Impacts of Clear-Cutting of a Boreal Forest on Carbon Dioxide, Methane and Nitrous Oxide Fluxes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Data Collection and Raw Data Processing
2.2.1. Environmental Variables
2.2.2. Gradient Measurements
2.2.3. Eddy Covariance Data
2.2.4. Flux-Gradient Calculations
2.3. Footprint Modeling
2.4. Flux Data Filtering
2.5. Gap-Filling, Flux-Partitioning and Global Warming Potential
2.5.1. CO2 Flux Data
2.5.2. CH4 and N2O Flux Data
2.5.3. Global Warming Potential
2.6. Vegetation Development
3. Results
3.1. Environmental Conditions
3.2. Vegetation Development
3.3. Flux Footprints
3.4. Net Exchange of GHGs
3.4.1. CO2 Fluxes
3.4.2. CH4 Fluxes
3.4.3. N2O Fluxes
3.5. Diel Patterns of CO2, CH4 and N2O Fluxes
Total GHG Budgets
4. Discussion
4.1. Vegetation Development
4.2. Gap-Filling of CH4 and N2O Fluxes
4.3. Diel Patterns of CH4 and N2O Fluxes
4.4. Greenhouse Gas Fluxes
4.5. GHG Budgets
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Le Quéré, C.; Raupach, M.R.; Canadell, J.G.; Marland, G.; Bopp, L.; Ciais, P.; Conway, T.J.; Dpney, S.C.; Feely, R.A.; Foster, P.; et al. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2009, 2, 831–836. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Jones, M.; O’sullivan, M.; Andrew, R.; Hauck, J.; Peters, G.; Peters, W.; Pongratz, J.; Stich, S.; Le Quéré, C.; et al. Global Carbon Budget 2019. Earth Syst. Sci. Data 2019, 11, 1783–1838. [Google Scholar] [CrossRef] [Green Version]
- Canadell, J.G.; Raupach, R.M. Managing Forests for Climate Change Mitigation. Science 2008, 320, 1456–1457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UNFCCC. Report of the Conference of the Parties on Its Twenty-First Session, Held in Paris from 30 November to 13 December 2015, Part Two: Action Taken by the Conference of the Parties at Its Twenty-First Session. FCCC/CP/2015/10/Add.1; United Nations Framework Convention on Climate Change: Paris, France, 2016. [Google Scholar]
- Luyssaert, S.; Marie, G.; Valade, A.; Chen, Y.Y.; Djomo, S.N.; Ryder, J.; Otto, J.; Naodts, K.; Lansø, A.S.; Ghattas, J.; et al. Trade-offs in using European forests to meet climate objectives. Nature 2018, 562, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Naudts, K.; Chen, Y.; McGrath, M.J.; Ryder, J.; Valade, A.; Otto, J.; Luyssaert, S. Europe’s forest management did not mitigate climate warming. Science 2016, 351, 597–600. [Google Scholar] [CrossRef]
- Swedish Forest Agency. Statistical Database on Forestry; Official Statistics of Sweden: Stockholm, Sweden, 2017. [Google Scholar]
- Smith, K.A.; Dobbie, K.E.; Ball, B.C.; Bakken, L.R.; Sitaula, B.K.; Hansen, S.; Brumme, R.; Borken, W.; Christensen, S.; Priemé, A.; et al. Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Glob. Chang. Biol. 2000, 6, 791–803. [Google Scholar] [CrossRef]
- Harriss, R.C.; Sebacher, D.I.; Day, P.F. Methane flux in the Great Dismal Swamp. Nature 1982, 297, 673–674. [Google Scholar] [CrossRef]
- Ehhalt, D.H. The atmospheric cycle of methane. Tellus 1974, 26, 58–70. [Google Scholar] [CrossRef]
- von Fischer, C.J.; Hedin, L.O. Separating methane production and consumption with a field-based isotope pool dilution technique. Glob. Biogeochem. Cycles 2002, 16, 8-1–8-13. [Google Scholar] [CrossRef]
- Castro, M.S.; Gholz, H.L.; Clark, K.L.; Steudler, P.A. Effects of forest harvesting on soil methane fluxes in Florida slash pine plantations. Can. J. For. Res. 2000, 30, 1534–1542. [Google Scholar] [CrossRef]
- Sundqvist, E.; Vestin, P.; Crill, P.; Persson, T.; Lindroth, A. Short-Term effects of thinning, clear-cutting and stump harvesting on methane exchange in a boreal forest. Biogeosciences 2014, 11, 6095–6105. [Google Scholar] [CrossRef] [Green Version]
- Sundqvist, E.; Vestin, P.; Crill, P.; Persson, T.; Lindroth, A. Greenhouse gas and energy fluxes in a boreal peatland forest after clear-cutting. Biogeosciences 2019, 16, 3703–3723. [Google Scholar]
- Zerva, A.; Mencuccini, M. Short-Term effects of clearfelling on soil CO2, CH4, and N2O fluxes in a Sitka spruce plantation. Soil Biol. Biochem. 2005, 37, 2025–2036. [Google Scholar] [CrossRef]
- Kirschke, S.; Bousquet, P.; Ciais, P.; Saunois, M.; Canadell, J.G.; Dlugokencky, E.J.; Bergamaschi, P.; Bergmann, D.; Blake, D.R.; Bruhwiler, L.; et al. Three decades of global methane sources and sinks. Nat. Geosci. 2013, 6, 813–823. [Google Scholar] [CrossRef]
- Dutaur, L.; Verchot, L.V. A global inventory of the soil CH4 sink. Glob. Biogeochem. Cycles 2007, 21, 1–9. [Google Scholar] [CrossRef]
- Yu, L.; Huang, Y.; Zhang, W.; Li, T.; Sun, W. Methane uptake in global forest and grassland soils from 1981 to 2010. Sci. Total Environ. 2017, 607–608, 1163–1172. [Google Scholar] [CrossRef]
- Ni, X.; Groffman, P.M. Declines in methane uptake in forest soils. Proc. Natl. Acad. Sci. USA 2018, 115, 8587–8590. [Google Scholar] [CrossRef] [Green Version]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef]
- Bremner, J.M. Sources of nitrous oxide in soils. Nutr. Cycl. Agroecosyst. 1997, 49, 7–16. [Google Scholar] [CrossRef]
- Schmidt, I.; van Spanning, R.J.M.; Jetten, M.S.M. Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants. Microbiology 2004, 150, 4107–4114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pihlatie, M.; Rinne, J.; Ambus, P.; Pilegaard, K.; Dorsey, J.R.; Rannik, Ü.; Markkanen, T.; Launiainen, S.; Vesala, T. Nitrous oxide emissions from a beech forest floor measured by eddy covariance and soil enclosure techniques. Biogeosciences 2005, 2, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Mammarella, I.; Werle, P.; Pihlatie, M.; Eugster, W.; Haapanala, S.; Kiese, R.; Markkanen, T.; Rannik, Ü.; Vesala, T. A case study of eddy covariance flux of N2O measured within forest ecosystems: Quality control and flux error analysis. Biogeosciences 2010, 7, 427–440. [Google Scholar] [CrossRef] [Green Version]
- Eugster, W.; Zeyer, K.; Zeeman, M.J.; Michna, P.; Zingg, A.; Buchmann, N.; Emmenegger, L. Methodical study of nitrous oxide eddy covariance measurements using quantum cascade laser spectrometery over a Swiss forest. Biogeosciences 2007, 4, 927–939. [Google Scholar] [CrossRef] [Green Version]
- Schiller, L.C.; Hastie, D.R. Nitrous oxide and methane fluxes from perturbed and unperturbed boreal forest sites in northern Ontario. J. Geophys. Res.-Atmos. 1996, 101, 22767–22774. [Google Scholar] [CrossRef]
- Strömgren, M.; Hedwall, P.O.; Olsson, B.A. Effects of stump harvest and site preparation on N2O and CH4 emissions from boreal forest soils after clear-cutting. For. Ecol. Manag. 2016, 371, 15–22. [Google Scholar] [CrossRef]
- Chapuis-Lardy, L.Y.D.I.E.; Wrage, N.; Metay, A.; CHOTTE, J.L.; Bernoux, M. Soils, a sink for N2O? A review. Glob. Chang. Biol. 2007, 13, 1–17. [Google Scholar] [CrossRef]
- Firestone, M.; Davidson, E. Microbiological Basis of NO and N2O Production and Consumption in Soil, in Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere: Report of the Dahlem Workshop on Exchange of Trace Gases between Terrestrial Ecosystems and The Atmosphere; Andreae, M.O., Schimel, D.S., Eds.; Wiley: New York, NY, USA, 1989; pp. 7–21. [Google Scholar]
- Merbold, L.; Eugster, W.; Stieger, J.; Zahniser, M.; Nelson, D.; Buchmann, N. Greenhouse gas budget (CO2, CH4 and N2O) of intensively managed grassland following restoration. Glob. Chang. Biol. 2014, 20, 1913–1928. [Google Scholar] [CrossRef]
- Peichl, M.; Arain, A.M.; Moore, T.R.; Brodeur, J.J.; Khomik, M.; Ullah, S.; Restrepo-Coupé, N.; McLaren, J.; Pejam, M.R. Carbon and greenhouse gas balances in an age sequence of temperate pine plantations. Biogeosciences 2014, 11, 5399–5410. [Google Scholar] [CrossRef] [Green Version]
- Amiro, B.D.; Barr, A.G.; Barr, J.G.; Black, T.A.; Bracho, R.; Brown, M.; Chen, J.; Clark, K.L.; Davis, K.J.; Desai, A.R.; et al. Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J. Geophys. Res. 2010, 115, 1–13. [Google Scholar] [CrossRef]
- Coursolle, C.; Margolis, H.A.; Giasson, M.A.; Bernier, P.Y.; Amiro, B.D.; Arain, M.A.; Braa, A.G.; Black, T.A.; Goulden, M.L.; McCaughey, J.H.; et al. Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests. Agric. For. Meteorol. 2012, 165, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Lindroth, A.; Lagergren, F.; Grelle, A.; Klemedtsson, L.; Langvall, O.L.A.; Weslien, P.; Tuulik, J. Storms can cause Europe-wide reduction in forest carbon sink. Glob. Chang. Biol. 2009, 15, 346–355. [Google Scholar] [CrossRef]
- Lindroth, A.; Grelle, A.; Lankreijer, H.; Båth, A.; Lagergren, F.; Sedletski, A. Partner 4: LUPG. Age-related dynamics of carbon exchange in European forests. In CARBO-AGE Final Report and Technological Implementation Plan; Grace, J., Ed.; University of Edinburgh: Edinburgh, UK, 2003; pp. 57–70. [Google Scholar]
- Kowalski, A.S.; Loustau, D.; Berbigier, P.; Manca, G.; Tedeschi, V.; Borghetti, M.; Valentini, R.; Kolari, P.; Berninger, F.; Rannik, Ü.; et al. Paired comparisons of carbon exchange between undisturbed and regenerating stands in four managed forests in Europe. Glob. Chang. Biol. 2004, 10, 1707–1723. [Google Scholar] [CrossRef]
- Kowalski, S.; Sartore, M.; Burlett, R.; Berbigier, P.; Loustau, D. The annual carbon budget of a French pine forest (Pinus pinaster) following harvest. Glob. Chang. Biol. 2003, 9, 1051–1065. [Google Scholar] [CrossRef]
- Kolari, P.; Pumpanen, J.; Rannik, Ü.; Ilvesniemi, H.; Hari, P.; Berninger, F. Carbon balance of different aged Scots pine forests in Southern Finland. Glob. Chang. Biol. 2004, 10, 1106–1119. [Google Scholar] [CrossRef]
- Humphreys, E.R.; Andrew Black, T.; Morgenstern, K.A.I.; Li, Z.; Nesic, Z. Net ecosystem production of a Douglas-fir stand for 3 years following clearcut harvesting. Glob. Chang. Biol. 2005, 11, 450–464. [Google Scholar] [CrossRef]
- Misson, L.; Tang, J.; Xu, M.; McKay, M.; Goldstein, A. Influences of recovery from clear-cut, climate variability, and thinning on the carbon balance of a young ponderosa pine plantation. Agric. For. Meteorol. 2005, 130, 207–222. [Google Scholar] [CrossRef]
- Bergeron, O.; Margolis, H.A.; Coursolle, C.; Giasson, M.A. How does forest harvest influence carbon dioxide fluxes of black spruce ecosystems in eastern North America? Agric. For. Meteorol. 2008, 148, 537–548. [Google Scholar] [CrossRef]
- Coursolle, C.; Giasson, M.A.; Margolis, H.A.; Bernier, P.Y. Moving towards carbon neutrality: CO2 exchange of a black spruce forest ecosystem during the first 10 years of recovery after harvest. Can. J. For. Res. 2012, 42, 1908–1918. [Google Scholar] [CrossRef]
- Williams, C.A.; Vanderhoof, M.K.; Khomik, M.; Ghimire, B. Post-Clearcut dynamics of carbon, water and energy exchanges in a midlatitude temperate, deciduous broadleaf forest environment. Glob. Chang. Biol. 2014, 20, 992–1007. [Google Scholar] [CrossRef]
- Paul-Limoges, E.; Black, T.A.; Christen, A.; Nesic, Z.; Jassal, R.S. Effect of clearcut harvesting on the carbon balance of a Douglas-Fir forest. Agric. For. Meteorol. 2015, 203, 30–42. [Google Scholar] [CrossRef]
- Mamkin, V.; Kurbatova, J.; Avilov, V.; Ivanov, D.; Kuricheva, O.; Varlagin, A.; Yaseneva, I.; Olchev, A. Energy and CO2 exchange in an undisturbed spruce forest and clear-cut in the Southern Taiga. Agric. For. Meteorol. 2019, 265, 252–268. [Google Scholar] [CrossRef]
- Mamkin, V.V.; Avilov, V.K.; Ivanov, D.G.; Olchev, A.V.; Kurbatova, J.A. CO2 Fluxes at the Clear-Cut in the Southern Taiga of European Russia. Contemp. Probl. Ecol. 2019, 12, 491–501. [Google Scholar] [CrossRef]
- Pattey, E.; Strachan, I.B.; Desjardins, R.L.; Edwards, G.C.; Dow, D.; MacPherson, J.I. Application of a tunable diode laser to the measurement of CH4 and N2O fluxes from field to landscape scale using several micrometeorological techniques. Agric. For. Meteorol. 2006, 136, 222–236. [Google Scholar] [CrossRef]
- Smeets, C.J.P.P.; Holzinger, R.; Vigano, I.; Goldstein, A.H.; Röckmann, T. Eddy covariance methane measurements at a Ponderosa pine plantation in California. Atmos. Chem. Phys. 2009, 9, 8365–8375. [Google Scholar] [CrossRef] [Green Version]
- Sakabe, A.; Hamotani, K.; Kosugi, Y.; Ueyama, M.; Takahashi, K.; Kanazawa, A.; Itoh, M. Measurement of methane flux over an evergreen coniferous forest canopy using a relaxed eddy accumulation system with tuneable diode laser spectroscopy detection. Theor. Appl. Climatol. 2012, 109, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Bowling, D.R.; Miller, J.B.; Rhodes, M.E.; Burns, S.P.; Monson, R.K.; Baer, D. Soil, plant, and transport influences on methane in a subalpine forest under high ultraviolet irradiance. Biogeosciences 2009, 6, 1311–1324. [Google Scholar] [CrossRef] [Green Version]
- Querino, C.A.S.; Smeets, C.J.P.P.; Vigano, I.; Holzinger, R.; Moura, V.; Gatti, L.V.; Martinewski, A.; de Araú, A.C.; Röckmann, T. Methane flux, vertical gradient and mixing ratio measurements in a tropical forest. Atmos. Chem. Phys. 2011, 11, 7943–7953. [Google Scholar] [CrossRef] [Green Version]
- Simpson, I.J.; Edwards, G.C.; Thurtell, G.W.; Den Hartog, G.; Neumann, H.H.; Staebler, R.M. Micrometeorological measurements of methane and nitrous oxide exchange above a boreal aspen forest. J. Geophys. Res. Atmos. 1997, 102, 29331–29341. [Google Scholar] [CrossRef]
- Zona, D.; Janssens, I.A.; Aubinet, M.; Gioli, B.; Vicca, S.; Fichot, R.; Ceulemans, R. Fluxes of the greenhouse gases (CO2, CH4 and N2O) above a short-rotation poplar plantation after conversion from agricultural land. Agric. For. Meteorol. 2013, 169, 100–110. [Google Scholar] [CrossRef]
- Gao, S.; Chen, J.; Tang, Y.; Xie, J.; Zhang, R.; Tang, J.; Zhang, X. Ecosystem carbon (CO2 and CH4) fluxes of a Populus dettoides plantation in subtropical China during and post clear-cutting. For. Ecol. Manag. 2015, 357, 206–219. [Google Scholar] [CrossRef]
- Mishurov, M.; Kiely, G. Nitrous oxide flux dynamics of grassland undergoing afforestation. Agric. Ecosyst. Environ. 2010, 139, 59–65. [Google Scholar] [CrossRef]
- Dore, S.; Fry, D.L.; Stephens, S.L. Spatial heterogeneity of soil CO2 efflux after harvest and prescribed fire in a California mixed conifer forest. For. Ecol. Manag. 2014, 319, 150–160. [Google Scholar] [CrossRef]
- Mjöfors, K.; Strömgren, M.; Nohrstedt, H.Ö.; Gärdenäs, A.I. Impact of site-preparation on soil-surface CO2 fluxes and litter decomposition in a clear-cut in Sweden. Silva Fenn. 2015, 49, 1403. [Google Scholar] [CrossRef] [Green Version]
- Strömgren, M.; Mjöfors, K.; Olsson, B.A. Soil-surface CO2 flux during the first 2 years after stump harvesting and site preparation in 14 Swedish forests. Scand. J. For. Res. 2017, 32, 213–221. [Google Scholar] [CrossRef]
- Gough, C.M.; Seiler, J.R.; Wiseman, P.E.; Maier, C.A. Soil CO2 efflux in loblolly pine (Pinus taeda L.) plantations on the Virginia Piedmont and South Carolina Coastal Plain over a rotation-length chronosequence. Biogeochemistry 2005, 73, 127–147. [Google Scholar] [CrossRef]
- Saari, A.; Smolander, A.; Martikainen, P.J. Methane consumption in a frequently nitrogen-fertilized and limed spruce forest soil after clear-cutting. Soil Use Manag. 2004, 20, 65–73. [Google Scholar] [CrossRef]
- Wu, X.; Brüggemann, N.; Gasche, R.; Papen, H.; Willibald, G.; Butterbach-Bahl, K. Long-Term effects of clear-cutting and selective cutting on soil methane fluxes in a temperate spruce forest in southern Germany. Environ. Pollut. 2011, 159, 2467–2475. [Google Scholar] [CrossRef]
- McVicar, K.; Kellman, L. Growing season nitrous oxide fluxes across a 125+year harvested red spruce forest chronosequence. Biogeochemistry 2014, 120, 225–238. [Google Scholar] [CrossRef]
- Saari, P.; Saarnio, S.; Saari, V.; Heinonen, J.; Alm, J. Initial effects of forestry operations on N2O and vegetation dynamics in a boreal peatland buffer. Plant Soil 2010, 330, 149–162. [Google Scholar] [CrossRef]
- Huttunen, J.T.; Nykänen, H.; Martikainen, P.J.; Nieminen, M. Fluxes of nitrous oxide and methane from drained peatlands following forest clear-felling in southern Finland. Plant Soil 2003, 255, 457–462. [Google Scholar] [CrossRef]
- Saari, P.; Saarnio, S.; Kukkonen, J.V.; Akkanen, J.; Heinonen, J.; Saari, V.; Alm, J. DOC and N2O dynamics in upland and peatland forest soils after clear-cutting and soil preparation. Biogeochemistry 2009, 94, 217–231. [Google Scholar] [CrossRef]
- Lavoie, M.; Kellman, L.; Risk, D. The effects of clear-cutting on soil CO2, CH4, and N2O flux, storage and concentration in two Atlantic temperate forests in Nova Scotia, Canada. For. Ecol. Manag. 2013, 304, 355–369. [Google Scholar] [CrossRef]
- Kulmala, L.; Aaltonen, H.; Berninger, F.; Kieloaho, A.J.; Levula, J.; Bäck, J.; Hari, P.; Kolari, P.; Korhonen, J.F.J.; Kulmala, M.; et al. Changes in biogeochemistry and carbon fluxes in a boreal forest after the clear-cutting and partial burning of slash. Agric. For. Meteorol. 2014, 188, 33–44. [Google Scholar] [CrossRef]
- Oren, R.A.M.; Hsieh, C.I.; Stoy, P.; Albertson, J.; Mccarthy, H.R.; Harrell, P.; Katul, G.G. Estimating the uncertainty in annual net ecosystem carbon exchange: Spatial variation in turbulent fluxes and sampling errors in eddy-covariance measurements. Glob. Chang. Biol. 2006, 12, 883–896. [Google Scholar] [CrossRef] [Green Version]
- Hill, T.; Chocholek, M.; Clement, R. The case for increasing the statistical power of eddy covariance ecosystem studies: Why, where and how? Glob. Chang. Biol. 2017, 23, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
- Denmead, O.T. Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere. Plant Soil 2008, 309, 5–24. [Google Scholar] [CrossRef]
- Lundin, L.C.; Halldin, S.; Lindroth, A.; Cienciala, E.; Grelle, A.; Hjelm, P.; Kellner, E.; Lendberg, N.; Mölder, M.; Morén, A.-S. Continuous long-term measurements of soil-plant-atmosphere variables at a forest site. Agric. For. Meteorol. 1999, 98–99, 53–73. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Schmid, H.P.; Grimmond, C.S.B.; Cropley, F.; Offerle, B.; Su, H.B. Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States. Agric. For. Meteorol. 2000, 103, 357–374. [Google Scholar] [CrossRef]
- Vickers, D.; Mahrt, L. Quality Control and Flux Sampling Problems for Tower and Aircraft Data. J. Atmos. Ocean. Technol. 1997, 14, 512–526. [Google Scholar] [CrossRef]
- Nakai, T.; Shimoyama, K. Ultrasonic anemometer angle of attack errors under turbulent conditions. Agric. For. Meteorol. 2012, 162–163, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Moncrieff, J.; Clement, R.; Finnigan, J.; Meyers, T. Averaging, Detrending and Filtering of Eddy Covariance Time Series, in Handbook of Micrometeorology: A Guide for Surface Flux Measurements; Lee, X., Massman, W.J., Law, B.E., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 7–31. [Google Scholar]
- Moncrieff, J.B.; Massheder, J.M.; De Bruin, H.; Elbers, J.; Friborg, T.; Heusinkveld, B.; Kabat, P.; Scott, S.; Soegaard, H.; Verhoef, A. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J. Hydrol. 1997, 188, 589–611. [Google Scholar] [CrossRef]
- Desjardins, R.L.; MacPherson, J.I.; Schuepp, P.H.; Karanja, F. An evaluation of aircraft flux measurements of CO2, water vapor and sensible heat. Bound. Layer Meteorol. 1989, 47, 55–69. [Google Scholar] [CrossRef]
- Oncley, S.P.; Friehe, C.A.; Larue, J.C.; Businger, J.A.; Itsweire, E.C.; Chang, S.S. Surface-Layer Fluxes, Profiles, and Turbulence Measurements over Uniform Terrain under Near-Neutral Conditions. J. Atmos. Sci. 1996, 53, 1029–1044. [Google Scholar] [CrossRef] [Green Version]
- Högström, U. Non-Dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Bound. Layer Meteorol. 1988, 42, 55–78. [Google Scholar]
- Foken, T. Micrometeorology; Springer: Berlin/Heidelberg, Germany, 2017; p. 362. [Google Scholar]
- Wieringa, J. Representative roughness parameters for homogeneous terrain. Bound. Layer Meteorol. 1993, 63, 323–363. [Google Scholar] [CrossRef]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci. Model Dev. 2015, 8, 3695–3713. [Google Scholar] [CrossRef] [Green Version]
- Horst, T.W. The Footprint for Estimation of Atmosphere-Surface Exchange Fluxes by Profile Techniques. Bound. Layer Meteorol. 1999, 90, 171–188. [Google Scholar] [CrossRef]
- Mauder, M.; Foken, T. Documentation and Instruction Manual of the Eddy Covariance Software Package TK2; Universitat Bayreuth: Bayreuth, Germany, 2004; p. 44. [Google Scholar]
- Wutzler, T.; Lucas-Moffat, A.; Migliavacca, M.; Knauer, J.; Sickel, K.; Šigut, L.; Reichstein, M. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 2018, 15, 5015–5030. [Google Scholar] [CrossRef] [Green Version]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Lloyd, J.; Taylor, J.A. On the Temperature Dependence of Soil Respiration. Funct. Ecol. 1994, 8, 315–323. [Google Scholar] [CrossRef]
- Scanlon, M.T.; Kiely, G. Ecosystem-Scale measurements of nitrous oxide fluxes for an intensely grazed, fertilized grassland. Geophys. Res. Lett. 2003, 30, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K.l., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley., P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Zhu, Z.; Woodcock, C.E. Object-Based cloud and cloud shadow detection in Landsat imagery. Remote. Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote. Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote. Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Rinne, J.; Riutta, T.; Pihlatie, M.; Aurela, M.; Haapanala, S.; Tuovinen, J.P.; Tuittila, E.-S.; Vesala, T. Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus B 2007, 59, 449–457. [Google Scholar] [CrossRef]
- Tagesson, T.; Mölder, M.; Mastepanov, M.; Sigsgaard, C.; Tamstorf, M.P.; Lund, M.; Falk, J.M.; Lindroth, A.; Christensen, T.R.; Ström, L. Land-Atmosphere exchange of methane from soil thawing to soil freezing in a high-Arctic wet tundra ecosystem. Glob. Chang. Biol. 2012, 18, 1928–1940. [Google Scholar] [CrossRef] [Green Version]
- Dengel, S.; Zona, D.; Sachs, T.; Aurela, M.; Jammet, M.; Parmentier, F.J.W.; Oechel, W.; Vesala, T. Testing the applicability of neural networks as a gap-filling method using CH4 flux data from high latitude wetlands. Biogeosciences 2013, 10, 8185–8200. [Google Scholar] [CrossRef] [Green Version]
- Sundqvist, E.; Persson, A.; Kljun, N.; Vestin, P.; Chasmer, L.; Hopkinson, C.; Lindroth, A. Upscaling of methane exchange in a boreal forest using soil chamber measurements and high-resolution LiDAR elevation data. Agric. For. Meteorol. 2015, 214–215, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Mishurov, M.; Kiely, G. Gap-Filling techniques for the annual sums of nitrous oxide fluxes. Agric. For. Meteorol. 2011, 151, 1763–1767. [Google Scholar] [CrossRef]
- Teepe, R.; Brumme, R.; Beese, F.; Ludwig, B. Nitrous Oxide Emission and Methane Consumption Following Compaction of Forest Soils. Soil Sci. Soc. Am. J. 2004, 68, 605–611. [Google Scholar] [CrossRef]
- Tate, K.R.; Ross, D.J.; Scott, N.A.; Rodda, N.J.; Townsend, J.A.; Arnold, G.C. Post-Harvest patterns of carbon dioxide production, methane uptake and nitrous oxide production in a Pinus radiata D. Don plantation. For. Ecol. Manag. 2006, 228, 40–50. [Google Scholar] [CrossRef]
- Dunfield, P.; Dumont, R.; Moore, T.R. Methane production and consumption in temperate and subarctic peat soils: Response to temperature and pH. Soil Biol. Biochem. 1993, 25, 321–326. [Google Scholar] [CrossRef]
- Wang, J.M.; Murphy, J.G.; Geddes, J.A.; Winsborough, C.L.; Basiliko, N.; Thomas, S.C. Methane fluxes measured by eddy covariance and static chamber techniques at a temperate forest in central Ontario, Canada. Biogeosciences 2013, 10, 4371–4382. [Google Scholar] [CrossRef] [Green Version]
- Sundqvist, E.; Mölder, M.; Crill, P.; Kljun, N.; Lindroth, A. Methane exchange in a boreal forest estimated by gradient method. Tellus B. 2015, 67, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Sundqvist, E.; Crill, P.; Mölder, M.; Vestin, P.; Lindroth, A. Atmospheric methane removal by boreal plants. Geophys. Res. Lett. 2012, 39, 1–6. [Google Scholar] [CrossRef]
- Ryden, J.C.; Lund, L.J.; Focht, D.D. Direct In-Field Measurement of Nitrous Oxide Flux from Soils. Soil Sci. Soc. Am. J. 1978, 42, 731–737. [Google Scholar] [CrossRef]
- Denmead, O.T.; Freney, J.R.; Simpson, J.R. Studies of Nitrous Oxide Emission from a Grass Sward. Soil Sci. Soc. Am. J. 1979, 43, 726–728. [Google Scholar] [CrossRef]
- Blackmer, A.M.; Robbins, S.G.; Bremner, J.M. Diurnal Variability in Rate of Emission of Nitrous Oxide from Soils1. Soil Sci. Soc. Am. J. 1982, 46, 937–942. [Google Scholar] [CrossRef]
- Shurpali, N.J.; Rannik, Ü.; Jokinen, S.; Lind, S.; Biasi, C.; Mammarella, I.; Peltola, O.; Pihlatie, M.; Hyvönen, N.; Räty, M.; et al. Neglecting diurnal variations leads to uncertainties in terrestrial nitrous oxide emissions. Sci. Rep. 2016, 6, 25739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zona, D.; Janssens, I.A.; Gioli, B.; Jungkunst, H.F.; Serrano, M.C.; Ceulemans, R. N2O fluxes of a bio-energy poplar plantation during a two years rotation period. GCB Bioenergy 2013, 5, 536–547. [Google Scholar] [CrossRef]
- Kroon, P.S.; Schrier-Uijl, A.P.; Hensen, A.; Veenendaal, E.M.; Jonker, H.J.J. Annual balances of CH4 and N2O from a managed fen meadow using eddy covariance flux measurements. Eur. J. Soil Sci. 2010, 61, 773–784. [Google Scholar] [CrossRef] [Green Version]
- Butterbach-Bahl, K.; Rothe, A.; Papen, H. Effect of tree distance on N2O and CH4 -fluxes from soils in temperate forest ecosystems. Plant Soil 2002, 240, 91–103. [Google Scholar] [CrossRef]
Snow Depth (m) | Displacement Height d (m) | Roughness Length z0 (m) |
---|---|---|
0 | 0.2 | 0.07 |
0 ≥ 0.2 | 0.2 | 0.03 |
>0.2 | Actual snow depth | 0.003 |
Plot | Year | NEE (gCO2 m−2) | Reco (gCO2 m−2) | GPP (gCO2 m−2) | CH4 (gCO2-eq m−2) | N2O (gCO2-eq m−2) | GHG Budget (gCO2-eq m−2) |
---|---|---|---|---|---|---|---|
Plot 1 | 1 | 1607.9 | 2287.8 | −679.9 | 153.1 | - | 1761.0 * |
Plot 2 | 1 | 1911.2 | 2083.1 | −171.9 | 30.3 | - | 1941.5 * |
Plot 1 | 2 | 1052.5 | 2507.8 | −1455.3 | 37.6 | 78.2 | 1168.3 ** |
Plot 2 | 2 | 1645.0 | 2152.8 | −507.8 | 25.3 | 111.9 | 1782.2 ** |
Plot 1 | 3 | 1112.7 | 2589.7 | −1477.0 | 143.1 | 32.5 | 1288.3 ** |
Plot 2 | 3 | 1624.7 | 2556.3 | −931.6 | 37.9 | 52.2 | 1714.8 ** |
Plot 1 | 1–3 | 3773.1 | 7385.3 | −3612.1 | 333.8 | 110.7 | 4217.6 |
Plot 2 | 1–3 | 5180.8 | 6792.1 | −1611.3 | 93.5 | 164.1 | 5438.4 |
Plot 1 | *** | 952.7 | 2456.5 | −1503.8 | 39.3 | 77.9 | 1069.9 |
Plot 2 | *** | 1541.0 | 2174.8 | −633.8 | 25.8 | 128.8 | 1695.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vestin, P.; Mölder, M.; Kljun, N.; Cai, Z.; Hasan, A.; Holst, J.; Klemedtsson, L.; Lindroth, A. Impacts of Clear-Cutting of a Boreal Forest on Carbon Dioxide, Methane and Nitrous Oxide Fluxes. Forests 2020, 11, 961. https://doi.org/10.3390/f11090961
Vestin P, Mölder M, Kljun N, Cai Z, Hasan A, Holst J, Klemedtsson L, Lindroth A. Impacts of Clear-Cutting of a Boreal Forest on Carbon Dioxide, Methane and Nitrous Oxide Fluxes. Forests. 2020; 11(9):961. https://doi.org/10.3390/f11090961
Chicago/Turabian StyleVestin, Patrik, Meelis Mölder, Natascha Kljun, Zhanzhang Cai, Abdulghani Hasan, Jutta Holst, Leif Klemedtsson, and Anders Lindroth. 2020. "Impacts of Clear-Cutting of a Boreal Forest on Carbon Dioxide, Methane and Nitrous Oxide Fluxes" Forests 11, no. 9: 961. https://doi.org/10.3390/f11090961
APA StyleVestin, P., Mölder, M., Kljun, N., Cai, Z., Hasan, A., Holst, J., Klemedtsson, L., & Lindroth, A. (2020). Impacts of Clear-Cutting of a Boreal Forest on Carbon Dioxide, Methane and Nitrous Oxide Fluxes. Forests, 11(9), 961. https://doi.org/10.3390/f11090961