The Status of Prunus padus L. (Bird Cherry) in Forest Communities throughout Europe and Asia
Abstract
:1. Introduction
2. Botanical Classification and Phenology
2.1. Classification
2.2. Phenology
Seed Dispersal
3. Community Ecology
3.1. Species Richness and Canopy Height
3.2. Phenological Influence
3.2.1. The Herbivore Influence
3.2.2. The Cherry-Oat Aphid (Rhopalosiphum padi L.)
3.2.3. The Small Ermine Moth (Yponomeuta evonymellus L.) and the Leaf Beetle (Gonioctena quinquepunctata Fabricius)
3.2.4. Injury by Other Pests
3.2.5. Injury Caused by Mammals
3.2.6. Stress Mechanisms against Herbivory
3.3. Human Interference on Forest Ecology
4. Forest Community and Ecosystems Interaction
5. Attributes of Human Value
5.1. Value for Human Health
5.2. Contents of Biological Compounds Valuable for Human Health
5.3. Other Values
6. Discussion of the Reviewed Results
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Sparks, T.H.; Menzel, A. Observed changes in season: An overwiew. Int. J. Clim. 2002, 22, 1715–1725. [Google Scholar] [CrossRef]
- Hegi, G. Illustrierte Flora von Mitteleuropa. Band IV. Teil 2B. 2. Auflage. Spermatophyta: Angiospermae: Dicotyledones 2 (3).Rosaceae Rosengewächse 2. Teil. Scholz, H. (Hrsg.); Blackwell Wissen-schafts-Verlag: Berlin, Germany, 1995; p. 1112. ISBN 3-8263-2533-8. [Google Scholar]
- Euforgen. Prunus padus. Bird cherry. European Forest Genetic Resources Programme 2019. Available online: http://euforgen.org/print/species/prunus-padus (accessed on 23 March 2020).
- Houston Durrant, T.; Caudullo, G. Prunus padus in europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Maun, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; pp. 144, e011e89+. [Google Scholar]
- Barigah, S.; Cochard, K.; Eshel, A.; Eichhorn, J. Towards selection of tree genotypes of higher drought resistance. Sauerländer’s Verl. Frankf. Am Main Ger. Schr. Aus der Forstl. Vers. 2007, 142, 118–119. [Google Scholar]
- Leather, S.R. Prunus padus L. J. Ecol. 1996, 84, 125–132. [Google Scholar] [CrossRef]
- Nedkvitne, K.; Gjerdåker, J. Hegg og hassel i norsk natur og tradisjon. Norsk Skogbruksmuseum 1993, særpublikasjon nr. 14, Elverum Trykk AS, Elverum, Norway. Available online: https://www.nb.no/items/URN:NBN:no-nb_digibok_2008101004097 (accessed on 23 March 2020).
- Roon, D.A.; Wipfli, M.S.; Wurtz, T.L.; Blanchard, A.L. Invasive European bird cherry (Prunus padus) reduces terrestrial prey subsidies to urban Alaskan salmon streams. Can. J. Fish. Aquat. Sci. 2016, 73, 1679–1690. [Google Scholar] [CrossRef] [Green Version]
- Uusitalo, M. European bird cherry (Prunus padus L.)—A biodiversity wild plant for horticulture. Agrifood Res. Rep. 2004, 61, 85. Available online: https://www.researchgate.net/profile/Marja_Uusitalo/publication/242115649_European_bird_cherry_Prunus_padus_L_-_a_biodiverse_wild_plant_for_horticulture/links/55507 (accessed on 23 March 2020).
- Liu, X.L.; Wen, J.; Nie, Z.L.; Johnson, G.; Chang, Z. Polyphyly of the Liang Zs, Padus group of Prunus (Rosaceae) and the evolution of biographic disjunctions between eastern Asia and eastern North America. J. Plant Res. 2012, 126, 351–361. [Google Scholar] [CrossRef]
- Shi, S.; Li, J.; Sun, J.; Yu, J.; Zhou, S. Phylogeny and classification of Prunus sensu lato (Rosaceae). J. Integr. Plant Boil. 2013, 55, 1069–1079. [Google Scholar] [CrossRef]
- Zhao, L.; Jiang, X.W.; Zuo, Y.J.; Liu, X.L.; Chin, S.W.; Haberle, R.; Potter, D.; Chang, Z.Y.; Wen, J. Multiple events of Allopolyploidy in the evolution of the Racemose lineages in Prunus (Rosaceae) based on integrated evidence from nuclear and plastid data. PLoS ONE 2016, 11, e0157123. [Google Scholar] [CrossRef]
- Lid, J.; Lid, T.L. Norsk flora. Det Norske Samlaget, Oslo, 5th ed.; 2017; p. 476. Available online: https://samlaget.no/products/norsk-flora (accessed on 29 April 2020).
- WT. Cherry, Bird (Prunus padus). Woodland Trust 2019. A-Z of British Trees, 1p. Available online: https://www.woodlandtrust.org.uk/visiting-woods/trees-woods-and-wildlife/btitish-trees/a-z-of-UK-native-trees/bird-cherry (accessed on 23 March 2020).
- ITIS. Catalogue of Life: 2020-02–24. ITIS Species 2000. Available online: http://www.catalogueoflife.org/col/details/species/id/ae4e36833dc4976f5734f887b4b474b6/synonym/7f2f2f08187fe530becc1ae535c43e18 (accessed on 23 March 2020).
- Kosco, J.; Miklos, H.; Akos, H.; Zoltan, S. Carpatian red list of forest habitats and species. In Carpatian List of Invasive Alien Species (Draft); State Nature Conservancy of the Slovak Republic: Banská Bystrica, Slovakia, 2014; pp. 203–208. [Google Scholar]
- Quinzin, M.C.; Normand, S.; Dellicour, S.; Svenning, J.C.; Mardulyn, P. Glacial survival of trophically linked boreal species in northern Europe. Proc. R. Soc. B 2017, 284, 21162799. [Google Scholar] [CrossRef]
- Kalvans, A.; Bitane, M.; Kalvane, G. Forecasting plant phenology: Evaluating the phenological models for Betula pendula and Padus racemose spring phases, Latvia. Int. J. Biometeorol. 2014, 59, 165–179. [Google Scholar] [CrossRef]
- Hubalek, Z. The north Atlantic oscillation system and plant phenology. Int. J. Biometeorol. 2015, 60, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Linkosalo, T.; Lappalainen, H.K.; Hari, P. A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations. Tree Physiol. 2008, 28, 1873–1882. [Google Scholar] [CrossRef] [Green Version]
- Jagodzinski, A.M.; Jarosiewics, G.; Karolewski, P.; Oleksyn, J. Carbon concentration in the biomass of common species of understory shrubs. Sylwan 2012, 156, 650–662. [Google Scholar]
- Hallman, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordano, P.; Garcia, C.; Godoy, J.A.; Garcia-Castano, J.L. Differential contributions of frugivores to complex seed dispersal patterns. Proc. Natl. Acad. Sci. USA 2007, 104, 3278–3282. [Google Scholar] [CrossRef] [Green Version]
- Evstigneev, O.I.; Murashev, I.A.; Romanov, M.S. Jay (Garrulus glandarius) and zoochory in forest communities (A case study of the Nerussa-Desna Polesie). Russ. J. Ecosyst. Ecol. 2018, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Nagamitsu, T.; Shuri, K.; Kikuchi, S.; Koike, S.; Naoe, S.; Masaki, T. Multiscale spatial genetic structure within and between populations of wild cherry trees in nuclear genotypes and chloroplast haplotypes. Ecol. Evol. 2019, 9, 11266–11276. [Google Scholar] [CrossRef]
- Pannell, J.R. Dispersal ecology: Where have all the seeds gone? Curr. Boil. 2007, 17, R360–R362. [Google Scholar] [CrossRef] [Green Version]
- Lindell, C.; Eaton, R.A.; Lizotte, E.; Rothwell, N.L. Bird consumption of sweet and tart cherries. Hum.-Wildl. Interact. 2012, 6, 283–290. [Google Scholar]
- Lönnberg, K.; Eriksson, O. Relationships between intra.specific variation in seed size and recruitment in four species in two contrasting habitats. Plant Boil. 2012, 15, 601–606. [Google Scholar] [CrossRef]
- Breitbach, N.; Laube, I.; Steffan-Dewenter, I.; Böhning-Gaese, K. Bird diversity and seed dispersal along a human land-use gradient: High seed removal in structural simple farmland. Oecologia 2010, 162, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Ahas, R.; Aasa, A. Impact pf landscape features on spring phenological phases of maple and bird cherry in Estonia. Landsc. Ecol. 2001, 16, 437–451. [Google Scholar] [CrossRef]
- Wright, S.J. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 2002, 130, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Aarseen, L.W. Ecological Combining Ability and Competitive Combining Ability in Plants: Toward a General Evolutionary Theory of Coexistence in Systems of Competition. Am. Nat. 1983, 122, 707–731. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Zhang, P.; Zhang, X.; Liu, Y. Multi scale analysis on species diversity within a 40-ha old-growth temperate forest. Plant Divers. 2018, 40, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Stanislaw, O. Species composition and aboveground biomass of shrubs in the understoty of the Niepolomice Forest. Sylwan 2015, 159, 848–856. [Google Scholar]
- Cazzolla Gatti, R.; Di Paola, A.; Bombelli, A.; Noce, S.; Valentini, R. Exploring the relationship between canopy height and terrestrial plant diversity. Plant Ecol. 2017, 218, 899–908. [Google Scholar] [CrossRef]
- Polechova, J.; Storch, D. Ecological niche. In Encyclopedia of Ecology; Elsevier, B.V: Amsterdam, The Netherlands, 2008; pp. 1088–1097. Available online: https://books.google.no/books?id=6IQY8Uh1aA0C&lpg=PR1&ots=sI9Ejchn5n&dq=Ecological%20niche.%20Encyclopedia%20of%20Ecology%202008%2C%201088-1097&lr&hl=no&pg=PR4#v=onepage&q&f=false (accessed on 23 March 2020).
- Xu, W.; Cheng, M.; Lin, T.; Cheng, Y. Structure mechanism of tree species diversity pattern in a near-mature forest in Jiaohe, Jilin Province. J. Beijing For. Univ. 2014, 36, 80–85. [Google Scholar] [CrossRef]
- Wiegand, T.; Savitri Gunatilleke, C.V.; Nimal Gunatilleke, I.A.U.; Huth, A. How individual species structure diversity in tropical forests. Proc. Natl. Acad. Sci. USA 2007, 104, 19029–19033. [Google Scholar] [CrossRef] [Green Version]
- Sandström, J.P.; Pettersson, J. Winter host plant specialization in a host-alternating aphid. J. Insect Behav. 2000, 13, 815–825. [Google Scholar] [CrossRef]
- Krzyzanowski, R.; Leszczynski, B.; Gadalinska-Krzyzanowska, A. Dynamics of bird cherry-oat aphid population on primary host plant. Prog. Plant Prot. 2010, 50, 589–591. Available online: http://www.progress.plantprotection.pl/pliki/2010/PPP_50_2_12_Krzyzanowski_R.pdf (accessed on 23 March 2020).
- Losvik, A.; Beste, L.; Stephens, J.; Jonsson, L. Overexpression of the aphid-induced serine protease inhibitor C12c gene in barley affects the generalist green peach aphid, not the specialist bird cherry-oat aphid. PLoS ONE 2018, 13, e0193816. [Google Scholar] [CrossRef] [PubMed]
- Grettenberger, I.M.; Tooker, J.F. Inter-varietal interactions among plants in genotypically diverse mixtures tend to decrease herbivore performance. Oecologia 2016, 182, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Sempruch, C.; Leszczunski, B.; Wilczewska, M.; Sytykiewicz, H.; Czerniwicz, P.; Golowska, S.; Chrzanowski, G.; Matok, H. Participation of the enzymes involved in the biosynthesis of biogenic amines in biochemical interactions between wheat (Triticum aestivum; Poaceae) and bird cherry-oat aphid (Rhopalosiphum padi; Aphididae). Biochem. Syst. Ecol. 2016, 65, 33–39. [Google Scholar] [CrossRef]
- Glinwood, R.; Ahmed, E.; Ovarfordt, E.; Ninkovic, V.; Pettersson, J. Airborne interactions between undamaged plants of different cultivars affect insect herbivores and natural enemies. Arthropod-Plant Interact. 2009, 3, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Schilthuizen, M.; Santos Pimenta, L.P.; Lammers, Y.; Steenberger, P.J.; Flohil, M.; Beveridge, N.G.P.; van Duijn, P.T.; Meulblok, M.M.; Sosef, N.; van de Ven, R.; et al. In corporation of an invasive plant into a native insect herbivore food web. Peer J. 2016, 4, e1954. [Google Scholar] [CrossRef] [Green Version]
- Brown, P. Bird-Cherry Ermine Moth. Bird Watch-Insects. Specieswatch 2011. Available online: https:/www.theguardian.com/environment/2011/jul/24/specieswatch-insects-caterpillars-moths (accessed on 23 March 2020).
- Karolewski, P.; Jagodzinski, A.M.; Giertych, M.J.; Oleksyn, J. Season and light effect constitutive defenses of understory shrub species against folivorous insects. Acta Oecol. 2013, 53, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Karolewski, P.; Jagodzinski, A.M.; Giertych, M.J.; Lukowski, A.; Baraniak, E.; Oleksyn, J. Invasive Prunus serotine–a new host for Yponomeuta evonymellus (Lepidoptere: Yponomeutidae)? Eur. J. Entomol. 2014, 111, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Lukowski, A.; Giertych, M.J.; Walczak, U.; Baraniak, E.; Karolewski, P. Light conditions affect the performance of Yponomeuta evonymellus on its native host Prunus padus and the alien Prunus serotina. Bull. Entomol. Res. 2017, 107, 208–216. [Google Scholar] [CrossRef]
- Maderek, E.; Zadworny, M.; Mucha, J.; Karolewski, P. Light as a regulator of structural and chemical leaf defenses against insects in two Prunus species. Acta Oecol. 2017, 85, 18–24. [Google Scholar] [CrossRef]
- Karolewski, P.; Lukowski, A.; Walczak, U.; Baraniak, E.; Mucha, J.; Giertych, M.J. Larval food affects oviposition preference, female fecundity and offspring survival in Yponomeuta evonymellus. Ecol. Entomol. 2017, 42, 657–667. [Google Scholar] [CrossRef]
- Lukowski, A.; Janek, W.; Baraniak, E.; Walczak, U.; Karolewski, P. Changing host plants caused structural differences in the Parasitoid complex of the monophagous moth Ypenomeuta evoymella, but does not improve survival rate. Insects 2019, 10, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selås, V.; Kobru, S.; Sonerud, G.A. Population fluctuations of moths and small rodents in relation to plant reproduction indices in southern Norway. Ecosphere 2013, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Alonso, C.; Vuorisalo, T.; Wilsey, B.; Honkanen, T. Yponome evonymellus outbreaks in southern Finland: Spatial synchrony but different local magnitudes. Annu. Zool. Fenn. 2000, 37, 179–188. Available online: https://www.researchgate.net/publication/253349759 (accessed on 23 March 2020).
- Lee, J.-H.; Pemberton, R.W. Parasitoid complex of the bird cherry ermine moth Yponomeuta evonymellus in Korea. Entomol. Res. 2009, 39, 201–206. [Google Scholar] [CrossRef]
- Mazderek, E.; Łukowski, A.; Giertych, M.j.; Karolewski, P. Influence of native and alien Prunus species and light conditions on performance of the leaf beetle Gonioctena quinquepunctata. Entomol. Exp. Appl. 2015, 155, 193–205. [Google Scholar] [CrossRef]
- Tikkanen, O.-P.; Roininen, H. Spatial pattern of outbreaks of Operophtera brumata in eastern Fennoscania and their effects on radial growth of trees. For. Ecol. Manag. 2001, 146, 45–54. Available online: www.elevier.com/locate/foreco (accessed on 23 March 2020). [CrossRef]
- Kollar, J. Gall-inducing arthropods associated with ornamental woody plants in a city park of Nitra (Sw Slovakia). Acta Entomol. Serbica 2011, 16, 115–126. [Google Scholar]
- Domes, R. Four new species of Eriophyoidea on Prunus domestica, Rosa canina, Rubus ceasius and Prunus padus: Rhinophytoptus domestica n. sp., Pharaphytoptus rosae n. sp., Diptacus caesius n. sp. and Eriophyes padi n. sp. Agarologia 1999, 40, 305–319. [Google Scholar]
- O’Connor, J.P. Eriophyes padi (Nalepa) (Eriophoidea) new to Ireland with notes on other galls. Cecidology 2004, 19, 3–5. [Google Scholar]
- Harranger, J. The mites of the plum tree. Phytoma 1983, 344, 22–23. [Google Scholar]
- Xie, M.C.; Wang, R. Three new species of the genus Aculops Keifer (Eriophyoidea; Eriophyidea; Phyllocoptinae) from Shanxi province, China. Entomotaxonomia 2013, 35, 313–320. [Google Scholar]
- Perminow, J.I.S. Xanthomonas Arboricola pv Pruni. Skadegjører. Plantevernleksikonet NIBIO 2016. Available online: https:/www.plantevernleksikonet.no/l/oppslag/1851 (accessed on 23 March 2020).
- Børve, J.; Perminow, J.I.S.; Stensvand, A.; Sletten, A. Bakteriekreft i Steinfrukt. Pseudomonas Syringae. Skadegjører. Plantevernleksikonet NIBIO 2018. Available online: https:/www.plantevernleksikonet.no/l/oppslag/1585 (accessed on 23 March 2020).
- Kaitera, J.; Tillman-Sutela, E.; Kauppi, A. Sesonal fruiting and sporulation of Thekopsora and Chrysomyxa cone rust in Norway spruce cones and alternate hosts in Finland. Can. J. For. Res. 2009, 39, 1630–1646. [Google Scholar] [CrossRef]
- Hietala, A.M.; Solheim, H.; Fossdal, C.G. Real-time PCR-based monitoring of DNA pools in the tri-throphic interaction between Norway spruce, the rust Thekopsora areolate, and an opportunistic Ascomycetous Phomopsis sp. Phytopathology 2008, 98, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Winkowska, L.; Grimova, P.; Rysanek, P. Occurrence of several viruses infecting wild growing stone fruit trees in central Bohemia. Sci. Agric. Bohem. 2016, 47, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Skoric, D.; Al-Rwahnih, M.; Myrta, A.; Caglayan, K.; Ertunc, F. First record of Peach latent mosaic viroid in Croatia. Acta Hortic. 2008, 781, 535–540. Available online: http://www.actahort.org (accessed on 23 March 2020).
- Tajchman, K.; Czyzowski, P.; Drozd, L. Food selectivity of European beaver (Castor fiber L.) occurring in the area Lubaczov and Chotylow forest districts. Pol. J. Nat. Sci. 2018, 33, 533–543. Available online: http://www.uwm.edu.pl/polish-journal/sites/default/files/issues/articles/02-tajchman.pdf (accessed on 23 March 2020).
- Groot Bruinderink, G.W.T.A.G.; Hazebroek, E. Wild boar (Sus scrofa scrofa L.) rooting and forest regeneration on podzolic soils in the Netherlands. For. Ecol. Manag. 1996, 88, 71–80. [Google Scholar] [CrossRef]
- Herms, D.A.; Mattson, W.J. The dilemma of plants to grow or defend. Q. Rev. Boil. 1992, 67, 283–335. [Google Scholar] [CrossRef] [Green Version]
- Edwards, P.J.; Wratten, S.D. Ecology of insect-plant interactions. In Studies in Biology; Edwards, A., Mattson, W., Eds.; Hodder Arnold H&S, Open Library, 1980; Volume 121, p. 60. ISBN 0-7131-2803-8. Available online: https://www.cabdirect.org/cabdirect/abstract/19810580918 (accessed on 29 April 2020).
- Haukioja, E. On the role of plant defences in the fluctuation of herbivore populations. Oikos 1980, 35, 202–213. [Google Scholar] [CrossRef]
- Rhoades, D.F. Herbivore Population Dynamics and Plant Chemistry; Variable Plants and Herbivores in natural and managed systems; Denno, R.F., McClure, M.S., Eds.; Academic Press: New York, NY, USA, 2012; pp. 155–220. ISBN 0-12-209160-4. [Google Scholar]
- Zucker, W.V. Tannins: Does structure determine function? An ecological perspective. Am. Nat. 1983, 121, 335–365. [Google Scholar] [CrossRef]
- Jones, C.G.; Firn, R.D. On the evolution on plant secondary chemical diversity. Philos. Trans. R. Soc. Lond. 1991, A333, 273–280. [Google Scholar]
- Ryan, C.A. Insect-Induced Chemical Signals Regulating Natural Plant Protection Responses; Variable Plants and Herbivores in Natural and Managed Systems; Denno, R.F., McClure, M.S., Eds.; Academic Press: New York, NY, USA, 1983; pp. 43–60. ISBN 0-12-209160-4. [Google Scholar]
- Jagodzinski, A.M.; Dydersk, M.K.; Rawlik, M.; Banaszczak, P. Plantation of coniferous trees modifies risk and size of Padus serotina (Ehrh.) Borkh. Invasion—Evidence from a Rogow Arboretum case study. For. Ecol. Manag. 2015, 357, 84–94. [Google Scholar] [CrossRef]
- Halarewicz, A.; Pruchniewicz, D.; Kawalko, D. Black cherry (Prunus serotine) invasion in a Scots pine forest. Relationships between soil properties and vegetation. Pol. J. Ecol. 2017, 65, 295–302. [Google Scholar] [CrossRef]
- Dyderski, M.C.; Jagodzinski, A.M. Drivers of invasive tree and shrub natural regeneration in temperate forests. Boil. Invasions 2018, 20, 2363–2379. [Google Scholar] [CrossRef] [Green Version]
- Dyderski, M.C.; Jagodzinski, A.M. Low impact of disturbance on ecological success of invasive tree and shrub species in temperate forests. Plant Ecol. 2018, 219, 1369–1380. [Google Scholar] [CrossRef] [Green Version]
- Dyderski, M.K.; Jagodzinzki, A.M. Seedling survival of Prunus serotine Ehrh., Quercus rubra L. and Robinia pseudoacacia L. in temperate forests of Western Poland. For. Ecol. Manag. 2019, 450, 10. [Google Scholar] [CrossRef]
- Halarewicz, A.; Gabrys, B. Probing behavior of bird cherry oat-aphid Rhopalosiphum padi (L.) on native bird cherry Prunus padus L. and alien invasive black cherry Prunus serotina ErHr. in Europe and the role of cyanogenic glycosides. Arthropod-Plant Interact. 2012, 6, 497–505. [Google Scholar] [CrossRef] [Green Version]
- Nam, K.J.; Hardie, J. Host acceptance by aphids: Probing and larviposition behavior of the bird cherry-oat aphid, Rhopalosiphum padi on host and non-host plants. J. Insect Physiol. 2012, 58, 660–668. [Google Scholar] [CrossRef]
- Sytykiewics, H.; Golawska, S.; Chrzanowski, G. Effect of bird cherry-oat aphid Rhopalosiphum padi L. feeding on phytochemical responses within the bird cherry Prunus padus L. Pol. J. Ecol. 2011, 59, 329–338. Available online: https://www.researchgate.net/publication/285414119 (accessed on 23 March 2020).
- Sytykiewics, H.; Czerniewicz, P.; Sprawka, I.; Golawska, S.; Chrzanowski, G.; Leszczynski, B. Induced proteolysis within the bird cherry leaves evoked by Rhopalosiphum padi L. (Hemiptera, Aphidoidea). Acta Biol. Hung. 2011, 62, 316–327. Available online: https://www.researchgate.net/publication/51570 (accessed on 23 March 2020). [CrossRef] [PubMed] [Green Version]
- Grajewski, S.; Miler, A.; Licznierski, M. Use of tree stand description to assess the prevalence of American black cherry Prunus serotina Ehrh. Annual Set. Environ. Prot. Rocz. Ochr. Środowiska 2017, 15, 1287–1301. Available online: https://www.researchgate.net/publication/287305395 (accessed on 23 March 2020).
- Hamberg, L.; Lehvävirta, S.; Kotze, D.J.; Heikkinen, J. Tree species composition affects the abundance of rowan (Sorbus aucuparia L.) in urban forests in Finland. J. Environ. Manag. 2015, 151, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Dabrowska-Prot, E.; Wasilovska, A. Ecological importance of meadow patches in protected forest area: Floristic diversity and the dynamics of insect communities. Pol. J. Ecol. 2010, 58, 741–758. [Google Scholar]
- Dylewski, L.; Kurek, P.; Wiatrowska, B.; Jerzak, L. Man-made perching sites – electricity pylons accelerate fleshy-fruited plants succession in farmlands. Flora-Morphol. Distrib. Funct. Ecol. Plants 2017, 231, 51–56. [Google Scholar] [CrossRef]
- Landeck, I.; Finsterwalde, T.; Wiesner, T.; Lauchhammer, K.; Heinzel, U. Eine neue raupennahrungsplanze des segelfalters (Iphiclides podalirius L. (Lep., Papilionidae) die spätblüende trabenkirsche (Padus serotina Ehrh.). Entomol. Nachr. Und Ber. 2000, 44, 183–187. [Google Scholar]
- Jaarats, A.; Sims, A.; Seemen, H. The effect of soil scarification on natural regeneration in forest microsites in Estonia. Balt. For. 2018, 18, 133–143. Available online: https://www.researchgate.net/publication/235932112_The_effect_of_soil_scarification_on_naturalregeneration_in_forest_Microsites_in_Estonia (accessed on 23 March 2020).
- Popek, R.; Lukowski, A.; Karolewski, P. Particulate matter accumulation – further differences between native Prunus padus and non-native Prunus serotina. Dendrobiology 2017, 78, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Hytteborn, H.; Svensson, B.M.; Kempe, K.; Press, A.; Rydin, H. Century-long tree population dynamics in a deciduous forest stand in central Sweden. J. Veg. Sci. 2017, 28, 1057–1069. [Google Scholar] [CrossRef]
- Dostalek, J.; Weber, M.; Matula, S.; Frantik, T. Forest stand restoration in the agricultural landscape: The effect of different methods of planting establishment. Ecol. Eng. 2007, 29, 77–86. [Google Scholar] [CrossRef]
- GOb23. Biotoptypen/Gasteinertal: Naturnahe Wälder und Gebüschstrukturen. 2006. Available online: https://gastein-im-bild.info/gob23.html (accessed on 23 March 2020).
- Deiller, A.-F.; Walter, J.-M.; Tremolieres, M. Regeneration strategies in a temperate hardwood floodplain forest of the Upper Rhine: Sexual versus vegetative reproduction of woody species. For. Ecol. Manag. 2003, 180, 215–225. [Google Scholar] [CrossRef]
- Vucelic, J.; Baricevic, D.; Poljak, I.; Vrcek, M.; Sapic, I. Phythocoenological analysis of Grey Alder (Alnus incana L. Moench supsp. incana) forests in Croatia. Sumar. List 2018, 3–4, 123–135. [Google Scholar]
- Evistigneev, O.I.; Gornova, M.V. Tall herb spruce forests as climax communities on lowland swamps of Bryansk Polesie. Russ. J. Ecosyst. Ecol. 2017, 2, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Kollman, J.; Rasmussen, K.K. Succession of a degraded bog in NE Denmark over 164 years – monitoring one of the earliest restoration experiments. Tuexenia 2018, 32, 67–85. Available online: https://www.researchgate.net/publication/277709600_Succession_of_a_degraded_bog_in_NE_Denmark_over_164_years_-_monitoring_one_of_the_earliest_restoration_experiments (accessed on 23 March 2020).
- Wallnoefer, S. A new Alnion incanae-association of the inner Italian Alps: Hedero-Alnetum glutinosae. Phyton-Ann. Rei Bot. 2009, 49, 9–23. Available online: https://www.researchgate.net/publication/287728453_A_New_Alnion_incanae-Association_of_the_Inner_Italian_Alps_Hedero_helicis-Alnetum_glutinosae (accessed on 23 March 2020).
- Li, Y.G.; Jiang, G.M.; Niu, S.L.; Liu, M.Z.; Peng, Y.; Yu, S.L.; Gao, L.M. Gas exchange and water use efficiency of three native tree species in Hunshandak Sandland of China. Photosunthetica 2003, 41, 227–232. [Google Scholar] [CrossRef]
- Lee, S.C.; Kang, H.M.; Choi, S.H.; Park, S.G.; Yu, C.Y. The change of vegetation structure by slope and altitude in Tarbaehsan provincial park. Korean J. Environ. Ecol. 2016, 30, 376–385. [Google Scholar] [CrossRef]
- Tang, C.Q.; Ohsawa, M. Tertiary relic deciduous forest oh a humid subtropical mountain, Mt. Emei, Sichuan, China. Folia Geobot. 2002, 37, 93–106. [Google Scholar] [CrossRef]
- Myking, T. Evaluating genetic resources of forest trees by means of life history traits—A Norwegian example. Biodivers. Conserv. 2002, 11, 1681–1696. [Google Scholar] [CrossRef]
- Sargison, N.D.; Williamson, D.S.; Duncan, J.R.; McCane, R.W. Prunus padus (bird cherry) poisoning in cattle. Veter-Rec. 1996, 138, 188. [Google Scholar] [CrossRef]
- Kumarasamy, Y.; Byres, M.; Cox, P.J.; Jaspars, M.; Nahar, L.; Sarker, D. Screening seeds of some Scothish plants for free radical scavenging activity. Phytotherapy Res. 2007, 21, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Vesely, O.; Marsik, P.; Langhansova, L.; Motkova, K.; Bozik, M.; Vanek, T. European non-timber woody plants as a potential source of biologically active compounds. In Zbornik referat of Vedeckej conference:Dendrologicke dni v Arborete Mlynany SAV; Arborétum Mlyńany Slovenskej Akadémie Vied: Vieska nad Žitavou, Slovakia, 2016; ISBN 978-80-89408-26-9. [Google Scholar]
- Donno, D.; Mellano, M.G.; De Biaggi, M.; Riondato, I.; Rakotoniaina, E.N.; Beccaro, G.L. New findings in Prunus padus L. fruits as a source of natural compounds: Characterization of metabolite profiles and preliminary evaluation of antioxidant activity. Molecules 2018, 23, 725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.H.; Cha, D.S.; Jeon, H. Anti-inflammatory and anti-nociceptive properties of Prunus padus. J. Ethnopharmacol. 2012, 144, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Olszewska, M.A.; Kwapisz, A. Metabolite profiling and antioxidant activity of Prunus padus L. flowers and leaves. Nat. Prod. Res. 2011, 25, 1115–1131. [Google Scholar] [CrossRef]
- Hyun, T.K.; Kim, H.C.; Kim, J.S. In vitro screening for antioxidant, antimicrobial, and antidiabetic properties of some Korean native plants on Mt. Halla, Jeju island. Indian J. Pharm. Sci. 2015, 77, 668–674. [Google Scholar]
- Sak, K.; Jürisoo, K.; Raal, A. Estonian folk tradition experiences on natural anticancer remedies: From past to the future. Pharm. Boil. 2014, 52, 855–866. [Google Scholar] [CrossRef] [Green Version]
- Ionica, M.E.; Nour, V. Nutritional value of European bird cherry (Prunus padus L.) and blackthorne (Prunus spinosa L.) fruits. Ingeneria Mediu. 2016, 21, 315–320. [Google Scholar]
- Wang, X.; Sun, C.; Liu, X.L.; Yang, X.B. Antioxidant activity of procyanidine in Padus racemose fruits. Guizhou Agric. Sci. 2014, 42, 106–108. Available online: http://www.gznykx.org.cn/jwebgznykx(CN/volumn/current.shtml (accessed on 23 March 2020).
- Cosmelescu, S.; Trandafir, I.; Nour, V. Phenolic acids and flavonoids profiles of extracts from edible wild fruits and their antioxidant properties. Int. J. Food Prop. 2017, 20, 3124–3134. [Google Scholar] [CrossRef] [Green Version]
- Bendokas, V.; Stepulaitiene, I.; Stanys, V.; Siksnianas, Y.; Anisimoviene, N. Content of anthocyanin and other phenolic compounds in cherry species and interspecific hybrids. Acta Hortic. 2017, 1161, 587–591. [Google Scholar] [CrossRef]
- Plotnikov, E.V.; Glukhova, L.B.; Sokolyanskaya, L.O.; Karnachuc, O.V.; Solioz, M. Effect of tree species on enzyme secretion by the Shiitake Medicinal Mushroom, Lentinus edodes (Agaricomycetes). Nt. J. Med. Mushrooms 2016, 18, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Kirkevold, R.R. Vinden tørker veden under tak. Skog 2019, 2, 50–51. [Google Scholar]
- Koveshnikov, A.I.; Shiryaeva, N.A.; Stavtsev, A. The history of development and the technique of arboplastic sculpture formation in the conditions of the urban environment. Vestnik OrelGAU 2015, 2, 36–44. [Google Scholar] [CrossRef]
- Yanging, Y. Introduction and Propagation of Chokeberry. J. Northeast For. Univ. 2006. [Google Scholar]
- Johnson, K.A. Prunus virginiana. In Fire Effects Information System 2000; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory: Fort Collins, CO, USA, 2000. Available online: https://www.fs.fed.us/database/feis/plants/tree/pruvir/all.html (accessed on 28 April 2020).
- IUCN. Red List of Threatened Species™, ICUN 2019. Available online: https://www.icun.org>node (accessed on 23 March 2020).
- Duarte, M.C.; Holubec, V.; Uzundzhalieva, K.; Vögel, R.; Vörösvary, G.; Maslovky, O. Prunus padus. The IUCN List of Threatened Species. International Union for Conservation of Nature and Natural Resources 2011. e.T172090A6821674. Available online: https://www.iucnredlist.org/ (accessed on 29 April 2020).
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nestby, R.D.J. The Status of Prunus padus L. (Bird Cherry) in Forest Communities throughout Europe and Asia. Forests 2020, 11, 497. https://doi.org/10.3390/f11050497
Nestby RDJ. The Status of Prunus padus L. (Bird Cherry) in Forest Communities throughout Europe and Asia. Forests. 2020; 11(5):497. https://doi.org/10.3390/f11050497
Chicago/Turabian StyleNestby, Rolf D. J. 2020. "The Status of Prunus padus L. (Bird Cherry) in Forest Communities throughout Europe and Asia" Forests 11, no. 5: 497. https://doi.org/10.3390/f11050497
APA StyleNestby, R. D. J. (2020). The Status of Prunus padus L. (Bird Cherry) in Forest Communities throughout Europe and Asia. Forests, 11(5), 497. https://doi.org/10.3390/f11050497