Multiple Stable Dominance States in the Congo Basin Forests
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site
2.2. Plot Establishment and Tree Census
2.3. Soil Data
2.4. Topographic Data
2.5. Forest Stand Attributes
2.6. Multivariate Analysis
2.7. Characterization of Taxonomic Alpha Diversity
2.8. Insight into the Forest Dynamics of the Study Area
3. Results
3.1. Species Compositional Gradients and Stand Attributes
3.2. Relationships with Environmental Variables and Forest Attributes
3.3. Alpha Diversity across Monodominance Levels and Floristic Groups
3.4. Shift in Species Dominance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saatchi, S.S.; Marlier, M.; Chazdon, R.L.; Clark, D.B.; Russell, A.E. Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass. Remote Sens. Environ. 2011, 115, 2836–2849. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asner, G.P.; Mascaro, J. Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric. Remote Sens. Environ. 2014, 140, 614–624. [Google Scholar] [CrossRef]
- Hubbell, S.P. The Unified Neutral Theory of Biodiversity and Biogeography; Princeton University Press: Princeton, NJ, USA, 2001; Volume 32, ISBN 0691021295. [Google Scholar]
- Ricklefs, R.E. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 2004, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hardy, O.; Sonké, B. Spatial pattern analysis of tree species distribution in a tropical rain forest of Cameroon: Assessing the role of limited dispersal and niche differentiation. For. Ecol. Manage. 2004, 197, 191–202. [Google Scholar] [CrossRef]
- Fine, P.V.A.; García-Villacorta, R.; Pitman, N.C.A.; Mesones, I.; Kembel, S.W. A Floristic Study of the White-Sand Forests of Peru. Ann. Mo. Bot. Gard. 2010, 97, 283–305. [Google Scholar] [CrossRef]
- Anderson, A.B. White-sand vegetation of Brazilian Amazonia. Biotropica 1981, 13, 199–210. [Google Scholar] [CrossRef]
- de Assis, R.L.; Wittmann, F. Forest structure and tree species composition of the understory of two central Amazonian várzea forests of contrasting flood heights. Flora Morphol. Distrib. Funct. Ecol. Plants 2011, 206, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Wittmann, F.; Householder, E.; Piedade, M.T.F.; De Assis, R.L.; Schöngart, J.; Parolin, P.; Junk, W.J. Habitat specifity, endemism and the neotropical distribution of Amazonian white-water floodplain trees. Ecography (Cop.) 2013, 36, 690–707. [Google Scholar] [CrossRef]
- Fortunel, C.; Paine, C.E.T.; Fine, P.V.A.; Kraft, N.J.B.; Baraloto, C. Environmental factors predict community functional composition in Amazonian forests. J. Ecol. 2014, 102, 145–155. [Google Scholar] [CrossRef]
- Watt, A.S. Pattern and Process in the Plant Community. J. Ecol. 1947, 35, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Réjou-Méchain, M.; Flores, O.; Pélissier, R.; Fayolle, A.; Fauvet, N.; Gourlet-Fleury, S. Tropical tree assembly depends on the interactions between successional and soil filtering processes. Glob. Ecol. Biogeogr. 2014, 23, 1440–1449. [Google Scholar] [CrossRef]
- Connell, J.H.; Lowman, M.D. Low-diversity tropical rain forests: Some possible mechanisms for their existence. Am. Nat. 1989, 134, 88–119. [Google Scholar] [CrossRef]
- Hart, T.B. Monospecific dominance in tropical rain forests. Trends Ecol. Evol. 1990, 5, 6–11. [Google Scholar] [CrossRef]
- ter Steege, H.; Henkel, T.W.; Helal, N.; Marimon, B.S.; Marimon-Junior, B.H.; Huth, A.; Groeneveld, J.; Sabatier, D.; de Coelho, L.S.; de Filho, D.A.L.; et al. Rarity of monodominance in hyperdiverse Amazonian forests. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Peh, K.S.H.; Lewis, S.L.; Lloyd, J. Mechanisms of monodominance in diverse tropical tree-dominated systems. J. Ecol. 2011, 99, 891–898. [Google Scholar] [CrossRef]
- Janzen, D.H. Herbivores and the number of tree species in tropical forests. Am. Nat. 1970, 104, 501–528. [Google Scholar] [CrossRef]
- Connell, J. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In Dynamics of Populations; den Boer, P., Gradwell, G., Eds.; Dynamics of Populations: Oosterbeek, The Netherlands, 1971; Volume 298, pp. 298–312. [Google Scholar]
- Hart, T.; Hart, J.; Murphy, P. Monodominant and Species-Rich Forests of the Humid Tropics: Causes for Their Co-Occurrence. Am. Nat. 1989, 133, 613–633. [Google Scholar] [CrossRef]
- Torti, S.D.; Coley, P.D.; Kursar, T.A. Causes and consequences of monodominance in tropical lowland forests. Am. Nat. 2001, 157, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Richards, P. The Tropical Rain Forest: An Ecological Study, 2nd ed.; Cambridge University Press: Cambridge, UK, 1996; ISBN 0-521-42194-2. [Google Scholar]
- Martijena, N.E. Soil properties and seedling establishment in soils from monodominant and high-diversity stands of the tropical deciduous forests of Mexico. J. Biogeogr. 1998, 25, 707–719. [Google Scholar] [CrossRef]
- Peh, K.S.H.; Sonké, B.; Lloyd, J.; Quesada, C.A.; Lewis, S.L. Soil does not explain monodominance in a Central African tropical forest. PLoS ONE 2011, 6, e16996. [Google Scholar] [CrossRef]
- Lokonda, M.; Freycon, V.; Gourlet-Fleury, S.; Kombele, F. Are soils under monodominant Gilbertiodendron dewevrei and under adjacent mixed forests similar? A case study in the Democratic Republic of Congo. J. Trop. Ecol. 2018, 34, 176–185. [Google Scholar] [CrossRef]
- Barbier, N.; Libalah, M.B.; Katembo, J.; Ploton, P.; Droissart, V.; Texier, N.; Kamdem, N.G.; Viennois, G.; Pélissier, R.; Couteron, P.; et al. Pistes pour l’étude de la distribution des peuplements de Gilbertiodendron dewevrei comme signature des impacts climatiques ou anthropiques anciens. In Pour Une écologie Historique en Afrique Centrale; AUF-IRD: Bondy, France, 2017; pp. 157–170. [Google Scholar]
- Letouzey, R. Quelques exemples camerounais de liaison possible entre phénomènes géologiques et végétation. Bothalia 1983, 14, 739–744. [Google Scholar] [CrossRef]
- Vleminckx, J.; Drouet, T.; Amani, C.; Lisingo, J.; Lejoly, J.; Hardy, O.J. Impact of fine-scale edaphic heterogeneity on tree species assembly in a central African rainforest. J. Veg. Sci. 2015, 26, 134–144. [Google Scholar] [CrossRef]
- Libalah, M.B.; Droissart, V.; Sonké, B.; Barbier, N.; Dauby, G.; Fortunel, C.; Kamdem, G.; Kamdem, N.; Lewis, S.L.; Mofack, G.I.; et al. Additive influences of soil and climate gradients drive tree community composition of Central African rainforests. J. Veg. Sci. 2020. under review. [Google Scholar]
- Umunay, P.M.; Gregoire, T.G.; Ashton, M.S. Estimating biomass and carbon for Gilbertiodendron dewevrei (De Wild) Leonard, a dominant canopy tree of African tropical Rainforest: Implications for policies on carbon sequestration. For. Ecol. Manag. 2017, 404, 31–44. [Google Scholar] [CrossRef]
- Djuikouo, M.N.K.; Doucet, J.L.; Nguembou, C.K.; Lewis, S.L.; Sonké, B. Diversity and aboveground biomass in three tropical forest types in the Dja Biosphere Reserve, Cameroon. Afr. J. Ecol. 2010, 48, 1053–1063. [Google Scholar] [CrossRef]
- Lewis, S.L.; Sonke, B.; Sunderland, T.; Begne, S.K.; Lopez-Gonzalez, G.; van der Heijden, G.M.F.; Phillips, O.L.; Affum-Baffoe, K.; Baker, T.R.; Banin, L.; et al. Above-ground biomass and structure of 260 African tropical forests. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368. [Google Scholar] [CrossRef] [Green Version]
- Makana, J.-R.; Hart, T.B.; Hibbs, D.E.; Condit, R.S. Stand structure and species diversity in the Ituri forest dynamics plots: A comparison of monodominant and mixed forest stands. In Tropical Forest Diversity and Dynamism; Losos, E.C., Leigh, E.C., Eds.; University of Chicago Press: Chicago, IL, USA, 2004; Volume 30, pp. 159–174. ISBN 0226 493466. [Google Scholar]
- Köppen, W. Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. Geogr. Z. 1900, 11, 593–611. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Réjou-Méchain, M.; Barbier, N.; Couteron, P.; Ploton, P.; Vincent, G.; Herold, M.; Mermoz, S.; Saatchi, S.; Chave, J.; de Boissieu, F.; et al. Upscaling Forest Biomass from Field to Satellite Measurements: Sources of Errors and Ways to Reduce Them. Surv. Geophys. 2019, 40, 881–911. [Google Scholar] [CrossRef]
- Larjavaara, M.; Muller-Landau, H.C. Measuring tree height: A quantitative comparison of two common field methods in a moist tropical forest. Methods Ecol. Evol. 2013, 4, 793–801. [Google Scholar] [CrossRef]
- APG IV. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar]
- African Plants Database (version 3.4.0) Conservatoire et Jardin botaniques de la VIlle de Genève and South African National Biodiversity Institute Pretoria. Available online: https://www.ville-ge.ch/musinfo/bd/cjb/africa/recherche.php (accessed on 20 January 2017).
- Rennó, C.D.; Nobre, A.D.; Cuartas, L.A.; Soares, J.V.; Hodnett, M.G.; Tomasella, J.; Waterloo, M.J. HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia. Remote Sens. Environ. 2008, 112, 3469–3481. [Google Scholar] [CrossRef]
- Quinn, P.F.; Beven, K.J.; Lamb, R. The in(a/tan/β) index: How to calculate it and how to use it within the topmodel framework. Hydrol. Process. 1995, 9, 161–182. [Google Scholar] [CrossRef]
- Böhner, J.; Selige, T. Spatial prediction of soil attributes using terrain analysis and climate regionalisation. SAGA-Anal. Model. Appl. Göttinger Aeographische Abhandlungen 2006, 115, 13–28. [Google Scholar]
- Feldpausch, T.R.; Lloyd, J.; Lewis, S.L.; Brienen, R.J.W.; Gloor, M.; Monteagudo Mendoza, A.; Lopez-Gonzalez, G.; Banin, L.; Abu Salim, K.; Affum-Baffoe, K.; et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 2012, 9, 3381–3403. [Google Scholar] [CrossRef] [Green Version]
- Réjou-Méchain, M.; Tanguy, A.; Piponiot, C.; Chave, J.; Hérault, B. Biomass: An R Package for Estimating Above-Ground Biomass and Its Uncertainty in Tropical Forests. Methods Ecol. Evol. 2017, 8, 1163–1167. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.C.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef]
- Zanne, A.E.; Lopez-Gonzalez, G.; Coomes, D.A.A.; Ilic, J.; Jansen, S.; Lewis, S.L.S.L.; Miller, R.B.B.; Swenson, N.G.G.; Wiemann, M.C.C.; Chave, J. Global wood density database. Dryad 2009, 235, 33. [Google Scholar]
- Pélissier, R.; Couteron, P.; Dray, S.; Sabatier, D. Consistency between ordination techniques and diversity measurements: Two strategies for species occurrence data. Ecology 2003, 84, 242–251. [Google Scholar] [CrossRef]
- Gimaret-Carpentier, C.; Chessel, D.; Pascal, J.P. Non-symmetric correspondence analysis: An alternative for species occurrences data. Plant Ecol. 1998, 138, 97–112. [Google Scholar] [CrossRef]
- Kroonenberg, P.M.; Lombardo, R. Nonsymmetric correspondence analysis: A tool for analysing contingency tables with a dependence structure. Multivar. Behav. Res. 1999, 34, 367–396. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.; Kindt, R.; Legendre, P.; O’Hara, R. Vegan: Community Ecology Package; R Packag. Version 2.3-3; CRAN R-project: 2016; Available online: https://cran.r-project.org/web/packa (accessed on 22 December 2016).
- Chase, J.M.; McGill, B.J.; McGlinn, D.J.; May, F.; Blowes, S.A.; Xiao, X.; Knight, T.M.; Purschke, O.; Gotelli, N.J. Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol. Lett. 2018, 21, 1737–1751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGlinn, D.J.; Xiao, X.; May, F.; Gotelli, N.J.; Engel, T.; Blowes, S.A.; Knight, T.M.; Purschke, O.; Chase, J.M.; McGill, B.J. Measurement of Biodiversity (MoB): A method to separate the scale-dependent effects of species abundance distribution, density, and aggregation on diversity change. Methods Ecol. Evol. 2019, 10, 258–269. [Google Scholar] [CrossRef]
- Dauby, G.; Hardy, O.J. Sampled-based estimation of diversity sensu stricto by transforming Hurlbert diversities into effective number of species. Ecography (Cop.) 2012, 35, 661–672. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- O’Brien, S.T.; Hubbell, S.P.; Spiro, P.; Condit, R.; Foster, R.B. Diameter, height, crown, and age relationships in eight neotropical tree species. Ecology 1995, 76, 1926–1939. [Google Scholar] [CrossRef]
- Newbery, D.M.; Alexander, I.J.; Rother, J.A. Phosphorus dynamics in a lowland African rain forest: The influence of ectomycorrhizal trees. Ecol. Monogr. 1997, 67, 367–409. [Google Scholar] [CrossRef]
- Hart, T.B. The Ecology of a Single-Species-Dominant Forest and a Mixed Forest in Zaire. Unpublished Ph.D. Thesis, Michigan State University, East Lansing, MI, USA, 1985. [Google Scholar]
- Fayolle, A.; Loubota Panzou, G.J.; Drouet, T.; Swaine, M.D.; Bauwens, S.; Vleminckx, J.; Biwole, A.; Lejeune, P.; Doucet, J.-L. Taller trees, denser stands and greater biomass in semi-deciduous than in evergreen lowland central African forests. For. Ecol. Manag. 2016, 374, 42–50. [Google Scholar] [CrossRef]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef]
- Brown, S. Estimating Biomass and Biomass Change of Tropical Forests: A Primer; FAO Forest; Food & Agriculture Org.: Rome, Italy, 1997; ISBN 9251039550. [Google Scholar]
- Wilson, J.B.; Agnew, A.D.Q. Positive-feedback Switches in Plant Communities. Adv. Ecol. Res. 1992, 23, 263–336. [Google Scholar]
- Henkel, T.W. Monodominance in the ectomycorrhizal Dicymbe corymbosa (Caesalpiniaceae) from Guyana. J. Trop. Ecol. 2003, 19, 417–437. [Google Scholar] [CrossRef] [Green Version]
- Torti, S.D.; Coley, P.D. Tropical Monodominance: A Preliminary Test of the Ectomycorrhizal Hypothesis. Biotropica 1999, 31, 220–228. [Google Scholar] [CrossRef]
- Green, J.J.; Newbery, D.M. Light and seed size affect establishment of grove-forming ectomycorrhizal rain forest tree species. New Phytol. 2001, 151, 271–289. [Google Scholar] [CrossRef]
- Letouzey, R. Carte Phytogéographique du Cameroun, 1:500 000, 8 Feuillets + 5 Notices; Institut de la Carte Internationale de la Végétation: Toulouse, France, 1985. [Google Scholar]
Range | Axis1 | Axis2 | P-Value | R2 | |
---|---|---|---|---|---|
Soil | |||||
Sand | 33–90 | 0.349 | −0.937 | 0.534 | 0.046 |
Clay | 6–52 | −0.524 | 0.852 | 0.530 | 0.045 |
Silt | 4–15 | 0.307 | 0.952 | 0.495 | 0.056 |
Nitrogen | 5.39–16.73 | −0.728 | 0.686 | 0.259 | 0.092 |
Carbon | 6.388–7.063 | −0.074 | 0.997 | 0.536 | 0.045 |
pH | 3.9–4.162 | 0.747 | 0.664 | 0.765 | 0.020 |
Phosphorus | 0.035–0.415 | −0.985 | 0.172 | 0.816 | 0.011 |
Magnesium | 0.22–0.35 | −0.775 | 0.632 | 0.926 | 0.006 |
Calcium | 0.083–0.145 | −0.525 | 0.851 | 0.806 | 0.017 |
Potassium | 1.7–3.825 | 0.351 | −0.936 | 0.611 | 0.037 |
Topography | |||||
Altitude | 461–687 | 0.076 | −0.997 | 0.322 | 0.079 |
Slope | 2.64–12.63 | −0.837 | −0.547 | 0.432 | 0.056 |
HAND | −451–247 | 0.020 | −1.000 | 0.500 | 0.049 |
TMI | −3.35–2.9 | 0.985 | −0.172 | 0.473 | 0.059 |
FlowAcc | −6–1.185 | 0.803 | 0.596 | 0.181 | 0.124 |
Stand structure | |||||
G | 24.22–39.58 | 0.381 | 0.925 | 0.103 | 0.159 |
N | 322–557 | 0.334 | 0.942 | 0.001 | 0.466 |
Dg | 27.26–35.51 | −0.307 | −0.952 | 0.233 | 0.102 |
H | 18.25–32.37 | 0.186 | 0.983 | 0.496 | 0.048 |
AGB | 333.43–590.69 | 0.112 | 0.994 | 0.568 | 0.044 |
WD | 0.56–0.68 | −0.983 | −0.186 | 0.018 | 0.235 |
Variables | GROUP1 (n=5) | GROUP2 (n=13) | GROUP3 (n=12) |
---|---|---|---|
Soil | |||
Clay | 23.2 ± 17.31(a) | 21.92 ± 15.1(a) | 32.75 ± 11.67(a) |
Sand | 69.6 ± 20.13(a) | 69.62 ± 18.9(a) | 58.25 ± 11.44(a) |
Silt | 7.2 ± 3.11(a) | 8.46 ± 4.25(a) | 9 ± 3.72(a) |
Nitrogen | 8.24 ± 2.16(a) | 9.82 ± 2.97(a) | 8.67 ± 1.62(a) |
Carbon | 6.77 ± 0.15(a) | 6.75 ± 0.17(a) | 6.66 ± 0.16(a) |
pH | 4 ± 0.08(ab) | 3.97 ± 0.06(b) | 4.06 ± 0.06(a) |
Phosphorus | 0.08 ± 0.02(a) | 0.12 ± 0.11(a) | 0.1 ± 0.05(a) |
Magnesium | 0.29 ± 0.02(a) | 0.3 ± 0.03(a) | 0.28 ± 0.03(a) |
Calcium | 0.11 ± 0.003(a) | 0.12 ± 0.01(a) | 0.11 ± 0.02(a) |
Potassium | 2.21 ± 0.36(a) | 2.71 ± 0.66(a) | 2.41 ± 0.46(a) |
Topography | |||
Altitude | 513.2 ± 27.24(b) | 585.85 ± 58.94(a) | 505.58 ± 30.8(b) |
Slope | 5.32 ± 1.24(a) | 5.92 ± 2.95(a) | 5.19 ± 1.97(a) |
HAND | −415.2±21.91(b) | −347.38 ± 53.18(a) | −415.33 ± 22.69(b) |
TMI | −1.96 ± 2.16(a) | −1.89 ± 2.15(a) | 0.14 ± 2.31(a) |
FlowAcc | −3.5 ± 3.42(a) | −4.37 ± 3.12(a) | −3.8 ± 3.28(a) |
Stand structure | |||
G | 31 ± 2.33(a) | 30.73 ± 5.11(a) | 33.77 ± 3.99(a) |
N | 418 ± 40(b) | 417 ± 58(b) | 493 ± 56(a) |
Dg | 30.79 ± 1.95(a) | 30.66 ± 2.5(a) | 29.56 ± 1.55(a) |
AGB | 453.17 ± 58.83(a) | 442.23 ± 79.33(a) | 461.29 ± 60.06(a) |
H | 25.64 ± 5.69(a) | 27.21 ± 4.41(a) | 26.82 ± 2.9(a) |
WD | 0.67 ± 0.01(a) | 0.63 ± 0.03(b) | 0.63 ± 0.01(b) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katembo, J.M.; Libalah, M.B.; Boyemba, F.B.; Dauby, G.; Barbier, N. Multiple Stable Dominance States in the Congo Basin Forests. Forests 2020, 11, 553. https://doi.org/10.3390/f11050553
Katembo JM, Libalah MB, Boyemba FB, Dauby G, Barbier N. Multiple Stable Dominance States in the Congo Basin Forests. Forests. 2020; 11(5):553. https://doi.org/10.3390/f11050553
Chicago/Turabian StyleKatembo, John M., Moses B. Libalah, Faustin B. Boyemba, Gilles Dauby, and Nicolas Barbier. 2020. "Multiple Stable Dominance States in the Congo Basin Forests" Forests 11, no. 5: 553. https://doi.org/10.3390/f11050553
APA StyleKatembo, J. M., Libalah, M. B., Boyemba, F. B., Dauby, G., & Barbier, N. (2020). Multiple Stable Dominance States in the Congo Basin Forests. Forests, 11(5), 553. https://doi.org/10.3390/f11050553