Linkages between Climate, Radial Growth and Defoliation in Abies pinsapo Forests from Southern Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Field Sampling
2.3. Tree Ring Methods
2.4. Climate and Drought Data
2.5. Growth Resilience Indices
- The resistance index (Rt): this index quantifies the growth of the tree during the drought (Dr) with respect to the previous growth (PreDr):(Rt = Dr/PreDr)
- The recovery index (RS): this is the response of the growth after the drought (PostDr) compared with Dr:(RS = PostDr/Dr)
- The resilience index (RC): this is the ratio of the growth values after (PostDr) and before (PreDr) the drought:(RC = PostDr/PreDr)
2.6. Statistical Analyses
3. Results
3.1. Growth and Chronology Statistics
3.2. Age-Dependent Growth-Climate Associations
3.3. Resilience Indices
3.4. Effects of Growth on Defoliation
4. Discussion
4.1. Growth and Climatic Response
4.2. Climate Response Indices
4.3. Effects of Growth on Defoliation
4.4. Management Implications on A. pinsapo Conservation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cailleret, M.; Jansen, S.; Robert, E.; Desoto, L.; Aakala, T.; Antos, J.; Beikircher, B.; Bigler, C.; Bugmann, H.; Caccianiga, M.; et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Chang. Biol. 2017, 23, 1675–1690. [Google Scholar] [CrossRef] [PubMed]
- Caudullo, G.; Barredo, J.I. A georeferenced dataset of drought and heat-induced tree mortality in Europe. One Ecosyst. 2019, 4, e37753. [Google Scholar] [CrossRef]
- Dorman, M.; Svoray, T.; Perevolotsky, A.; Moshe, Y.; Sarris, D. What determines tree mortality in dry environments? A multi-perspective approach. Ecol. Appl. 2015, 25, 1054–1071. [Google Scholar] [CrossRef]
- Eichhorn, J.; Roskams, P.; Potocic, N.; Timmermann, V.; Ferretti, M.; Mues, V.; Szepesi, A.; Durrant, D.; Seletcovic, I.; Bussotti, F.; et al. Visual Assessment of Crown Condition and Damaging Agents. In Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests; UNECE-ICP Forest, Thünen Institute of Forest Ecosystems: Eberswalde, Germany, 2016; p. 54. [Google Scholar]
- De Vries, W.; Dobbertin, M.H.; Solberg, S.; Van Dobben, H.F.; Schaub, M. Impacts of acid deposition, ozone exposure and weather conditions on forest ecosystems in Europe: An overview. Plant. Soil 2014, 380, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: A review. Eur. J. For. Res. 2005, 124, 319–333. [Google Scholar] [CrossRef]
- Gottardini, E.; Cristofolini, F.; Cristofori, A.; Pollastrini, M.; Camin, F.; Ferretti, M. A multi-proxy approach reveals common and species-specific features associated with tree defoliation in broadleaved species. For. Ecol. Manag. 2020, 467, 118151. [Google Scholar] [CrossRef]
- Martínez del Castillo, E.; Tejedor, E.; Serrano-Notivoli, R.; Novak, K.; Saz, M.Á.; Longares, L.A.; De Luis, M. Contrasting patterns of tree growth of Mediterranean pine species in the Iberian peninsula. Forests 2018, 9, 416. [Google Scholar] [CrossRef] [Green Version]
- Marqués, L.; Camarero, J.J.; Gazol, A.; Zavala, M.A. Drought impacts on tree growth of two pine species along an altitudinal gradient and their use as early-warning signals of potential shifts in tree species distributions. For. Ecol. Manag. 2016, 381, 157–167. [Google Scholar] [CrossRef]
- Chen, H.Y.; Luo, Y.; Reich, P.; Searle, E.; Biswas, S. Climate change-associated trends in net biomass change are age dependent in western boreal forests of Canada. Ecol. Lett. 2016, 19, 1150–1158. [Google Scholar] [CrossRef]
- Tallieu, C.; Badeau, V.; Allard, D.; Nageleisen, L.M.; Bréda, N. Year-to-year crown condition poorly contributes to ring width variations of beech trees in French ICP level I network. For. Ecol. Manag. 2020, 465, 118071. [Google Scholar] [CrossRef]
- Seidling, W. Forest monitoring: Substantiating cause-effect relationships. Sci. Total Environ. 2019, 687, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Bussotti, F.; Pollastrini, M. Observing climate change impacts on European forests: What works and what does not in ongoing long-term monitoring networks. Front. Plant. Sci. 2017, 8, 629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro Cerrillo, R.M.; Calzado Martínez, C. Establecimiento de una red de equilibrios biológicos en ecosistemas con presencia de pinsapo (Abies pinsapo Boiss.) en Andalucía. Pirineos 2004, 158–159, 107–125. [Google Scholar] [CrossRef] [Green Version]
- Linares, J.C.; Delgado-Huertas, A.; Carreira, J.A. Climatic trends and different drought adaptive capacity and vulnerability in a mixed Abies pinsapo–Pinus halepensis forest. Clim. Chang. 2011, 105, 67–90. [Google Scholar] [CrossRef]
- Navarro-Cerrillo, R.M.; Manzanedo, R.D.; Rodriguez-Vallejo, C.; Gazol, A.; Palacios-Rodríguez, G.; Camarero, J.J. Competition modulates the response of growth to climate in pure and mixed Abies pinsapo subsp. maroccana forests in northern Morocco. For. Ecol. Manag. 2020, 459, 117847. [Google Scholar] [CrossRef]
- Génova Fuster, M. The growth of Abies pinsapo and the climate of Grazalema: Dendroecological approach. Investig. Agraria. Sistem. Recursos For. 2007, 16, 145–157. [Google Scholar] [CrossRef]
- Linares, J.C.; Camarero, J.J.; Carreira, J.A. Competition modulates the adaptation capacity of forests to climatic stress: Insights from recent growth decline and death in relict stands of the Mediterranean fir Abies pinsapo. J. Ecol. 2010, 98, 592–603. [Google Scholar] [CrossRef]
- Lloret, F.; Keeling, E.G.; Sala, A. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos 2011, 120, 1909–1920. [Google Scholar] [CrossRef]
- McDowell, N.G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol. 2011, 155, 1051–1059. [Google Scholar] [CrossRef] [Green Version]
- Szejner, P.; Belmecheri, S.; Ehleringer, J.R.; Monson, R.K. Recent increases in drought frequency cause observed multi-year drought legacies in the tree rings of semi-arid forests. Oecologia 2020, 192, 241–259. [Google Scholar] [CrossRef]
- Ruiz de la Torre, J. Mapa Forestal de España. Memoria General; ICONA: Madrid, Spain, 1990. [Google Scholar]
- Navarro-Cerrillo, R.M.; Fernández, A.L.; Martinez, C.C.; Alvarez, J.G.; Sánchez Salguero, R.; Oyonarte, P.B.; Fernandez-Cancio, A. Aproximación a la definición del hábitat fisiográfico del Abies pinsapo Boiss. en Andalucía. For. Syst. 2008, 15, 137–152. [Google Scholar]
- Fernández-Cancio, A.; Navarro Cerrillo, R.M.; Fernández, R.F.; Hernández, P.G.; Menéndez, E.M.; Martínez, C.C. Climate classification of Abies pinsapo Boiss. forests in Southern Spain. For. Syst. 2007, 16, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.; Morla, C.; Sainz, H. (Eds.) Los Bosques Ibéricos: Una Interpretación Geobotánica; Planeta: Barcelona, Spain, 1997. [Google Scholar]
- Fritts, H. Tree-Rings and Climate; Academic Press: London, UK, 1976. [Google Scholar]
- Cook, E.R. The decomposition of tree-ring series for environmental studies. Tree Ring Bull. 1987, 47, 37–59. [Google Scholar]
- Vicente-Serrano, S.M.; Tomas-Burguera, M.; Beguería, S.; Reig, F.; Latorre, B.; Peña-Gallardo, M.; González-Hidalgo, J.C. A high resolution dataset of drought indices for Spain. Data 2017, 2, 22. [Google Scholar] [CrossRef] [Green Version]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef] [Green Version]
- Anderegg, W.R.; Schwalm, C.; Biondi, F.; Camarero, J.J.; Koch, G.; Litvak, M.; Wolf, A. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 2015, 349, 528–532. [Google Scholar] [CrossRef] [Green Version]
- Bunn, A.G. A dendrochronology program library in R (dplR). Dendrochronologia 2008, 26, 115–124. [Google Scholar] [CrossRef]
- Darlington, R.B.; Hayes, A.F. Regression Analysis and Linear Models: Concepts, Applications, and Implementation; Guilford Publications: New York, NY, USA, 2016. [Google Scholar]
- Breheny, P.; Burchett, W. Visualization of Regression Models Using visreg. R J. 2017, 9, 56–71. [Google Scholar] [CrossRef]
- Navarro-Cerrillo, R.M.; Sánchez-Salguero, R.; Herrera, R.; Ruiz, C.C.; Moreno-Rojas, J.M.; Manzanedo, R.D.; López-Quintanilla, J. Contrasting growth and water use efficiency after thinning in mixed Abies pinsapo–Pinus pinaster–Pinus sylvestris forests. J. For. Sci. 2016, 62, 53–64. [Google Scholar]
- Linares, J.C.; Tíscar, P.A. Climate change impacts and vulnerability of the southern populations of Pinus nigra subsp. salzmannii. Tree Physiol. 2010, 30, 795–806. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Cerrillo, R.M.; Sánchez-Salguero, R.; Manzanedo, R.D.; Camarero, J.J.; Fernández-Cancio, Á. Site and age condition the growth responses to climate and drought of relict Pinus nigra subsp. salzmannii populations in Southern Spain. Tree Ring Res. 2014, 70, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Dorado-Liñán, I.; Piovesan, G.; Martínez-Sancho, E.; Gea-Izquierdo, G.; Zang, C.; Cañellas, I.; Castagneri, D.; Castagneri, D.; Filippo, A.D.; Gutiérrez, E.; et al. Geographical adaptation prevails over species-specific determinism in trees’ vulnerability to climate change at Mediterranean rear-edge forests. Glob. Chang. Biol. 2019, 25, 1296–1314. [Google Scholar] [CrossRef]
- Chaparro, D.; Vayreda, J.; Vall-Llossera, M.; Banqué, M.; Piles, M.; Camps, A.; Martinez-Vilalta, J. The role of climatic anomalies and soil moisture in the decline of drought-prone forests. IEEE J. STARS 2016, 10, 503–514. [Google Scholar] [CrossRef]
- Navarro-Cerrillo, R.N.; Duque-Lazo, J.; Rios-Gil, N.; Guerrero-Alvarez, J.J.; Lopez-Quintanilla, J.; Palacios-Rodriguez, G. Can habitat prediction models contribute to the restoration and conservation of the threatened tree Abies pinsapo Boiss. in Southern Spain? New For. 2020, 27, 1–24. [Google Scholar]
- Camarero, J.J.; Olano, J.M.; Parras, A. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol. 2010, 185, 471–480. [Google Scholar] [CrossRef]
- McDowell, N.G.; Allen, C.D.; Marshall, L. Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect. Glob. Chang. Biol. 2010, 16, 399–415. [Google Scholar] [CrossRef]
- Mencuccini, M.; Martínez-Vilalta, J.; Vanderklein, D.; Hamid, H.A.; Korakaki, E.; Lee, S.; Michiels, B. Size-mediatedageing reduces vigour in trees. Ecol. Lett. 2005, 8, 1183–1190. [Google Scholar] [CrossRef]
- Brunner, I.; Herzog, C.; Dawes, M.A.; Arend, M.; Sperisen, C. How tree roots respond to drought. Front. Plant Sci. 2015, 6, 547. [Google Scholar] [CrossRef] [Green Version]
- Schuster, R.; Oberhuber, W. Age-dependent climate–growth relationships and regeneration of Picea abies in a drought-prone mixed-coniferous forest in the Alps. Can. J. For. Res. 2013, 43, 609–618. [Google Scholar] [CrossRef] [Green Version]
- Camarero, J.J.; Gazol, A.; Sangüesa-Barreda, G.; Cantero, A.; Sánchez-Salguero, R.; Sánchez-Miranda, A.; Ibáñez, R. Forest growth responses to drought at short-and long-term scales in Spain: Squeezing the stress memory from tree rings. Front. Ecol. Evol. 2018, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Salguero, R.; Ortíz, C.; Covelo, F.; Ochoa, V.; García-Ruíz, R.; Seco, J.I.; Carreira, J.A.; Merino, J.Á.; Linares, J.C. Regulation of water use in the Southernmost European Fir (Abies pinsapo Boiss.): Drought avoidance matters. Forests 2015, 6, 2241–2260. [Google Scholar] [CrossRef]
- Linares, J.C.; Camarero, J.J. Growth patterns and sensitivity to climate predict silver fir decline in the Spanish Pyrenees. Eur. J. For. Res. 2012, 131, 1001–1012. [Google Scholar] [CrossRef]
- Navarro-Cerrillo, R.M.; Rodriguez-Vallejo, C.; Silveiro, E.; Hortal, A.; Palacios-Rodríguez, G.; Duque-Lazo, J.; Camarero, J.J. Cumulative drought stress leads to a loss of growth resilience and explains higher mortality in planted than in naturally regenerated Pinus pinaster stands. Forests 2018, 9, 358. [Google Scholar] [CrossRef] [Green Version]
- McNulty, S.G.; Boggs, J.L.; Sun, G. The rise of the mediocre forest: Why chronically stressed trees may better survive extreme episodic climate variability. New For. 2014, 45, 403–415. [Google Scholar] [CrossRef]
- Ana, C.; Gil, P.M.; Fernández-Cancio, Á.; Minaya, M.; Navarro-Cerrillo, R.M.; Sánchez-Salguero, R.; Grau, J.M. Defoliation triggered by climate induced effects in Spanish ICP Forests monitoring plots. For. Ecol. Manag. 2014, 331, 245–255. [Google Scholar]
- Sánchez-Salguero, R.; Camarero, J.J.; Grau, J.M.; De la Cruz, A.C.; Gil, P.M.; Minaya, M.; Fernández-Cancio, Á. Analysing atmospheric processes and climatic drivers of tree defoliation to determine forest vulnerability to climate warming. Forests 2017, 8, 13. [Google Scholar] [CrossRef] [Green Version]
No. Trees/No. Radii | Interval | Tree Ring Width (mm) | First-Order Autocorrelation | Correlation with Mean Series | |
---|---|---|---|---|---|
Old trees | 12/24 | 1744–2007 | 1.52 ± 0.09a | 0.80 ± 0.03 | 0.52 ± 0.02 |
Young trees | 43/86 | 1940–2007 | 2.65 ± 0.08b | 0.77 ± 0.02 | 0.55 ± 0.02 |
RWI | 1995 Drought | 2005 Drought | ||||||||||
Rt | Rc | Rs | Rt | Rc | Rs | |||||||
1 Year | 2 Yrs. | 1 Year | 2 Yrs. | 1 Year | 2 Yrs. | 1 Year | 2 Yrs. | 1 Year | 2 Yrs. | 1 Year | 2 Yrs. | |
Old trees | 0.76 ± 0.06b | 0.74 ± 0.06b | 1.38 ± 0.11a | 1.47 ± 0.11a | 0.92 ± 0.03 | 0.97 ± 0.04 | 0.86 ± 0.07 | 0.80 ± 0.06 | 1.53 ± 0.07 | 1.28 ± 0.07 | 1.25 ± 0.06 | 1.20 ± 0.07 |
Young trees | 0.52 ± 0.02a | 0.50 ± 0.02a | 2.58 ± 0.20b | 2.49 ± 0.16b | 1.03 ± 0.05 | 0.96 ± 0.03 | 0.76 ± 0.03 | 0.78 ± 0.03 | 1.55 ± 0.04 | 1.18 ± 0.04 | 1.15 ± 0.04 | 1.20 ± 0.04 |
BAI | 1995 Drought | 2005 Drought | ||||||||||
Rt | Rc | Rs | Rt | Rc | Rs | |||||||
1 Year | 2 Yrs. | 1 Year | 2 Yrs. | 1 Year | 2 Yrs. | 1 Year | 2 Yrs. | 1 Year | 2 Yrs. | 1 Year | 2 Yrs. | |
Old trees | 0.75 ± 0.06b | 0.73 ± 0.06b | 1.36 ± 0.11a | 1.45 ± 0.10a | 0.90 ± 0.03 | 0.95 ± 0.03 | 0.85 ± 0.07 | 0.78 ± 0.06 | 1.49 ± 0.06 | 1.21 ± 0.07 | 1.20 ± 0.06 | 1.12 ± 0.06 |
Young trees | 0.52 ± 0.02a | 0.49 ± 0.02a | 2.54 ± 0.20b | 2.45 ± 0.16b | 1.00 ± 0.05 | 0.94 ± 0.03 | 0.73 ± 0.03 | 0.73 ± 0.02 | 1.53 ± 0.04 | 1.09 ± 0.03 | 1.09 ± 0.04 | 1.09 ± 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Cerrillo, R.M.; Gazol, A.; Rodríguez-Vallejo, C.; Manzanedo, R.D.; Palacios-Rodríguez, G.; Camarero, J.J. Linkages between Climate, Radial Growth and Defoliation in Abies pinsapo Forests from Southern Spain. Forests 2020, 11, 1002. https://doi.org/10.3390/f11091002
Navarro-Cerrillo RM, Gazol A, Rodríguez-Vallejo C, Manzanedo RD, Palacios-Rodríguez G, Camarero JJ. Linkages between Climate, Radial Growth and Defoliation in Abies pinsapo Forests from Southern Spain. Forests. 2020; 11(9):1002. https://doi.org/10.3390/f11091002
Chicago/Turabian StyleNavarro-Cerrillo, Rafael M., Antonio Gazol, Carlos Rodríguez-Vallejo, Rubén D. Manzanedo, Guillermo Palacios-Rodríguez, and J. J. Camarero. 2020. "Linkages between Climate, Radial Growth and Defoliation in Abies pinsapo Forests from Southern Spain" Forests 11, no. 9: 1002. https://doi.org/10.3390/f11091002
APA StyleNavarro-Cerrillo, R. M., Gazol, A., Rodríguez-Vallejo, C., Manzanedo, R. D., Palacios-Rodríguez, G., & Camarero, J. J. (2020). Linkages between Climate, Radial Growth and Defoliation in Abies pinsapo Forests from Southern Spain. Forests, 11(9), 1002. https://doi.org/10.3390/f11091002