Growth Responses of Boreal Scots Pine, Norway Spruce and Silver Birch Seedlings to Simulated Climate Warming over Three Growing Seasons in a Controlled Field Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Layout and Data Measurements
2.2. Data Analyses
3. Results and Discussion
3.1. Evaluation of the Study Approach
3.2. Growth Responses of Boreal Tree Seedlings to Simulated Climate Warming
3.3. Biomass and Root:Shoot Ratios of Seedlings
3.4. Differences in Growth Patterns and Growing Conditions among the Years
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Finnish Forest Statistics. Available online: https://stat.luke.fi/en/finnish-forest-statistics-2019-2019_en (accessed on 12 June 2020).
- Hyvönen, R.; Ågren, G.I.; Linder, S.; Persson, T.; Cotrufo, M.F.; Ekblad, A.; Freeman, M.; Grelle, A.; Janssens, I.A.; Jarvis, P.G.; et al. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: A literature review. New Phytol. 2007, 173, 463–480. [Google Scholar] [CrossRef] [PubMed]
- Kellomäki, S.; Peltola, H.; Nuutinen, T.; Korhonen, K.T.; Strandman, H. Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Philos. Trans. R. Soc. B 2008, 363, 2341–2351. [Google Scholar] [CrossRef] [Green Version]
- Kellomäki, S.; Strandman, H.; Heinonen, T.; Asikainen, A.; Venäläinen, A.; Peltola, H. Temporal and spatial change in diameter growth of boreal Scots pine, Norway spruce and birch under recent-generation (CMIP5) global climate model projections for the 21st century. Forests 2018, 9, 118. [Google Scholar] [CrossRef] [Green Version]
- Kilpeläinen, A.; Peltola, H.; Rouvinen, I.; Kellomäki, S. Dynamics of daily height growth in Scots pine trees at elevated temperature and CO2. Trees 2006, 20, 16–27. [Google Scholar] [CrossRef]
- Rossi, S.; Deslauriers, A.; Gričar, J.; Seo, J.W.; Rathgeber, C.B.K.; Anfodillo, T.; Morin, H.; Levanic, T.; Oven, P.; Jalkanen, R. Critical temperatures for xylogenesis in conifers of cold climates. Global Ecol. Biogeogr. 2008, 17, 696–707. [Google Scholar] [CrossRef]
- Hänninen, H. Boreal and Temperate Trees in a Changing Climate; Modelling the Ecophysiology of Seasonality; Biometeorology 3; Springer: Dordrecht, The Netherlands, 2016; pp. 35–138. [Google Scholar] [CrossRef]
- Kanninen, M. Havupuiden pituuskasvu. In Johdatus Metsien Perustuotantobiologiaan; Lahti, T., Smolander, H., Eds.; Silva Carelica; Joensuu University: Joensuu, Finland, 1990; Volume 16, pp. 183–206. [Google Scholar]
- Koski, V.; Sievänen, R. Timing of growth cessation in relation to the variations in the growing season. In Crop Physiology of Forest Trees, Proceedings of an International Conference on Managing Forest Trees as Cultivated Plants, Helsinki, Finland, 23–28 July 1984; Tigerstedt, P., Puttonen, P., Koski, V., Eds.; Helsinki University Press: Helsinki, Finland, 1984; pp. 167–193. [Google Scholar]
- Häkkinen, R.; Linkosalo, T.; Hari, P. Effects of dormancy and environmental factors on timing of bud burst in Betula pendula. Tree Physiol. 1998, 18, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Henttonen, H.M.; Mäkinen, H.; Nöjd, P. Seasonal dynamics of the radial increment of Scots pine and Norway spruce in the southern and middle boreal zones in Finland. Can. J. For. Res. 2009, 39, 606–618. [Google Scholar] [CrossRef]
- Mäkinen, H.; Jyske, T.; Nöjd, P. Dynamics of diameter and height increment of Norway spruce and Scots pine in southern Finland. Ann. For. Sci. 2018, 75, 28. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.; Xia, J.; Wan, S. Climatic warming and biomass accumulation of terrestrial plants: A meta-analysis. New Phytol. 2010, 188, 187–198. [Google Scholar] [CrossRef]
- Way, D.A.; Oren, R. Differential responses to changes in growth temperature between trees from different functional groups and biomass: A review and synthesis of data. Tree Physiol. 2010, 30, 669–688. [Google Scholar] [CrossRef] [Green Version]
- Peltola, H.; Kilpeläinen, A.; Kellomäki, S. Diameter growth of Scots pine (Pinus sylvestris) trees grown at elevated temperature and carbon dioxide concentration under boreal conditions. Tree Physiol. 2002, 22, 963–972. [Google Scholar] [CrossRef] [Green Version]
- Kilpeläinen, A.; Peltola, H.; Ryyppö, A.; Kellomäki, S. Scots pine responses to elevated temperature and carbon dioxide concentration: Growth and wood properties. Tree Physiol. 2005, 25, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Sigurdsson, B.D.; Medhurst, J.L.; Wallin, G.; Eggertsson, O.; Linder, S. Growth of mature boreal Norway spruce was not affected by elevated [CO2] and/or air temperature unless nutrient availability was improved. Tree Physiol. 2013, 33, 1192–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasurinen, A.; Biasi, C.; Holopainen, T.; Rousi, M.; Mäenpää, M.; Oksanen, E. Interactive effects of elevated ozone and temperature on carbon allocation of silver birch (Betula pendula) genotypes in an open-air field exposure. Tree Physiol. 2012, 32, 737–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellomäki, S.; Wang, K.Y. Growth and resource use of birch seedlings under elevated carbon dioxide and temperature. Ann. Bot. 2001, 87, 669–682. [Google Scholar] [CrossRef]
- Kivimäenpää, M.; Riikonen, J.; Ahonen, V.; Tervahauta, A.; Holopainen, T. Sensitivity of Norway spruce physiology and terpenoid emission dynamics to elevated ozone and elevated temperature under open-field exposure. Environ. Exp. Bot. 2013, 90, 32–42. [Google Scholar] [CrossRef]
- Kivimäenpää, M.; Sutinen, S.; Valolahti, H.; Häikiö, E.; Riikonen, J.; Kasurinen, A.; Ghimire, R.P.; Holopainen, J.K.; Holopainen, T. Warming and elevated ozone differently modify needle anatomy of Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). Can. J. For. Res. 2017, 47, 488–499. [Google Scholar] [CrossRef] [Green Version]
- Ruosteenoja, K.; Jylhä, K.; Kämäräinen, M. Climate projections for Finland under the RCP forcing scenarios. Geophysica 2016, 51, 17–50. [Google Scholar]
- Domisch, T.; Finér, L.; Lehto, T. Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season. Tree Physiol. 2001, 21, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Virjamo, V.; Sutinen, S.; Julkunen-Tiitto, R. Combined effect of elevated UVB, elevated temperature and fertilization on growth, needle structure and phytochemistry of young Norway spruce (Picea abies) seedlings. Glob. Chang. Biol. 2014, 20, 2252–2260. [Google Scholar] [CrossRef]
- Stinziano, J.R.; Way, D.A. Combined effects of rising [CO2] and temperature on boreal forests, growth, physiology and limitations. Botany 2014, 92, 425–436. [Google Scholar] [CrossRef]
- Nybakken, L.; Hörkkä, R.; Julkunen-Tiitto, R. Combined enhancements of temperature and UVB influence growth and phenolics in clones of the sexually dimorphic Salix myrsinifolia. Physiol. Plant. 2012, 145, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Sallas, L.; Luomala, E.-M.; Utriainen, J.; Kainulainen, P.; Holopainen, J.K. Contrasting effects of elevated carbon dioxide concentration and temperature on Rubisco activity, chlorophyll fluorescence, needle ultrastructure and secondary metabolites in conifer seedlings. Tree Physiol. 2003, 23, 97–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hébert, F.; Boucher, J.-F.; Bernier, P.Y.; Lord, D. Growth response and water relations of 3-year-old planted black spruce and jack pine seedlings in site prepared lichen woodlands. For. Ecol. Manag. 2006, 22, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Henttonen, H.M. The dependence of annual ring increases on some climatic factors. Acta For. Fenn. 1984, 186, 1–38. [Google Scholar]
- Miina, J. Dependence of tree-ring, earlywood and latewood indices of Scots pine and Norway spruce on climatic factors in eastern Finland. Ecol. Model 2000, 132, 259–273. [Google Scholar] [CrossRef]
- Salminen, H.; Jalkanen, R. Does current summer temperature contribute to the final shoot length on Pinus sylvestris? A case study at the northern conifer timberline. Dendrochronologia 2004, 21, 79–84. [Google Scholar] [CrossRef]
- Salminen, H.; Jalkanen, R.; Lindholm, M. Summer temperature affects the ratio of radial and height growth of Scots pine in northern Finland. Ann. Forest Sci. 2009, 66, 810. [Google Scholar] [CrossRef]
- Mielikäinen, K.; Timonen, M.; Nöjd, P. Männyn ja kuusen kasvuun vaihtelu Suomessa 1964–1993. Folia For. 1996, 4, 309–320. [Google Scholar]
- Kanninen, M.; Hari, P.; Kellomäki, S. A dynamic model for above ground growth of dry matter production in a forest community. J. Appl. Ecol. 1992, 19, 465–476. [Google Scholar] [CrossRef]
Air Temperature °C | ||||
---|---|---|---|---|
30-Year Average | 2016 | 2017 | 2018 | |
Control | ||||
May | 8.3 | 10.1 a | ||
June | 14.3 | 15.0 (105%) | 12.8 (90%) | 14.4 (101%) |
July | 16.5 | 18.6 (113%) | 15.8 (96%) | 20.2 (122%) |
August | 14.3 | 15.7 (110%) | 15.6 (109%) | 17.1 (120%) |
September | 8.9 | 10.8 (121%) | 10.8 b | |
Tsum, d.d. | 1456 | 776 | 1369 | |
Warming | ||||
May | 11.3 a | |||
June | 16.3 (114%) | 14.2 (99%) | 15.5 (108%) | |
July | 19.8 (120%) | 17.4 (105%) | 21.1 (128%) | |
August | 16.9 (118%) | 17.1 (120%) | 18.1 (127%) | |
September | 12.2 (137%) | 12.1 b | ||
Tsum, d.d. | ||||
Pine, Spruce | 1598 | 899 | 1462 | |
Birch | 1598 | 899 | 1405 | |
Precipitation mm | ||||
May | 31.6 | 24.5 (78%) | 28.9 (91%) | 24.3 (77%) |
June | 56.9 | 64.1 (113%) | 47.6 (84%) | 48.3 (85%) |
July | 66.7 | 112.4 (169%) | 54.8 (82%) | 57.7 (87%) |
August | 73.5 | 96.5 (131%) | 71.7 (98%) | 75.8 (103%) |
September | 56.3 | 39.0 (69%) | 48.0 (85%) | 93.9 (167%) |
2016 | 2017 | 2018 | |
---|---|---|---|
Treatment on | |||
Pine, Spruce | 1.6.–29.9. | 18.5.–6.9. | 31.5.–10.9. |
Birch | 1.6.–29.9. | 18.5.–6.9. | 31.5.–2.7. |
Weekly measurements | |||
Height | 26.5.–21.9. | 15.5.–11.8. | 22.5.–29.8. |
Diameter | 26.5.–21.9. | 15.5.–11.8. | 22.5.–29.8. |
Biomass | |||
Tree sampling | 27.8. | 11.8. | 4.9. |
Variables | Silver Birch | Norway Spruce | Scots Pine | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Num df | Den df | F | p | Num df | Den df | F | p | Num df | Den df | F | p | |
Harvested seedlings 2016 | ||||||||||||
Height total | 1 | 9.883 | 2.010 | 0.187 | 1 | 10.107 | 0.261 | 0.621 | 1 | 10 | 0.077 | 0.788 |
Diameter total | 1 | 10 | 0.135 | 0.721 | 1 | 9.505 | 0.525 | 0.486 | 1 | 10 | 0.484 | 0.502 |
Shoot biomass | 1 | 10 | 0.470 | 0.509 | 1 | 46 | 0.894 | 0.349 | 1 | 10 | 9.935 | 0.010 |
Foliage/Needles biomass | 1 | 10 | 1.604 | 0.234 | 1 | 46 | 0.569 | 0.455 1 | 1 | 46 | 12.236 | 0.001 1 |
Branch biomass | 1 | 10 | 0.106 | 0.752 | 1 | 46 | 0.748 | 0.392 1 | 1 | 10 | 0.269 | 0.615 3 |
Stem biomass | 1 | 10 | 0.480 | 0.504 | 1 | 46 | 0.935 | 0.339 1 | 1 | 10 | 2.797 | 0.125 |
Root biomass | 1 | 10 | 0.225 | 0.645 | 1 | 10 | 0.225 | 0.645 | 1 | 10 | 3.667 | 0.085 |
Root:shoot ratio | 1 | 10 | 1.516 | 0.246 | 1 | 46 | 0.111 | 0.741 | 1 | 10 | 0.235 | 0.638 |
Days 90% height | 0.000 2 | 0.359 2 | 1 | 8.299 | 1.637 | 0.235 | ||||||
Tsum 90% height | 0.000 2 | 0.681 2 | 1 | 8.264 | 12.655 | 0.007 | ||||||
Days 90% diameter | 1 | 9.975 | 0.010 | 0.921 | 0.261 2 | 0.065 2 | ||||||
Tsum 90% diameter | 1 | 10.145 | 13.180 | 0.005 | 1 | 10.016 | 19.773 | 0.001 | 1 | 11.758 | 16.924 | 0.001 |
Harvested seedlings 2017 | ||||||||||||
Height total | 1 | 45 | 33.673 | 0.000 1 | 1 | 8.679 | 0.089 | 0.773 | 1 | 36 | 4.469 | 0.041 |
Diameter total | 1 | 10 | 7.263 | 0.023 | 1 | 9.759 | 2.408 | 0.153 | 1 | 36 | 62.354 | 0.000 |
Shoot biomass | 1 | 10 | 14.602 | 0.003 | 1 | 46 | 0.431 | 0.515 | 1 | 7.916 | 4.960 | 0.057 |
Foliage/Needles biomass | 1 | 46 | 16.884 | 0.000 1 | 1 | 46 | 0.258 | 0.614 1 | 1 | 7.989 | 4.928 | 0.057 1,3 |
Branch biomass | 1 | 10 | 2.104 | 0.178 3 | 1 | 10 | 0.083 | 0.779 | 1 | 8.259 | 1.472 | 0.259 |
Stem biomass | 1 | 10 | 11.637 | 0.007 | 1 | 10 | 0.005 | 0.946 4 | 1 | 7.448 | 4.397 | 0.072 |
Days 90% height | 0.004 2 | 1 | 7.183 | 0.003 | 0.961 | |||||||
Tsum 90% height | 0.381 2 | 1 | 7.454 | 8.186 | 0.023 | |||||||
Harvested seedlings 2018 | ||||||||||||
Height total | 1 | 10.156 | 0.339 | 0.573 | 1 | 8.052 | 17.214 | 0.003 | ||||
Diameter total | 1 | 10.622 | 1.526 | 0.243 | 1 | 8.175 | 20.270 | 0.002 | ||||
Shoot biomass | 1 | 44 | 11.834 | 0.001 3 | 1 | 7.905 | 14.495 | 0.005 | ||||
Foliage/Needles biomass | 1 | 9.940 | 3.948 | 0.075 | 1 | 7.788 | 13.292 | 0.007 3 | ||||
Branch biomass | 1 | 9.990 | 3.816 | 0.079 | 1 | 8.265 | 13.576 | 0.006 | ||||
Stem biomass | 1 | 9.880 | 3.491 | 0.092 | 1 | 7.970 | 1.357 | 0.005 3 | ||||
Root biomass | 1 | 10.186 | 2.126 | 0.175 | 1 | 8.125 | 11.897 | 0.009 | ||||
Root:shoot ratio | 1 | 9.756 | 1.477 | 0.253 | 1 | 8.052 | 10.923 | 0.011 | ||||
Days 90% height | 0.936 2 | 1 | 8.272 | 3.461 | 0.099 | |||||||
Tsum 90% height | 0.151 2 | 1 | 8.248 | 0.698 | 0.427 | |||||||
Days 90% diameter | 0.142 2,5 | 1 | 8.107 | 1.283 | 0.290 | |||||||
Tsum 90% diameter | 1 | 43 | 6.597 | 0.014 1,6 | 0.012 2 | |||||||
Annual height growth | ||||||||||||
Effect of warming | 1 | 11.074 | 1.169 | 0.302 | 1 | 9.158 | 0.035 | 0.855 | 1 | 8.221 | 21.032 | 0.002 |
Effect of year | 2 | 80.803 | 66.232 | 0.000 | 2 | 82.748 | 8.910 | 0.000 | 2 | 70.647 | 11.953 | 0.000 |
Year × Warming interaction | 2 | 80.803 | 14.100 | 0.000 | 2 | 82.748 | 0.096 | 0.908 | 2 | 70.647 | 11.824 | 0.000 |
Annual Diameter growth | ||||||||||||
Effect of warming | 1 | 9.729 | 1.296 | 0.282 | 1 | 10.703 | 1.248 | 0.288 | 1 | 8.110 | 19.373 | 0.002 |
Effect of year | 2 | 76.758 | 146.345 | 0.000 | 2 | 89.432 | 90.478 | 0.000 | 2 | 66.287 | 28.148 | 0.000 |
Year × Warming interaction | 2 | 76.758 | 0.571 | 0.567 | 2 | 89.432 | 2.408 | 0.096 | 2 | 66.287 | 15.672 | 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nissinen, K.; Virjamo, V.; Kilpeläinen, A.; Ikonen, V.-P.; Pikkarainen, L.; Ärväs, I.-L.; Kirsikka-aho, S.; Peltonen, A.; Sobuj, N.; Sivadasan, U.; et al. Growth Responses of Boreal Scots Pine, Norway Spruce and Silver Birch Seedlings to Simulated Climate Warming over Three Growing Seasons in a Controlled Field Experiment. Forests 2020, 11, 943. https://doi.org/10.3390/f11090943
Nissinen K, Virjamo V, Kilpeläinen A, Ikonen V-P, Pikkarainen L, Ärväs I-L, Kirsikka-aho S, Peltonen A, Sobuj N, Sivadasan U, et al. Growth Responses of Boreal Scots Pine, Norway Spruce and Silver Birch Seedlings to Simulated Climate Warming over Three Growing Seasons in a Controlled Field Experiment. Forests. 2020; 11(9):943. https://doi.org/10.3390/f11090943
Chicago/Turabian StyleNissinen, Katri, Virpi Virjamo, Antti Kilpeläinen, Veli-Pekka Ikonen, Laura Pikkarainen, Iida-Liina Ärväs, Sara Kirsikka-aho, Anna Peltonen, Norul Sobuj, Unnikrishnan Sivadasan, and et al. 2020. "Growth Responses of Boreal Scots Pine, Norway Spruce and Silver Birch Seedlings to Simulated Climate Warming over Three Growing Seasons in a Controlled Field Experiment" Forests 11, no. 9: 943. https://doi.org/10.3390/f11090943
APA StyleNissinen, K., Virjamo, V., Kilpeläinen, A., Ikonen, V. -P., Pikkarainen, L., Ärväs, I. -L., Kirsikka-aho, S., Peltonen, A., Sobuj, N., Sivadasan, U., Zhou, X., Ge, Z. -M., Salminen, T., Julkunen-Tiitto, R., & Peltola, H. (2020). Growth Responses of Boreal Scots Pine, Norway Spruce and Silver Birch Seedlings to Simulated Climate Warming over Three Growing Seasons in a Controlled Field Experiment. Forests, 11(9), 943. https://doi.org/10.3390/f11090943