Assessing Land Use and Land Cover Changes in the Direct Influence Zone of the Braço Norte Hydropower Complex, Brazilian Amazonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Use and Land Cover Data Processing
2.3. MapBiomas-Collection 4.1 Accuracy Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Plieninger, T.; Draux, H.; Fagerholm, N.; Bieling, C.; Bürgi, M.; Kizos, T.; Kuemmerle, T.; Primdahl, J.; Verburg, P.H. The driving forces of landscape change in Europe: A systematic review of the evidence. Land Use Policy 2016, 57, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Laborde, H.; Douzal, V.; Ruiz Piña, H.A.; Morand, S.; Cornu, J.-F. Landsat-8 cloud-free observations in wet tropical areas: A case study in South East Asia. Remote Sens. Lett. 2017, 8, 537–546. [Google Scholar] [CrossRef]
- Shimabukuro, Y.E.; Beuchle, R.; Grecchi, R.C.; Achard, F. Assessment of forest degradation in Brazilian Amazon due to selective logging and fires using time series of fraction images derived from Landsat ETM+ images. Remote Sens. Lett. 2014, 5, 773–782. [Google Scholar] [CrossRef]
- Cowie, A.L.; Orr, B.J.; Castillo Sanchez, V.M.; Chasek, P.; Crossman, N.D.; Erlewein, A.; Louwagie, G.; Maron, M.; Metternicht, G.I.; Minelli, S.; et al. Land in balance: The scientific conceptual framework for Land Degradation Neutrality. Environ. Sci. Policy 2018, 79, 25–35. [Google Scholar] [CrossRef]
- Kovacs, E.; Roelfsema, C.; Lyons, M.; Zhao, S.; Phinn, S. Seagrass habitat mapping: How do Landsat 8 OLI, Sentinel-2, ZY-3A, and Worldview-3 perform? Remote Sens. Lett. 2018, 9, 686–695. [Google Scholar] [CrossRef]
- Fahrig, L.; McGill, B. Habitat fragmentation: A long and tangled tale. Glob. Ecol. Biogeogr. 2019, 28, 33–41. [Google Scholar] [CrossRef]
- Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Latham, J.; Cumani, R.; Rosati, I.; Bloise, M. Global land cover share (GLC-SHARE) database beta-release version 1.0. 2014. Available online: http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036355/ (accessed on 12 August 2020).
- Scholes, R.; Montanarella, L.; Brainich, L.; Barger, N.; Brink, B.t.; Cantele, M.; Erasmus, B.; Fisher, J.; Gardner, T.; Holland, T.G.; et al. Summary for Policymakers of the Assessment Report on Land Degradation and Restoration of the Intergovernmental Science- Policy Platform on Biodiversity and Ecosystem Services. 2018. Available online: https://www.fs.usda.gov/treesearch/pubs/58402 (accessed on 12 August 2020).
- Geist, H.; Lambin, E. What Drives Tropical Deforestation? 2001. Available online: http://www.pik-potsdam.de/~luedeke/lucc4.pdf (accessed on 12 August 2020).
- Yao, J.; Mitran, T.; Kong, X.; Lal, R.; Chu, Q.; Shaukat, M. Landuse and land cover identification and disaggregating socio-economic data with convolutional neural network. Geocarto Int. 2019. [Google Scholar] [CrossRef]
- Von Sperling, E. Hydropower in Brazil: Overview of Positive and Negative Environmental Aspects. Energy Procedia 2012, 18, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Gauthier, C.; Moran, E.F. Public policy implementation and basic sanitation issues associated with hydroelectric projects in the Brazilian Amazon: Altamira and the Belo Monte dam. Geoforum 2018, 97, 10–21. [Google Scholar] [CrossRef]
- Maavara, T.; Chen, Q.; Van Meter, K.; Brown, L.E.; Zhang, J.; Ni, J.; Zarfl, C. River dam impacts on biogeochemical cycling. Nat. Rev. Earth Environ. 2020, 1, 103–116. [Google Scholar] [CrossRef]
- Larsen, M.A.D.; Drews, M. Water use in electricity generation for water-energy nexus analyses: The European case. Sci. Total Environ. 2019, 651, 2044–2058. [Google Scholar] [CrossRef] [PubMed]
- The International Energy Agency (IEA). Global Energy & CO2 Status Report. 2018. Available online: https://www.iea.org/reports/global-energy-co2-status-report-2019 (accessed on 12 August 2020).
- International Hydropower Association (IHA). Hydropower Status Report. 2018. Available online: https://www.hydropower.org/publications/2018-hydropower-status-report (accessed on 12 August 2020).
- Cornwall, W. A dam big problem. Science 2020, 369, 906–909. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.C.R.; Sodré, J.R. Simulation of the impacts on carbon dioxide emissions from replacement of a conventional Brazilian taxi fleet by electric vehicles. Energy 2016, 115, 1617–1622. [Google Scholar] [CrossRef]
- Fearnside, P.M. Environmental and Social Impacts of Hydroelectric Dams in Brazilian Amazonia: Implications for the Aluminum Industry. World Dev. 2016, 77, 48–65. [Google Scholar] [CrossRef]
- Fearnside, P.M. Hydropower: Don’t waste climate money on more dams. Nature 2019, 568, 33. [Google Scholar] [CrossRef] [PubMed]
- Fraundorfer, M.; Rabitz, F. The Brazilian renewable energy policy framework: Instrument design and coherence. Clim. Policy 2020, 20, 652–660. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Rausch, L.; Munger, J.; Schelly, I.; Morton, D.C.; Noojipady, P.; Soares-Filho, B.; Barreto, P.; Micol, L.; Walker, N.F. Environment and development. Brazil’s Soy Moratorium. Science 2015, 347, 377–378. [Google Scholar] [CrossRef]
- De Oliveira, G.; Chen, J.M.; Mataveli, G.A.V.; Chaves, M.E.D.; Seixas, H.T.; Cardozo, F.d.S.; Shimabukuro, Y.E.; He, L.; Stark, S.C.; dos Santos, C.A.C. Rapid Recent Deforestation Incursion in a Vulnerable Indigenous Land in the Brazilian Amazon and Fire-Driven Emissions of Fine Particulate Aerosol Pollutants. Forests 2020, 11, 829. [Google Scholar] [CrossRef]
- MapBiomas. Project MapBiomas—Collection 4.1 of Brazilian Land Cover & Use Map Series. 2020. Available online: https://mapbiomas.org/en (accessed on 12 August 2020).
- Souza, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- National Institute for Space Research (INPE). Monitoring of the Brazilian Amazon Deforestation by Satellite. 2020. Available online: http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes (accessed on 12 August 2020).
- Sindicato da Construção Geração Transmissão e Distribuição de Energia Elétrica e Gás no Estado de Mato Grosso (SINDENERGIA). Location of the Hydroelectric Power Plants of Mato Grosso State. 2014. Available online: http://www.sindenergia.com.br/ (accessed on 4 June 2020).
- Carvalho, D.N.; Boniolo, M.R.; Santo, R.G.; Batista, L.V.; Malavazzi, A.A.; Reis, F.A.G.V.; Giordano, L.d.C. Critérios usados na definição de áreas de influências, impactos e programas ambientais em estudos de impacto ambiental de usinas hidrelétricas brasileiras. Rev. Geoci. 2019, 37, 639–653. [Google Scholar] [CrossRef]
- Li, D.; Lu, D.; Moran, E.; da Silva, R.F.B. Examining Water Area Changes Accompanying Dam Construction in the Madeira River in the Brazilian Amazon. Water 2020, 12, 1921. [Google Scholar] [CrossRef]
- Lopes, T.R.; Moura, L.B.; Nascimento, J.G.; Fraga Junior, L.S.; Zolin, C.A.; Duarte, S.N.; Folegatti, M.V.; Santos, O.N.A. Priority areas for forest restoration aiming at the maintenance of water resources in a basin in the Cerrado/Amazon ecotone, Brazil. J. South Am. Earth Sci. 2020, 101, 102630. [Google Scholar] [CrossRef]
- Nunes, S.; Oliveira, L.; Siqueira, J.; Morton, D.C.; Souza, C.M. Unmasking secondary vegetation dynamics in the Brazilian Amazon. Environ. Res. Lett. 2020, 15, 034057. [Google Scholar] [CrossRef]
- Silva Junior, C.H.L.; Celentano, D.; Rousseau, G.X.; de Moura, E.G.; Varga, I.v.D.; Martinez, C.; Martins, M.B. Amazon forest on the edge of collapse in the Maranhão State, Brazil. Land Use Policy 2020, 97, 104806. [Google Scholar] [CrossRef]
- Silva Junior, C.H.L.; Heinrich, V.H.A.; Freire, A.T.G.; Broggio, I.S.; Rosan, T.M.; Doblas, J.; Anderson, L.O.; Rousseau, G.X.; Shimabukuro, Y.E.; Silva, C.A.; et al. Benchmark maps of 33 years of secondary forest age for Brazil. Sci. Data 2020, 7, 269. [Google Scholar] [CrossRef]
- Bonanomi, J.; Tortato, F.R.; Gomes, R.d.S.R.; Penha, J.M.; Bueno, A.S.; Peres, C.A. Protecting forests at the expense of native grasslands: Land-use policy encourages open-habitat loss in the Brazilian cerrado biome. Perspect. Ecol. Conser. 2019, 17, 26–31. [Google Scholar] [CrossRef]
- MapBiomas. Project MapBiomas—Collection 4.1 Know the steps of MapBiomas methodology. 2020. Available online: https://mapbiomas.org/en/download-dos-atbds?cama_set_language=en (accessed on 12 August 2020).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- MapBiomas. Project MapBiomas—Collection 4.1 Accuracy Statistics. 2020. Available online: https://mapbiomas.org/estatistica-de-acuracia (accessed on 12 August 2020).
- Müller, H.; Griffiths, P.; Hostert, P. Long-term deforestation dynamics in the Brazilian Amazon—Uncovering historic frontier development along the Cuiabá–Santarém highway. Int. J. Appl. Earth Obs. 2016, 44, 61–69. [Google Scholar] [CrossRef]
- Rocha, M.; Assis, R.L.; Piedade, M.T.F.; Feitosa, Y.O.; Householder, J.E.; Lobo, G.d.S.; Demarchi, L.O.; Albuquerque, B.W.; Quaresma, A.C.; Ramos, J.F.; et al. Thirty years after Balbina Dam: Diversity and floristic composition of the downstream floodplain forest, Central Amazon, Brazil. Ecohydrology 2019, 12. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, D.; Moran, E.; Calvi, M.F.; Dutra, L.V.; Li, G. Examining impacts of the Belo Monte hydroelectric dam construction on land-cover changes using multitemporal Landsat imagery. Appl. Geogr. 2018, 97, 35–47. [Google Scholar] [CrossRef]
- Chen, G.; Powers, R.P.; de Carvalho, L.M.T.; Mora, B. Spatiotemporal patterns of tropical deforestation and forest degradation in response to the operation of the Tucuruí hydroelectric dam in the Amazon basin. Appl. Geogr. 2015, 63, 1–8. [Google Scholar] [CrossRef]
- Sano, E.E.; Rosa, R.; Brito, J.L.; Ferreira, L.G. Land cover mapping of the tropical savanna region in Brazil. Environ. Monit. Assess. 2010, 166, 113–124. [Google Scholar] [CrossRef]
- Grecchi, R.C.; Gwyn, Q.H.J.; Bénié, G.B.; Formaggio, A.R. Assessing the spatio-temporal rates and patterns of land-use and land-cover changes in the Cerrados of southeastern Mato Grosso, Brazil. Int. J. Remote Sens. 2013, 34, 5369–5392. [Google Scholar] [CrossRef]
- Müller, H.; Rufin, P.; Griffiths, P.; Barros Siqueira, A.J.; Hostert, P. Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sens. Environ. 2015, 156, 490–499. [Google Scholar] [CrossRef] [Green Version]
- Alencar, A.; Shimbo, J.Z.; Lenti, F.; Balzani Marques, C.; Zimbres, B.; Rosa, M.; Arruda, V.; Castro, I.; Fernandes Márcico Ribeiro, J.P.; Varela, V.; et al. Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform. Remote Sens. 2020, 12, 924. [Google Scholar] [CrossRef] [Green Version]
- Lathuillière, M.J.; Johnson, M.S.; Galford, G.L.; Couto, E.G. Environmental footprints show China and Europe’s evolving resource appropriation for soybean production in Mato Grosso, Brazil. Environ. Res. Lett. 2014, 9, 074001. [Google Scholar] [CrossRef]
- Rudorff, B.F.T.; Adami, M.; Aguiar, D.A.; Moreira, M.A.; Mello, M.P.; Fabiani, L.; Amaral, D.F.; Pires, B.M. The Soy Moratorium in the Amazon Biome Monitored by Remote Sensing Images. Remote Sens. 2011, 3, 185–202. [Google Scholar] [CrossRef] [Green Version]
- Rajao, R.; Soares-Filho, B.; Nunes, F.; Borner, J.; Machado, L.; Assis, D.; Oliveira, A.; Pinto, L.; Ribeiro, V.; Rausch, L.; et al. The rotten apples of Brazil’s agribusiness. Science 2020, 369, 246–248. [Google Scholar] [CrossRef]
- De Faria, F.A.M.; Jaramillo, P. The future of power generation in Brazil: An analysis of alternatives to Amazonian hydropower development. Energy Sustain. Dev. 2017, 41, 24–35. [Google Scholar] [CrossRef]
- Resende, A.F.; Schongart, J.; Streher, A.S.; Ferreira-Ferreira, J.; Piedade, M.T.F.; Silva, T.S.F. Massive tree mortality from flood pulse disturbances in Amazonian floodplain forests: The collateral effects of hydropower production. Sci. Total Environ. 2019, 659, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Moran, E.F. Changing how we build hydropower infrastructure for the common good: Lessons from the Brazilian Amazon. Civitas Rev. Ciênc. Soc. 2020, 20, 5. [Google Scholar] [CrossRef]
- Atkins, E. Contesting the ‘greening’ of hydropower in the Brazilian Amazon. Polit. Geogr. 2020, 80, 102179. [Google Scholar] [CrossRef]
- Cochrane, S.M.V.; Matricardi, E.A.T.; Numata, I.; Lefebvre, P.A. Landsat-based analysis of mega dam flooding impacts in the Amazon compared to associated environmental impact assessments: Upper Madeira River example 2006–2015. RSASE 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Anderson, E.P.; Jenkins, C.N.; Heilpern, S.; Maldonado-Ocampo, J.A.; Carvajal-Vallejos, F.M.; Encalada, A.C.; Rivadeneira, J.F.; Hidalgo, M.; Canas, C.M.; Ortega, H.; et al. Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 2018, 4, 1642. [Google Scholar] [CrossRef] [Green Version]
- Nunes, S.S.; Barlow, J.O.S.; Gardner, T.A.; Siqueira, J.V.; Sales, M.R.; Souza, C.M. A 22 year assessment of deforestation and restoration in riparian forests in the eastern Brazilian Amazon. Environ. Conserv. 2014, 42, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Souza, C.; Kirchhoff, F.; Oliveira, B.; Ribeiro, J.; Sales, M. Long-Term Annual Surface Water Change in the Brazilian Amazon Biome: Potential Links with Deforestation, Infrastructure Development and Climate Change. Water 2019, 11, 566. [Google Scholar] [CrossRef] [Green Version]
- Buschbacher, R.J. Tropical Deforestation and Pasture Development. BioScience 1986, 36, 22–28. [Google Scholar] [CrossRef]
- Chauvel, A.; Grimaldi, M.; Barros, E.; Blanchart, E.; Desjardins, T.; Sarrazin, M.; Lavelle, P. Pasture damage by an Amazonian earthworm. Nature 1999, 398, 32–33. [Google Scholar] [CrossRef]
- Barona, E.; Ramankutty, N.; Hyman, G.; Coomes, O.T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. 2010, 5, 024002. [Google Scholar] [CrossRef]
- Picoli, M.C.A.; Rorato, A.; Leitão, P.; Camara, G.; Maciel, A.; Hostert, P.; Sanches, I.D.A. Impacts of Public and Private Sector Policies on Soybean and Pasture Expansion in Mato Grosso—Brazil from 2001 to 2017. Land 2020, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Neto, J.Q.d.M.; Herrera, J.A. Altamira-PA: Novos papéis de centralidade e reestruturação urbana a partir da instalação da UHE Belo Monte. Confins 2016. [Google Scholar] [CrossRef]
- Herrera, J.A.; Pragana, M. Resistência E Conflitos Sociais Na Amazônia Paraense: A luta contra o empreendimento Hidrelétrico de Belo Monte. Campo-Território: Revista De Geografia Agrária 2013, 8, 130–151. [Google Scholar]
- Brazilian Institute of Geography and Statistics (IBGE). Agricultural Census. 2017. Available online: https://censos.ibge.gov.br/agro/2017/ (accessed on 12 August 2020).
- Chaves, M.; de Carvalho Alves, M.; de Oliveira, M.; Sáfadi, T. A Geostatistical Approach for Modeling Soybean Crop Area and Yield Based on Census and Remote Sensing Data. Remote Sens. 2018, 10, 680. [Google Scholar] [CrossRef] [Green Version]
- Picoli, M.C.A.; Camara, G.; Sanches, I.; Simões, R.; Carvalho, A.; Maciel, A.; Coutinho, A.; Esquerdo, J.; Antunes, J.; Begotti, R.A.; et al. Big earth observation time series analysis for monitoring Brazilian agriculture. ISPRS J. Photogram. 2018, 145, 328–339. [Google Scholar] [CrossRef]
- Macedo, M.N.; DeFries, R.S.; Morton, D.C.; Stickler, C.M.; Galford, G.L.; Shimabukuro, Y.E. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl. Acad. Sci. USA 2012, 109, 1341–1346. [Google Scholar] [CrossRef] [Green Version]
- Gollnow, F.; Göpel, J.; deBarros Viana Hissa, L.; Schaldach, R.; Lakes, T. Scenarios of land-use change in a deforestation corridor in the Brazilian Amazon: Combining two scales of analysis. Reg. Environ. Chang. 2017, 18, 143–159. [Google Scholar] [CrossRef]
- Verburg, R.; Filho, S.R.; Lindoso, D.; Debortoli, N.; Litre, G.; Bursztyn, M. The impact of commodity price and conservation policy scenarios on deforestation and agricultural land use in a frontier area within the Amazon. Land Use Policy 2014, 37, 14–26. [Google Scholar] [CrossRef]
- Fearnside, P.M. Brazil’s Cuiaba- Santarem (BR-163) Highway: The environmental cost of paving a soybean corridor through the Amazon. Environ. Manag. 2007, 39, 601–614. [Google Scholar] [CrossRef]
- Soares-Filho, B.; Rajão, R. Traditional conservation strategies still the best option. Nat. Sustain. 2018, 1, 608–610. [Google Scholar] [CrossRef]
- Azevedo-Ramos, C.; Moutinho, P. No man’s land in the Brazilian Amazon: Could undesignated public forests slow Amazon deforestation? Land Use Policy 2018, 73, 125–127. [Google Scholar] [CrossRef]
- Artaxo, P. Working together for Amazonia. Science 2019, 363, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobar, H. Brazil’s deforestation is exploding—and 2020 will be worse. Science 2019. [Google Scholar] [CrossRef]
- De Area Leão Pereira, E.J.; de Santana Ribeiro, L.C.; da Silva Freitas, L.F.; de Barros Pereira, H.B. Brazilian policy and agribusiness damage the Amazon rainforest. Land Use Policy 2020, 92, 104491. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero, J.V.R.; Escobar-Silva, E.V.; Chaves, M.E.D.; Mataveli, G.A.V.; Bourscheidt, V.; de Oliveira, G.; Picoli, M.C.A.; Shimabukuro, Y.E.; Moschini, L.E. Assessing Land Use and Land Cover Changes in the Direct Influence Zone of the Braço Norte Hydropower Complex, Brazilian Amazonia. Forests 2020, 11, 988. https://doi.org/10.3390/f11090988
Guerrero JVR, Escobar-Silva EV, Chaves MED, Mataveli GAV, Bourscheidt V, de Oliveira G, Picoli MCA, Shimabukuro YE, Moschini LE. Assessing Land Use and Land Cover Changes in the Direct Influence Zone of the Braço Norte Hydropower Complex, Brazilian Amazonia. Forests. 2020; 11(9):988. https://doi.org/10.3390/f11090988
Chicago/Turabian StyleGuerrero, João V. R., Elton V. Escobar-Silva, Michel E. D. Chaves, Guilherme A. V. Mataveli, Vandoir Bourscheidt, Gabriel de Oliveira, Michelle C. A. Picoli, Yosio E. Shimabukuro, and Luiz E. Moschini. 2020. "Assessing Land Use and Land Cover Changes in the Direct Influence Zone of the Braço Norte Hydropower Complex, Brazilian Amazonia" Forests 11, no. 9: 988. https://doi.org/10.3390/f11090988
APA StyleGuerrero, J. V. R., Escobar-Silva, E. V., Chaves, M. E. D., Mataveli, G. A. V., Bourscheidt, V., de Oliveira, G., Picoli, M. C. A., Shimabukuro, Y. E., & Moschini, L. E. (2020). Assessing Land Use and Land Cover Changes in the Direct Influence Zone of the Braço Norte Hydropower Complex, Brazilian Amazonia. Forests, 11(9), 988. https://doi.org/10.3390/f11090988