237–257. [Google Scholar] [CrossRef]
- Hasegawa, M.; Takata, M.; Matsumura, J.; Oda, K. Effect of wood properties on within-tree variation in ultrasonic wave velocity in softwood. Ultrasonics 2011, 51, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Borrega, M.; Gibson, L.J. Mechanics of balsa (Ochroma pyramidale) wood. Mech. Mater. 2015, 84, 75–90. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.S. Weathering of wood. In Handbook of Wood Chemistry and Wood Composites, 2nd ed.; Rowell, R.M., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 139–185. [Google Scholar]
- Buchner, J.; Irle, M.; Belloncle, C.; Michaud, F.; Macchioni, N. Fungal and bacterial colonies growing on weathered wood surfaces. Wood Mater. Sci. Eng. 2018, 14, 33–41. [Google Scholar] [CrossRef]
- Evans, P.D.; Thay, P.D.; Schmalzl, K.J. Degradation of wood surfaces during natural weathering. Effects on lignin and cellulose and on the adhesion of acrylic latex primers. Wood Sci. Technol. 1996, 30, 411–422. [Google Scholar] [CrossRef]
- Tolvaj, L.; Németh, R.; Varga, D.; Molnar, S. Colour homogenisation of beech wood by steam treatment. Drewno 2009, 52, 5–17. [Google Scholar]
- High Precision with New Designed Sensor and Auto-Weighing Function Electronic Densimeter. Available online: https://www.alfamirage.com/english/catalog/data/300s_features.pdf (accessed on 11 December 2020).
- Operating Instructions Model H-300S—PCE Instruments. Available online: https://www.pce-instruments.com/english/slot/2/download/5845273/h-300s_gb.pdf (accessed on 11 December 2020).
- Japan Meteorological Agency. Available online: http://www.jma.go.jp/jma/index.html (accessed on 11 December 2020).
- Scheffer, T.C. A climate index for estimating potential for decay in wood structures above ground. For. Prod. J. 1971, 21, 25–31. [Google Scholar]
- Calculate Wood Decay Hazard Index (Scheffer Index). Available online: https://www.wbdg.org/tools/corrdefense/wood_decay.html (accessed on 11 December 2020).
- Kataoka, Y.; Kiguchi, M. Weatherability of water-borne wood preservative semi-transparent coatings(I)-Coating performance during 24 months of natural weathering. Wood Preserv. 2009, 35, 204–214. [Google Scholar] [CrossRef]
- Hatae, F.; Kataoka, Y.; Kiguchi, M.; Matsunaga, H.; Matsumura, J. In site visualization of wood degradation during artificial weathering by variable pressure scanning electron microscopy. In Proceedings of the 11th Pacific Rim Bio-Based Composites Symposium, Shizuoka, Japan, 27–30 November 2012; pp. 226–232. [Google Scholar]
- Hatae, F.; Kataoka, Y.; Kiguchi, M.; Matsunaga, H.; Matsumura, J. Use of variable pressure scanning electron microscopy for in situ observation of degradation of wood surfaces during artificial weathering. In Proceedings of the International Research Group on Wood Protection, Kuala Lumpur, Malaysia, 5–6 October 2012. [Google Scholar]
- Cao, Y.; Jiang, J.; Lu, J.; Huang, R.; Jiang, J.; Wu, Y. Color change of Chinese fir through steam-heat treatment. Bioresources 2012, 7, 2809–2819. [Google Scholar]
- Robertson, A.R. The CIE 1976 color-difference formulae. Color Res. Appl. 1977, 2, 7–11. [Google Scholar] [CrossRef]
- Tolvaj, L.; Faix, O. Artificial ageing of wood monitored by DRIFT spectroscopy and CIE L*a*b* color measurements. I. Effect of UV light. Holzforschung 1995, 49, 397–404. [Google Scholar] [CrossRef]
- Missanjo, E.; Matsumura, J. Wood Density and Mechanical Properties of Pinus kesiya Royle ex Gordon in Malawi. Forests 2016, 7, 135. [Google Scholar] [CrossRef] [Green Version]
- Larson, P.R. Wood Formation and the Concept of Wood Technology; McGraw Hill: New York, NY, USA, 1969; Volume 1. [Google Scholar]
- Yin, Y.; Bian, M.; Song, K.; Xiao, F.; Jiang, X. Influence of Microfibril angle on within-tree variations in the Mechanical properties of chinese fir (Cunninghamia Lanceolata). IAWA J. 2011, 32, 431–442. [Google Scholar] [CrossRef]
- Ren, H.; Nakai, T. Intratree variability of wood density and main wood mechanical properties in Chinese fir and poplar plantation. Sci. Silvae Sin. 2006, 42, 13–20. [Google Scholar]
- Roger, M.R.; Sandra, E.L.; Rodney, E.J. Weathering Performance of Plant-Fiber/Thermoplastic Composites. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst. 2000, 353, 85–94. [Google Scholar] [CrossRef]
- Miniutti, V.P. Microscopic Observations of Ultraviolet Irradiated and Weathered Softwood Surfaces and Clear Coatings; FPL 74; U.S. Department of Agriculture, Forest Service; Forest Products Laboratory: Madison, WI, USA, 1967.
- Bauch, J.; Berndt, H. Variability of the chemical composition of pit membranes in bordered pits of gymnosperms. Wood Sci. Technol. 1973, 7, 6–9. [Google Scholar] [CrossRef]
- Maschek, D.; Goodell, B.; Jellison, J.; Lessard, M.; Militz, H. A new approach for the study of the chemical composition of bordered pit membranes: 4Pi and confocal laser scanning microscopy. Am. J. Bot. 2013, 100, 1751–1756. [Google Scholar] [CrossRef]
- Pandey, K.K. Study of the effect of photo-irradiation on the surface chemistry of wood. Polym. Degrad. Stab. 2005, 90, 9–20. [Google Scholar] [CrossRef]
- Rowell, R.M.; Roger, P.; James, S.H.; Jeffrey, S.R.; Mandla, A.T. Cell wall chemistry. In Handbook of Wood Chemistry and Wood Composites, 2nd ed.; Rowell, R.M., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 35–74. [Google Scholar]
- William, C.F.; David, N.S.H. Chemistry of weathering and protection. In The Chemistry of Solid Wood, Advances in Chemistry Series 207; Rowell, R.M., Ed.; American Chemical Society: Washington, DC, USA, 1984; pp. 401–451. [Google Scholar]
- Kollmann, F.F.P.; Kuenzi, E.W.; Stamm, A.J. Principles of Wood Science and Technology: II Wood Based Materials; Springer-Verlag: Heidelberg/Berlin, Germany, 1975. [Google Scholar]
- Shmulsky, R.; Jones, P.D. Forest Products and Wood Science: An Introduction; WILEY Blackwell: Hoboken, NJ, USA, 2019. [Google Scholar]
- Nicholas, D.D. Wood Deterioration and Its Prevention by Preservative Treatments: Volume 1: Degradation and Protection of Wood; Syracuse University Press: New York, NY, USA, 1982; ISBN 0815622856. [Google Scholar]
- Li, Y.F.; Deng, X.W.; Zhang, Y.F.; Huang, Y.Q.; Wang, C.Y.; Xiang, W.H.; Xiao, F.M.; Wei, X.C. Chemical Characteristics of Heartwood and Sapwood of Red-Heart Chinese Fir (Cunninghamia lanceolata). For. Prod. J. 2019, 69, 103–109. [Google Scholar] [CrossRef]
- Welzbacher, C.R.; Wehsener, J.; Rapp, A.O.; Haller, P. Thermo-mechanical densification combined with thermal modification of Norway spruce (Picea abies Karst) in industrial scale—Dimensional stability and durability aspects. Holz als Roh-und Werkstoff 2008, 66, 39–49. [Google Scholar] [CrossRef]
- Mitsui, K.; Tsuchikawa, S. Low atmospheric temperature dependence on photodegradation of wood. J. Photochem. Photobiol. B Biol. 2005, 81, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Miklečić, J.; Jirous-Rajkovic, V.; Antonović, A.; Španić, N. Discolouration of thermally modified wood during simulated indoor sunlight exposure. Bioresources 2011, 6, 434–446. [Google Scholar] [CrossRef]
- Rüther, P.; Jelle, B.P. Color changes of wood and wood-based materials due to natural and artificial weathering. Wood Mater. Sci. Eng. 2013, 8, 13–25. [Google Scholar] [CrossRef]
- Calienno, L.; Lo Monaco, A.; Pelosi, C.; Picchio, R. Colour and chemical changes on photodegraded beech wood with or without red heartwood. Wood Sci. Technol. 2014, 48, 1167–1180. [Google Scholar] [CrossRef]
- Wang, X.Q.; Fei, B.H.; Ren, H.Q. FTIR spectroscopic studies of the photo-discoloration of Chinese fir. Spectrosc. Spectr. Anal. 2009, 29, 1272–1275. [Google Scholar]
- Hon, D.N.S. Photochemistry of wood. In Wood and Cellulosic Chemistry; Hon, D.N.S., Shiraishi, N., Eds.; Marcel Decker lic: New York, NY, USA, 1991; pp. 525–555. ISBN 9780824700249. [Google Scholar]
- Chang, T.-C.; Chang, H.-T.; Wu, C.-L.; Chang, S.-T. Influences of extractives on the photodegradation of wood. Polym. Degrad. Stab. 2010, 95, 516–521. [Google Scholar] [CrossRef]
- Kržišnik, D.; Lesar, B.; Thaler, N.; Humar, M. Influence of Natural and Artificial Weathering on the Colour Change of Different Wood and Wood-Based Materials. Forests 2018, 9, 488. [Google Scholar] [CrossRef] [Green Version]
Weather Condition | Temperature (°C) | Humidity (%) | Sunshine Duration (h) | Total Rainfall (mm) | Wind Speed (m/s) |
---|---|---|---|---|---|
Mean value ± SD | 29.42 ± 1.40 | 74.98 ± 6.97 | 7.51 ± 3.37 | 3.90 | 2.93 ± 0.77 |
Variable | Description | n | χ ± s | F | p |
---|---|---|---|---|---|
Stem height (m) above ground | 1 | 135 | 0.371 ± 0.042 | 1.497 | 0.216 |
2 | 135 | 0.362 ± 0.044 | |||
3 | 135 | 0.358 ± 0.039 | |||
4 | 135 | 0.357 ± 0.044 |
Exposure Time (d) | Height (m) | ∆C* | ∆E* | ∆H* | |||
---|---|---|---|---|---|---|---|
Sapwood | Heartwood | Sapwood | Heartwood | Sapwood | Heartwood | ||
6 | 1 | 13.06 (1.83) | 14.37 (2.91) | 15.96 (1.71) | 15.47 (2.44) | 4.57 (1.60) | 4.68 (0.26) |
2 | 14.63 (0.27) | 16.89 (0.56) | 17.43 (0.21) | 17.92 (0.47) | 4.99 (0.61) | 3.11 (0.95) | |
3 | 15.87 (0.34) | 13.05 (0.12) | 18.87 (0.55) | 13.32 (0.09) | 5.62 (1.00) | 2.34 (0.41) | |
4 | 17.68 (0.50) | 18.31 (1.53) | 21.86 (0.34) | 19.39 (1.74) | 8.43 (0.34) | 5.51 (2.97) | |
12 | 1 | 11.80 (1.98) | 13.00 (3.12) | 14.84 (1.77) | 14.21 (2.57) | 2.62 (1.82) | 3.97 (1.38) |
2 | 13.09 (1.20) | 14.09 (1.17) | 16.36 (1.29) | 15.27 (1.29) | 2.99 (2.15) | 2.93 (2.38) | |
3 | 13.09 (2.63) | 9.49 (0.30) | 16.80 (2.17) | 13.07 (0.57) | 3.32 (2.12) | 8.77 (0.64) | |
4 | 14.22 (0.56) | 15.42 (1.15) | 18.11 (1.32) | 17.15 (1.12) | 4.39 (2.07) | 6.18 (3.94) | |
18 | 1 | 9.29 (3.48) | 10.59 (3.50) | 13.74 (3.24) | 13.20 (3.29) | 3.48 (1.75) | 6.54 (3.18) |
2 | 7.33 (0.09) | 12.93 (0.74) | 11.88 (0.13) | 15.26 (0.40) | 1.04 (0.32) | 6.41 (0.92) | |
3 | 10.92 (0.15) | 7.50 (0.30) | 14.50 (0.15) | 9.67 (0.22) | 1.31 (0.28) | 6.06 (0.35) | |
4 | 8.34 (0.24) | 12.70 (1.23) | 14.35 (0.18) | 15.46 (0.27) | 2.21 (0.27) | 8.42 (2.03) | |
30 | 1 | 5.40 (3.68) | 5.30 (1.48) | 11.46 (3.61) | 15.48 (6.54) | 4.47 (2.44) | 13.97 (6.88) |
2 | 2.93 (3.31) | 5.44 (3.01) | 13.97 (1.55) | 13.00 (2.18) | 9.46 (1.54) | 10.88 (2.19) | |
3 | 7.51 (1.52) | −0.76 (0.36) | 13.18 (1.87) | 15.39 (0.63) | 6.09 (3.80) | 15.08 (0.48) | |
4 | 2.92 (1.52) | 2.93 (1.16) | 14.25 (0.31) | 11.74 (4.48) | 9.73 (0.85) | 11.02 (5.06) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Matsumura, J. Weathering Behaviour of Cunninghamia lanceolata (Lamb.) Hook. under Natural Conditions. Forests 2020, 11, 1326. https://doi.org/10.3390/f11121326
Cui X, Matsumura J. Weathering Behaviour of Cunninghamia lanceolata (Lamb.) Hook. under Natural Conditions. Forests. 2020; 11(12):1326. https://doi.org/10.3390/f11121326
Chicago/Turabian StyleCui, Xinjie, and Junji Matsumura. 2020. "Weathering Behaviour of Cunninghamia lanceolata (Lamb.) Hook. under Natural Conditions" Forests 11, no. 12: 1326. https://doi.org/10.3390/f11121326
APA StyleCui, X., & Matsumura, J. (2020). Weathering Behaviour of Cunninghamia lanceolata (Lamb.) Hook. under Natural Conditions. Forests, 11(12), 1326. https://doi.org/10.3390/f11121326