Sex-Related Differences in Growth, Herbivory, and Defense of Two Salix Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Study Design
2.2. Growth Trait
2.3. Gender Assessment
2.4. Herbivory
2.5. Leaf N Content
2.6. Defense
2.7. Statistical Analyses
3. Results
3.1. Sex Ratio and Mortality
3.2. Gender Effects on Growth Traits
3.3. Gender Effects on Herbivores
3.4. Chemical Analyses between Genders
3.5. Relationship between Growth, Defense, and Herbivores
4. Discussion
4.1. Sex Ratios
4.2. Biomass
4.3. Herbivory
4.4. Defense
4.5. Resource Allocation Principle
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Renner, S.S. The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 2014, 101, 1588–1596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, S.C.; Hough, J. Sexual dimorphism in flowering plants. J. Exp. Bot. 2012, 64, 67–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charnov, E.L. The Theory of Sex Allocation; Princeton University Press: Princeton, NJ, USA, 1982; Volume 18. [Google Scholar]
- Herms, D.A.; Mattson, W.J. The dilemma of plants: To grow or defend. Q. Rev. Biol. 1992, 67, 283–335. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Vilas, J.; Bermúdez, R.; Retuerto, R. Soil water content and patterns of allocation to below-and above-ground biomass in the sexes of the subdioecious plant Honckenya peploides. Ann. Bot. 2012, 110, 839–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuyama, S.; Sakimoto, M. Allocation to reproduction and relative reproductive costs in two species of dioecious Anacardiaceae with contrasting phenology. Ann. Bot. 2008, 101, 1391–1400. [Google Scholar] [CrossRef]
- Torimaru, T.; Tomaru, N. Reproductive investment at stem and genet levels in male and female plants of the clonal dioecious shrub Ilex leucoclada (Aquifoliaceae). Botany 2012, 90, 301–310. [Google Scholar] [CrossRef]
- Matsushita, M.; Tomaru, N. Differences in clonal integration between the sexes: Long-term demographic patterns in the dioecious, multi-stemmed shrub Lindera triloba. Botany 2012, 90, 1028–1035. [Google Scholar] [CrossRef]
- Cepeda-Cornejo, V.; Dirzo, R. Sex-related differences in reproductive allocation, growth, defense and herbivory in three dioecious neotropical palms. PLoS ONE 2010, 5, e9824. [Google Scholar] [CrossRef]
- Ashman, T.-L. The role of herbivores in the evolution of separate sexes from hermaphroditism. Ecology 2002, 83, 1175–1184. [Google Scholar] [CrossRef]
- Person, B.T.; Herzog, M.P.; Ruess, R.W.; Sedinger, J.S.; Anthony, R.M.; Babcock, C.A. Feedback dynamics of grazing lawns: Coupling vegetation change with animal growth. Oecologia 2003, 135, 583–592. [Google Scholar] [CrossRef]
- Coley, P.D.; Bryant, J.P.; Chapin, F.S. Resource availability and plant antiherbivore defense. Science 1985, 230, 895–899. [Google Scholar] [CrossRef] [Green Version]
- Cornelissen, T.; Stiling, P. Sex-biased herbivory: A meta-analysis of the effects of gender on plant-herbivore interactions. Oikos 2005, 111, 488–500. [Google Scholar] [CrossRef]
- Fritz, R.S. Direct and indirect effects of plant genetic variation on enemy impact. Ecol. Entomol. 1995, 20, 18–26. [Google Scholar] [CrossRef]
- Cibils, A.F.; Swift, D.M.; Hart, R.H. Female-biased herbivory in fourwing saltbush browsed by cattle. J. Range Manag. 2003, 56, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Coley, P.D.; Barone, J. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 1996, 27, 305–335. [Google Scholar] [CrossRef]
- Boecklen, W.J.; Price, P.W.; Mopper, S. Sex and drugs and herbivores: Sex-biased herbivory in arroyo willow (Salix lasiolepis). Ecology 1990, 71, 581–588. [Google Scholar] [CrossRef]
- Maldonado-López, Y.; Cuevas-Reyes, P.; Sánchez-Montoya, G.; Oyama, K.; Quesada, M. Growth, plant quality and leaf damage patterns in a dioecious tree species: Is gender important? Arthropod-Plant Interact. 2014, 8, 241–251. [Google Scholar] [CrossRef]
- de Jong, T.J. Why fast-growing plants do not bother about defence. Oikos 1995, 74, 545–548. [Google Scholar] [CrossRef]
- Yin, T.; DiFazio, S.P.; Gunter, L.E.; Zhang, X.; Sewell, M.M.; Woolbright, S.A.; Allan, G.J.; Kelleher, C.T.; Douglas, C.J.; Wang, M. Genome structure and emerging evidence of an incipient sex chromosome in Populus. Genome Res. 2008, 18, 422–430. [Google Scholar] [CrossRef]
- Hughes, F.M.; Johansson, M.; Xiong, S.; Carlborg, E.; Hawkins, D.; Svedmark, M.; Hayes, A.; Goodall, A.; Richards, K.S.; Nilsson, C. The influence of hydrological regimes on sex ratios and spatial segregation of the sexes in two dioecious riparian shrub species in northern Sweden. Plant Ecol. 2010, 208, 77–92. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, S.; Lei, Y.; Xu, G.; Zhang, D. Alternative growth and defensive strategies reveal potential and gender specific trade-offs in dioecious plants Salix paraplesia to nutrient availability. Front. Plant Sci. 2016, 7, 1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jong, T.; Meijden, E. Sex ratio of some long-lived dioecious plants in a sand dune area. Plant Biol. 2004, 6, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Elmqvist, T.; Cates, R.G.; Harper, J.K.; Gardfjell, H. Flowering in males and females of a Utah willow, Salix rigida and effects on growth, tannins, phenolic glycosides and sugars. Oikos 1991, 61, 65–72. [Google Scholar] [CrossRef]
- Kaul, R.B.; Kaul, M.N. Sex ratios of Populus deltoides and Salix amygdaloides (Salicaeae) in Nebraska. Southwest Nat. 1984, 29, 265–269. [Google Scholar] [CrossRef]
- Danell, K.; Hjältén, J.; Ericson, L.; Elmqvist, T. Vole feeding on male and female willow shoots along a gradient of plant productivity. Oikos 1991, 62, 145–152. [Google Scholar] [CrossRef]
- Crawford, R.; Balfour, J. Female-biased sex ratios and differential growth in Arctic willows. Flora 1990, 184, 291–302. [Google Scholar] [CrossRef]
- Darolti, I.; Wright, A.E.; Pucholt, P.; Berlin, S.; Mank, J.E. Slow evolution of sex-biased genes in the reproductive tissue of the dioecious plant Salix viminalis. Mol. Ecol. 2018, 27, 694–708. [Google Scholar] [CrossRef] [Green Version]
- Pucholt, P.; Hallingbäck, H.R.; Berlin, S. Allelic incompatibility can explain female biased sex ratios in dioecious plants. BMC Genom. 2017, 18, 251. [Google Scholar] [CrossRef] [Green Version]
- Liman, A.-S.; Dalin, P.; Björkman, C. Enhanced leaf nitrogen status stabilizes omnivore population density. Oecologia 2017, 183, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Moritz, K.K.; Parachnowitsch, A.L.; Julkunen-Tiitto, R.; Björkman, C.; Ayres, M.P.; Stenberg, J.A. Roe deer prefer mixed-sex willow stands over monosexual stands but do not discriminate between male and female plants. Environ. Exp. Bot. 2018, 146, 62–67. [Google Scholar] [CrossRef]
- Albrectsen, B.R.; Gardfjell, H.; Orians, C.M.; Murray, B.; Fritz, R.S. Slugs, willow seedlings and nutrient fertilization: Intrinsic vigor inversely affects palatability. Oikos 2004, 105, 268–278. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Butler, L.G. Choosing appropriate methods and standards for assaying tannin. J. Chem. Ecol. 1989, 15, 1795–1810. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods Enzymol; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Ottenbreit, K.A.; Staniforth, R.J. Life cycle and age structure of ramets in an expanding population of Salix exigua (sandbar willow). Can. J. Plant Sci. 1992, 70, 1141–1146. [Google Scholar] [CrossRef]
- Che-Castaldo, C.; Crisafulli, C.M.; Bishop, J.G.; Fagan, W.F. What causes female bias in the secondary sex ratios of the dioecious woody shrub Salix sitchensis colonizing a primary successional landscape? Am. J. Bot. 2015, 102, 1309–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, Y.; Chen, K.; Jiang, H.; Yu, L.; Duan, B. Contrasting responses in the growth and energy utilization properties of sympatric Populus and Salix to different altitudes: Implications for sexual dimorphism in Salicaceae. Physiol. Plant. 2017, 159, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Myers-Smith, I.H.; Hik, D.S. Uniform female-biased sex ratios in alpine willows. Am. J. Bot. 2012, 99, 1243–1248. [Google Scholar] [CrossRef] [Green Version]
- Ueno, N.; Suyama, Y.; Seiwa, K. What makes the sex ratio female-biased in the dioecious tree Salix sachalinensis? J. Ecol. 2007, 95, 951–959. [Google Scholar] [CrossRef]
- Hou, J.; Guo, Z.; Liu, H.; Yin, T. Gender effects on Salix suchowensis growth and wood properties as revealed by a full-sib pedigree. Can. J. Plant Sci. 2017, 97, 594–600. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, D.G. Female-predominant sex ratios in angiosperms. Heredity 1974, 32, 35. [Google Scholar] [CrossRef] [Green Version]
- Golenberg, E.M.; West, N.W. Hormonal interactions and gene regulation can link monoecy and environmental plasticity to the evolution of dioecy in plants. Am. J. Bot. 2013, 100, 1022–1037. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Ye, N.; Zhang, D.; Chen, Y.; Fang, L.; Dai, X.; Yin, T. Different autosomes evolved into sex chromosomes in the sister genera of Salix and Populus. Sci. Rep. 2015, 5, 9076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pucholt, P.; Rönnberg-Wästljung, A.-C.; Berlin, S. Single locus sex determination and female heterogamety in the basket willow (Salix viminalis L.). Heredity 2015, 114, 575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawton, J. Plant architecture and the diversity of phytophagous insects. Annu. Rev. Entomol. 1983, 28, 23–39. [Google Scholar] [CrossRef]
- Palo, R.; Bergström, R.; Danell, K. Digestibility, distribution of phenols, and fiber at different twig diameters of birch in winter. Implication for browsers. Oikos 1992, 65, 450–454. [Google Scholar] [CrossRef]
- Danell, K.; Huss-Danell, K.; Bergstrom, R. Interactions between browsing moose and two species of birch in Sweden. Ecology 1985, 66, 1867–1878. [Google Scholar] [CrossRef]
- Nybakken, L.; Julkunen-Tiitto, R. Gender differences in Salix myrsinifolia at the pre-reproductive stage are little affected by simulated climatic change. Physiol. Plant. 2013, 147, 465–476. [Google Scholar] [CrossRef]
- Boeckler, G.A.; Gershenzon, J.; Unsicker, S.B. Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry 2011, 72, 1497–1509. [Google Scholar] [CrossRef]
- Haukioja, E.; Ruohomäki, K.; Suomela, J.; Vuorisalo, T. Nutritional quality as a defense against herbivores. For. Ecol. Manag. 1991, 39, 237–245. [Google Scholar] [CrossRef]
- Clissold, F.J.; Sanson, G.D.; Read, J.; Simpson, S.J. Gross vs. net income: How plant toughness affects performance of an insect herbivore. Ecology 2009, 90, 3393–3405. [Google Scholar] [CrossRef]
- Tixier, H.; Duncan, P.; Scehovic, J.; Yant, A.; Gleizes, M.; Lila, M. Food selection by European roe deer (Capreolus capreolus): Effects of plant chemistry, and consequences for the nutritional value of their diets. J. Zool. 1997, 242, 229–245. [Google Scholar] [CrossRef]
- Dawson, T.E.; Geber, M.A. Sexual dimorphism in physiology and morphology. In Gender and Sexual Dimorphism in Flowering Plants; Springer: Berlin/Heidelberg, Germany, 1999; pp. 175–215. [Google Scholar]
- Christie, K.S.; Ruess, R.W.; Lindberg, M.S.; Mulder, C.P. Herbivores influence the growth, reproduction, and morphology of a widespread Arctic willow. PLoS ONE 2014, 9, e101716. [Google Scholar] [CrossRef] [PubMed]
Population | Gender | Progeny Individual | Number of Cuttings | Female/Male | χ2 |
---|---|---|---|---|---|
S.suchowensis (NF) | Female | 193 | 1737 | 1.53 | 14.07 *** |
Male | 126 | 1134 | |||
S.suchowensis (XY) | Female | 185 | 1665 | 1.24 | 3.88 * |
Male | 149 | 1341 | |||
S. triandra (DB) | Female | 70 | 630 | 1.10 | 0.27 |
Male | 64 | 576 |
Organic Matter | Total N Content | Alkaline Nitrogen | Available Phosphorus | Available Potassium | Total Magnesium | Total Calcium | pH | Water Content |
---|---|---|---|---|---|---|---|---|
(g kg−1) | (g kg−1) | (mg kg−1) | (mg kg−1) | (mg kg−1) | (g kg−1) | (g kg−1) | (%) | |
20.4 ± 0.5 | 1.3 ± 0.1 | 91 ± 2.9 | 11.5 ± 0.2 | 135.3 ± 6.3 | 2.1 ± 0.1 | 0.5 ± 0.1 | 6.0 ± 0.2 | 18.8 ± 0.5 |
Population | Gender | Number of Survival | Number of Death | Death Rate | χ2 |
---|---|---|---|---|---|
S.suchowensis (NF) | Female | 1649 | 88 | 0.051 | 4.97 * |
Male | 1053 | 81 | 0.071 | ||
S.suchowensis (XY) | Female | 1529 | 136 | 0.082 | 9.38 ** |
Male | 1186 | 155 | 0.12 | ||
S. triandra (DB) | Female | 577 | 53 | 0.092 | 0.036 |
Male | 530 | 46 | 0.087 |
Population | Gender | Height (cm) | Ground Diameter (mm) | Number of Lateral Branches | Leaf Area (cm2) | Shoot Dry Weight (g) |
---|---|---|---|---|---|---|
S.suchowensis (NF) | Female | 278.4 ± 1.6 | 17.7 ± 0.2 | 2.8 ± 0.1 | 6.9 ± 0.09 | 114.8 ± 2.7 |
Male | 268.6 ± 2.2 | 17.1 ± 0.2 | 2.5 ± 0.2 | 6.7 ± 0.1 | 104.0 ± 3.7 | |
S.suchowensis (XY) | Female | 266.8 ± 2.4 | 18.1 ± 0.2 | 1.9 ± 0.1 | 7.7 ± 0.1 | 87.8 ± 2.8 |
Male | 256.8 ± 2.5 | 17.7 ± 0.2 | 1.7 ± 0.1 | 7.5 ± 0.1 | 78.0 ± 2.6 | |
S. triandra (DB) | Female | 286.1 ± 3.1 | 19.5 ± 0.3 | 5.6 ± 0.4 | 9.2 ± 0.3 | 133.8 ± 7.0 |
Male | 278.3 ± 3.1 | 18.7 ± 0.3 | 5.4 ± 0.4 | 8.7 ± 0.3 | 122.6 ± 7.1 | |
F-value | Population | 33.0 *** | 21.2 *** | 162.5 *** | 85.6 *** | 68.1 *** |
Gender | 24.9 *** | 9.6 * | 2.6 | 2.9 | 12.2 *** | |
Population × Gender | 0.09 | 0.4 | 0.02 | 0.4 | 0.02 |
Factor | F-value | |||
---|---|---|---|---|
Herbivory | Total Phenol | Condense Tannin | N Content | |
Population | 56.8 *** | 1.5 | 95.5 *** | 227.1 *** |
Gender | 21.1 *** | 7.7 ** | 4.0 | 40.3 *** |
Population × Gender | 0.3 | 0.1 | 0.9 | 0.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Xu, Q.; Li, W.; Ling, J.; Li, X.; Yin, T. Sex-Related Differences in Growth, Herbivory, and Defense of Two Salix Species. Forests 2020, 11, 450. https://doi.org/10.3390/f11040450
Yang G, Xu Q, Li W, Ling J, Li X, Yin T. Sex-Related Differences in Growth, Herbivory, and Defense of Two Salix Species. Forests. 2020; 11(4):450. https://doi.org/10.3390/f11040450
Chicago/Turabian StyleYang, Guo, Qiang Xu, Wei Li, Jiahao Ling, Xiaoping Li, and Tongming Yin. 2020. "Sex-Related Differences in Growth, Herbivory, and Defense of Two Salix Species" Forests 11, no. 4: 450. https://doi.org/10.3390/f11040450
APA StyleYang, G., Xu, Q., Li, W., Ling, J., Li, X., & Yin, T. (2020). Sex-Related Differences in Growth, Herbivory, and Defense of Two Salix Species. Forests, 11(4), 450. https://doi.org/10.3390/f11040450