A Review of Non-Chemical Weed Control Practices in Christmas Tree Production
Abstract
:1. Introduction
2. Prevention
3. Mechanical Control
3.1. Cultivation
3.2. Mowing
4. Domestic Animals
5. Mulching
5.1. Organic Mulching
5.2. Inorganic Mulching
6. Cover Crops and Vegetated Strips
7. Thermal Weed Control
8. Biological Control
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- The National Christmas Tree Association. Quick Tree Facts. Available online: https://realchristmastrees.org/dnn/Education/Quick-Tree-Facts (accessed on 17 March 2020).
- PennState Extension. Christmas Tree Production. Agricultural Alternatives. Available online: https://extension.psu.edu/christmas-tree-production (accessed on 17 March 2020).
- Michigan Department of Agriculture & Rural Development. Governor Whitmer Proclaims December as Michigan Christmas Tree Month. Available online: https://www.michigan.gov/mdard/0,4610,7-125-1572_3628-512800--,00.html (accessed on 11 April 2020).
- Have, H.S.; Blackmore, S.; Keller, B.; Fountas, S. Autonomous weeders for Christmas tree plantations—A feasibility study. Pestic. Res. 2002, 59, 86. [Google Scholar]
- Peachey, E.; Landgren, C.; Miller, T. Weed and vegetation management strategies in Christmas trees. A Pac. Northwest Ext. Bull. PNW 2017, 625, 1–20. [Google Scholar]
- Zandstra, B.; O’Donnell, J. Weed control in Christmas trees. Mich. State Univ. Ext. Bull. 2018, E3237, 1–12. [Google Scholar]
- Harper, G.J.; Comeau, P.G.; Biring, B.S. A comparison of herbicide and mulch mat treatments for reducing grass, herb, and shrub competition in the BC interior Douglas-fir zone—Ten year results. West. J. Appl. For. 2005, 20, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Knowe, S.A.; Stein, W.I. Predicting the effects of site preparation and protection on the development of young Douglas-fir plantations. Can. J. For. Res. 1995, 25, 1538–1547. [Google Scholar] [CrossRef]
- NeSmith, D.S.; Lindstrom, O.M. Vegetation management of Leyland cypress grown for Christmas trees. J. Environ. Hortic. 1996, 14, 42–43. [Google Scholar]
- Schneider, W.G.; Knowe, S.A.; Harrington, T.B. Predicting survival of planted Douglas-fir and ponderosa pine seedlings on dry, low elevation sites in southwestern Oregon. New For. 1998, 15, 139–159. [Google Scholar] [CrossRef]
- Cui, M.; Smith, W.K. Photosynthesis, water relations and mortality in Abies lasiocarpa seedlings during natural establishment. Tree Physiol. 1991, 8, 37–46. [Google Scholar] [CrossRef]
- Roberts, S.D.; Long, J.N. Production efficiency in Abies lasiocarpa: Influence of vertical distribution of leaf area. Can. J. For. Res. 1992, 22, 1230–1234. [Google Scholar] [CrossRef]
- Brown, J.H.; Cowen, W.F., Jr.; Heiligmann, R.B. Ohio Christmas Tree Producers Manual; Ohio State University Extension Publications: Columbus, OH, USA, 1991. [Google Scholar]
- Willoughby, I.; Palmer, C. Weed control in Christmas tree plantations. In Forestry Commission Field Book; The Stationery Office: London, UK, 1997; Volume 15, p. 1. [Google Scholar]
- Hill, E. Status of herbicide-resistant weeds in Michigan. Michigan State University Extension Article. 2018. Available online: https://www.canr.msu.edu/news/2018_status_of_herbicide_resistant_weeds_in_michigan (accessed on 17 March 2020).
- Appleton, B.L.; Hill, D.B. Kentucky Christmas tree production workbook: Vegetation control. University of Kentucky Cooperative Extension Service. 1997. Available online: http://www2.ca.uky.edu/agcomm/pubs/for/for23/for23.pdf (accessed on 17 March 2020).
- Popay, I.; Field, R. Grazing animals as weed control agents. Weed Technol. 1996, 10, 217–231. [Google Scholar] [CrossRef]
- Cregg, B. Grazing sheep in Christmas tree plantation. Great Lakes Christm. Tree J. 2019, 15, 22–24. [Google Scholar]
- Chalker-Scott, L. Impact of mulches on landscape plants and the environment—A review. J. Environ. Hortic. 2007, 25, 239–249. [Google Scholar]
- Harris, R.W.; Clark, J.R.; Matheny, N.P. Arboriculture: Integrated Management of Landscape Trees, Shrubs, and Vines, 4th ed.; Prentice Hall, Inc.: Upper Saddle River, NJ, USA, 2004; p. 578. [Google Scholar]
- Pfammatter, W.; Dessimoz, A. Influence de l’irrigation et de la couverture du sol sur le developpement et le rendement de jeunes pommiers (Influence of irrigation and ground cover on development and yields of young apple trees). Rev. Suisse Vitic. Arboric. Hortic. 1997, 29, 301–304. [Google Scholar]
- Saha, D.; Marble, S.C.; Pearson, B.; Pérez, H.; MacDonald, G.; Odero, D. Emergence of garden spurge (Euphorbia hirta) and large crabgrass (Digitaria sanguinalis) in response to different physical properties and depths of common mulch materials. Weed Technol. 2020, 34, 172–179. [Google Scholar] [CrossRef]
- Borst, H.L.; Woodburn, R. The effect of mulching and methods of cultivation on runoff and erosion from Muskingham silt loam. Agric. Eng. 1942, 23, 19–22. [Google Scholar]
- Merwin, I.A.; Ray, J.A.; Steenhuis, T.S.; Boll, J. Groundcover management systems influence fungicide and nitrate-N concentrations in leachate and runoff from a New York apple orchard. J. Am. Soc. Hortic. Sci. 1996, 121, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.W. Cultivar and mulch affect cold injury of young pecan trees. J. Am. Pomol. Soc. 2000, 54, 29–33. [Google Scholar]
- Einert, A.E.; Guidry, R.; Huneycutt, H. Permanent mulches for landscape plantings of dwarf crape myrtles. Amer. Nurserym. 1975, 142, 62–65. [Google Scholar]
- Fraedrich, S.W.; Ham, D.L. Wood chip mulching around maples: Effect on tree growth and soil characteristics. J. Arboric. 1982, 8, 85–89. [Google Scholar]
- Long, C.E.; Thorne, B.L.; Breisch, N.L.; Douglass, L.W. Effect of organic and inorganic landscape mulches on subterranean termite (Isoptera: Rhinotermitidae) foraging activity. Environ. Entomol. 2001, 30, 832–836. [Google Scholar] [CrossRef] [Green Version]
- Kudinov, V.I. Sawdust instead of manure. Sadovodstvo 1972, 12, 38. [Google Scholar]
- Fausett, J.B.; Rom, C.R. The effects of transitioning a mature high-density orchard from standard herbicide ground-cover management system to organic ground-cover management systems. Ark. Agric. Expt. Sta. Res. Series 2001, 483, 33–36. [Google Scholar]
- Wood, C.B.; Smalley, T.J.; Rieger, M.; Radcliffe, D.E. Growth and drought tolerance of Viburnum plicatum var. tomentosum ‘Mariesii’ in pine bark-amended soil. J. Am. Soc. Hortic. Sci. 1994, 119, 687–692. [Google Scholar]
- Burgess, P.J.; Nkomaula, J.C.; Medeiros-Ramos, A.L. Root distribution and water use in a four-year old silvoarable system. Agrofor. Forum 1997, 8, 15–18. [Google Scholar]
- Watson, G.W. Organic mulch and grass competition influence tree root development. J. Arboric. 1988, 14, 200–203. [Google Scholar]
- Green, T.L.; Watson, G.W. Effects of turfgrass and mulch on establishment and growth of bareroot sugar maples. J. Arboric. 1989, 15, 268–272. [Google Scholar]
- Cregg, B.M.; Nzokou, P.; Goldy, R. Growth and physiology of newly planted Fraser fir (Abies fraseri) and Colorado blue spruce (Picea pungens) Christmas trees in response to mulch and irrigation. HortScience 2009, 44, 660–665. [Google Scholar] [CrossRef] [Green Version]
- Arthur, M.A.; Wang, Y. Soil nutrients and microbial biomass following weed-control treatments in a Christmas tree plantation. Soil Sci. Soc. Am. J. 1999, 63, 629–637. [Google Scholar] [CrossRef]
- Litzow, M.; Pellett, H. Influence of mulch materials on growth of green ash. J. Arboric. 1993, 9, 7–11. [Google Scholar]
- Montague, T.; Kjelgren, R. Energy balance of six common landscape surfaces and the influence of surface properties on gas exchange of four containerized tree species. Sci. Hortic. 2004, 100, 229–249. [Google Scholar] [CrossRef]
- Walsh, B.D.; Salmins, S.; Buszard, D.J.; MacKenzie, A.F. Impact of soil management systems on organic dwarf apple orchards and soil aggregate stability, bulk density, temperature and water content. Can. J. Soil Sci. 1996, 76, 203–209. [Google Scholar] [CrossRef]
- Balvinder, S.; Gupta, G.N.; Prasad, K.G. Use of mulches in establishment and growth of tree species on dry lands. Indian For. 1988, 114, 307–316. [Google Scholar]
- Iles, J.K.; Dosmann, M.S. Effect of organic and mineral mulches on soil properties and growth of ‘Fairview Flame R’ red maple trees. J. Arboric. 1999, 25, 163–167. [Google Scholar]
- Turchetti, T.; Maresi, G.; Nitti, D.; Guidotti, A.; Miccinesi, G. Il mal dell’inchiostro nel Mugello (Fi): Danni ed approcci di difesa (Chestnut ink disease in the Mugello area: Damage and control). Monti Boschi 2003, 54, 22–26. [Google Scholar]
- Sæbø, A.; Fløistad, I.S.; Netland, J.; Sku´lason, B.; Edvardsen, O.M. Weed control measures in Christmas tree plantations of Abies nordmanniana and Abies lasiocarpa. New For. 2009, 38, 143–156. [Google Scholar] [CrossRef]
- Nikiema, P.; Nzokou, P.; Rothstein, D. Effects of groundcover management on soil properties, tree physiology, foliar chemistry and growth in a newly established Fraser fir (Abies fraseri [Pursh] Poir) plantation in Michigan, United States of America. New For. 2012, 43, 213–230. [Google Scholar] [CrossRef]
- Baumann, D.T.; Bastianns, L.; Kropff, M.J. Competition and crop performance in a leek-celery intercropping system. Crop. Sci. 2001, 41, 764–774. [Google Scholar] [CrossRef]
- Broughton, W.J. The effect of various covers on soil fertility under Hevea brasiliansis (Muell. Arg.) and on growth of the tree. AgroEcosyst. 1977, 3, 147–170. [Google Scholar]
- Sanchez, J.E.; Giayetto, A.; Cichon, A.L.; Fernandez, D.; Aruani, M.C.; Curetti, M. Cover crops influence soil properties and tree performance in an organic apple (Malus domestica Borkh) orchard in northern Patagonia. Plant Soil 2007, 292, 193–203. [Google Scholar] [CrossRef]
- Dinesh, R.; Chaudhuri, S.G.; Ganeshamurty, A.N.; Pramanik, S.C. Biochemical properties of soils of undisturbed and disturbed mangrove forests of South Andaman (Indian). Wetl. Ecol. Manag. 2004, 12, 309–320. [Google Scholar] [CrossRef]
- Mendes, I.C.; Bandick, A.K.; Dick, R.P.; Bottomley, P.J. Microbial biomass and activities in soil aggregates affected by winter cover crops. Soil Sci. Soc. Am. 1999, 63, 873–881. [Google Scholar] [CrossRef]
- Brunetto, G.; Ventura, M.; Scandellari, F.; Ceretta, C.A.; Kaminski, J.; Wellington de Melo, G.; Tagliavini, M. Nutrient release during the decomposition of mowed perennial ryegrass and white clover and its contribution to nitrogen nutrition of grapevine. Nutr. Cycl. Agroecosyst. 2011, 90, 299–308. [Google Scholar] [CrossRef]
- Clark, A. Managing cover crops profitably. Sustainable Agriculture Network Handbook Series Book 9, 3rd ed.; National Agricultural Laboratory: Beltsville, MD, USA, 2007; p. 244. Available online: http://www.sare.org/publications/covercrops.htm (accessed on 7 April 2020).
- Alvarez, C.R.; Alvarez, R.; Grigera, M.S.; Lavado, R.S. Associations between organic matter fractions and the active soil microbial biomass. Soil Biol. Biochem. 1998, 30, 767–773. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, C.; Lu, S.; Rui, Y.; Wu, H.; Xu, Z. The short-term cover crops increase soil labile organic carbon in southeastern Australia. Bio. Fertil. Soils 2011. [Google Scholar] [CrossRef]
- Ascard, J. Effects of flame weeding on weed species at different developmental stages. Weed Res. 1995, 35, 397–411. [Google Scholar] [CrossRef]
- Horowitz, M.; Regev, Y.; Herzlinger, G. Solarization for weed control. Weed Sci. 1983, 31, 170–179. [Google Scholar] [CrossRef]
- Marble, S.C.; Koeser, A.K.; Hasing, G. A review of weed control practices in landscape planting beds: Part I-Nonchemical weed control methods. HortScience 2015, 50, 851–856. [Google Scholar] [CrossRef] [Green Version]
- Morin, L. Different countries, several potential bioherbicides, but always the same hurdles. In Proceedings of the 9th International Symposium on Biological Control of Weeds, Stellenbosch, South Africa, 19–26 January 1996; University of Cape Town Press: Stellenbosch, South Africa, 1996; p. 546. [Google Scholar]
- Hoagland, R.E. Chemical interactions with bioherbicides to improve efficacy. Weed Technol. 1996, 10, 651–674. [Google Scholar] [CrossRef]
- Bucher, G.E.; Harris, P. Food-plant spectrum and elimination of disease of cinnabar moth larvae, Hypocrita jacobaeae (L.) (Lepidoptera: Arctiidae). Can. Entomol. 1961, 93, 931–936. [Google Scholar] [CrossRef]
- Andres, L.A. Interactions of Chrysolina quadrigemina and Hypericum spp. in California. In Proceedings of the 6th International Symposium on Biological Control of Weeds, Vancouver, Canada, 19–25 August 1984; Agricultural Canada: Ottawa, ON, Canada, 1985; pp. 235–239. [Google Scholar]
- Louda, S.M.; Kendall, D.; Connor, J.; Simberloff, D. Ecological effects of an insect introduced for the biological control of weeds. Science 1997, 277, 1088–1090. [Google Scholar] [CrossRef] [Green Version]
- McFadyen, R.E.C. Biological control of weeds. Annu. Rev. Entomol. 1998, 43, 369–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diehl, J.W.; McEvoy, P.B. Impact of the cinnabar moth, Tyria jacobaeae, on Senecio triangularis, a non-target native plant in Oregon. In Proceedings of the 7th International Symposium on Biological Control of Weeds, Rome, Italy, 6–11 March 1988; Ministry of Agriculture, Forestry Rome, and CSIRO: Rome, Italy, 1990; pp. 119–126. [Google Scholar]
- Turner, C.E.; Pemberton, R.W.; Rosenthal, S.S. Host utilization of native Cirsium thistles (Asteraceae) by the introduced weevil Rhinocyllus conicus (Coleoptera: Curculionidae) in California. Environ. Entomol. 1987, 16, 111–115. [Google Scholar] [CrossRef]
- Bennett, F.D.; Habeck, D.H. Cactoblastis cactorum: A successful weed control agent in the Caribbean, now a pest in Florida? In Proceedings of the 8th International Symposium on Biological Control of Weeds, Canterbury, New Zealand, 2–7 February 1992; CSIRO: Melbourne, Australia, 1995; pp. 21–26. [Google Scholar]
- Pemberton, R.W. Cactoblastis cactorum (Lepidoptera: Pyralidae) in the United States: An immigrant biological control agent or an introduction of the nursery industry? Am. Entomol. 1995, 41, 230–232. [Google Scholar] [CrossRef]
- Simmonds, F.J.; Bennett, F.D. Biological control of Opuntia spp. by Cactoblastis cactorum in the Leeward Islands (West Indies). Entomophaga 1966, 11, 183–189. [Google Scholar] [CrossRef]
- Conant, P.; Tsuda, D.M. Note on Uroplata girardi Pic (Coleoptera: Chrysomelidae) feeding on commercial basil. Proc. Hawaii Entomol. Soc. 1989, 31, 8–9. [Google Scholar]
- Jayanth, K.P.; Sukhada, M.; Asokan, R.; Ganga Visalakshy, P.N. Parthenium pollen induced feeding by Zygogramma bicolorata (Coleoptera: Chrysomelidae) on sunflower (Helianthus annuus) (Compositae). Bull. Entomol. Res. 1993, 83, 595–598. [Google Scholar] [CrossRef]
- McFadyen, R.E.C.; McClay, A.S. Two new insects for the biological control of parthenium weed in Queensland. In Proceedings of the Sixth Austraian Weeds Conference, Gold Coast, Queensland, Australia, 13–18 September 1981; Queensland Weed Soc.: Brisbane, Australia, 1981; Volume 19816, pp. 145–149. [Google Scholar]
- Auld, B.A.; Morin, L. Constraints in the development of bioherbicides. Weed Technol. 1995, 9, 638–652. [Google Scholar] [CrossRef]
Target Weed | Biological Agent | Released | Non-Targets Attacked | Damage | References |
---|---|---|---|---|---|
Senecio jacobaea L. (ragwort) | Tyria jacobaeae Linnaeus, 1758 (cinnabar moth) | Canada and USA, 1959–1963 | Senecio triangularis Hook; Senecio integerrimus Nutt. | not assessed or minimal | [59,63] |
Hypericum perforatum L. (Klamath weed) | Chrysolina quadrigemina Suffrian, 1851 (chrysomelid beetle) | California, 1946 | Hypericum calycinum L. | marginal | [60] |
Carduus spp. L. (thistles) | Rhinocyllus conicus Frölich, 1792 (seed weevil) | United States, 1969 | Cirsium spp. Mill. | not known | [64] |
Opuntia spp. Mill. (prickly pears) | Cactoblastis cactorum Berg (internal feeding moth) | Caribbean, 1957 | Opuntia spp. Mill. | significant to endangered species | [65,66,67] |
Lantana camara L. (lantana) | Uroplata girardi Pic. (chrysomelid leaf miner) | Hawaii, 1961, Australia, 1966 | Ocimum basilicum L. | minor | [68] |
Parthenium hysterophorus L. (parthenium weed) | Zygogramma bicolorata Pallister, 1953 (chrysomelid beetle) | India, 1984 | Helianthus annuus L. | minor | [69,70] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, D.; Cregg, B.M.; Sidhu, M.K. A Review of Non-Chemical Weed Control Practices in Christmas Tree Production. Forests 2020, 11, 554. https://doi.org/10.3390/f11050554
Saha D, Cregg BM, Sidhu MK. A Review of Non-Chemical Weed Control Practices in Christmas Tree Production. Forests. 2020; 11(5):554. https://doi.org/10.3390/f11050554
Chicago/Turabian StyleSaha, Debalina, Bert M. Cregg, and Manjot Kaur Sidhu. 2020. "A Review of Non-Chemical Weed Control Practices in Christmas Tree Production" Forests 11, no. 5: 554. https://doi.org/10.3390/f11050554
APA StyleSaha, D., Cregg, B. M., & Sidhu, M. K. (2020). A Review of Non-Chemical Weed Control Practices in Christmas Tree Production. Forests, 11(5), 554. https://doi.org/10.3390/f11050554