Soil Organic Carbon Stocks in Afforested Agricultural Land in Lithuanian Hemiboreal Forest Zone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Soil Sampling and Analyses
2.3. Calculations and Statistical Analyses
3. Results
3.1. Organic Carbon Stocks in the Forest Floor of Afforested Land and Plant Litter of Grassland
3.2. Bulk Density and Organic Carbon Concentrations in Mineral Topsoil
3.3. Soil Organic Carbon Stocks in Mineral Topsoil
4. Discussion
4.1. Organic Carbon Stocks in the Forest Floor
4.2. Bulk Density and SOC Concentration in Mineral Topsoil
4.3. SOC Stocks in Mineral Topsoil after Afforestation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vesterdal, L.; Ritter, E.; Gundersen, P. Change in soil organic carbon following afforestation of former arable land. For. Ecol. Manag. 2002, 169, 137–147. [Google Scholar] [CrossRef]
- Vesterdal, L.; Rosenqvist, L.; van der Salm, C.; Groenenberg, B.-J.; Johansson, M.-B.; Hansen, K. Carbon sequestration in soil and biomass following afforestation: Experiences from oak and Norway spruce chronosequences in Denmark, Sweden, and the Netherlands. In Environmental Effects of Afforestation; Heil, G., Muys, B., Hansen, K., Eds.; Field Observations, Modelling and Spatial Decision Support; Springer: Berlin, Germany, 2007; pp. 19–51. [Google Scholar]
- Armolaitis, K.; Aleinikovienė, J.; Baniūnienė, A.; Lubytė, J.; Žėkaitė, V. Carbon sequestration and nitrogen status in Arenosols following afforestation or following abandonment of arable land. Balt. For. 2007, 13, 169–178. [Google Scholar]
- Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A. How strongly can forest management influence soil carbon sequestration? Geoderma 2007, 137, 253–268. [Google Scholar] [CrossRef]
- Ruskule, A.; Nikodemus, O.; Kasparinska, Z.; Kasparinskis, R.; Brumelis, G. Patterns of afforestation on abandoned agriculture land in Latvia. Agrofor. Syst. 2012, 85, 215–231. [Google Scholar] [CrossRef]
- Bárcena, T.G.; Gundersen, P.; Vesterdal, L. Afforestation effects on SOC in former cropland: Oak and spruce chronosequences resampled after 13 years. Glob. Chang. Biol. 2014, 20, 2938–2952. [Google Scholar] [CrossRef]
- Bárcena, T.G.; Kiær, L.P.; Vesterdal, L.; Stefánsdóttir, H.M.; Gundersen, P.; Sigurdsson, B.D. Soil carbon stock change following afforestation in Northern Europe: A meta-analysis. Glob. Chang. Biol. 2014, 20, 2393–2405. [Google Scholar] [CrossRef] [PubMed]
- Nave, L.E.; Domke, G.M.; Hofmeister, K.L.; Mishra, U.; Perry, C.H.; Walters, B.F.; Swanston, C.W. Reforestation can sequester two petagrams of carbon in US topsoils in a century. Proc. Natl. Acad. Sci. USA 2018, 115, 2776–2781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nave, L.E.; Walters, B.F.; Hofmeister, K.L.; Perry, C.H.; Mishra, U.; Domke, G.M.; Swanston, C.W. The role of reforestation in carbon sequestration. New For. 2019, 50, 115–137. [Google Scholar] [CrossRef]
- Mayer, M.; Prescott, C.E.; Abaker, W.E.A.; Augusto, L.; Cécillon, L.; Ferreira, G.W.D.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau, J.P.; et al. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 2020, 466, 118127. [Google Scholar] [CrossRef]
- De Vries, W.; Reinds, G.J.; Posch, M.; Sanz, M.; Krause, G.; Calatyud, V.; Dupouey, J.; Sterba, H.; Gundersen, P.; Voogd, J.; et al. Intensive Monitoring of Forest Ecosystems in Europe; Technical Report; European Commission UN/ECE: Brussels, Belgium, 2003. [Google Scholar]
- Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 2005, 220, 242–258. [Google Scholar] [CrossRef]
- Parfitt, R.L.; Percival, H.J.; Dahlgren, R.A.; Hill, L.F. Soil and solution chemistry under pasture and radiata pine in New Zealand. Plant. Soil. 1997, 191, 279–290. [Google Scholar] [CrossRef]
- Ross, D.J.; Tate, K.R.; Scott, N.A.; Feltham, C.W. Land-use change: Effects on soil carbon, nitrogen and phosphorus pools and fluxes in three adjacent ecosystems. Soil Biol. Biochem. 1999, 31, 803–813. [Google Scholar] [CrossRef]
- Farley, K.A.; Kelly, E.F.; Hofstede, R.G.M. Soil organic carbon and water retention following conversion of grasslands to pine plantations in the Ecuadoran Andes. Ecosystems 2004, 7, 729–739. [Google Scholar] [CrossRef]
- Zhao, Q.; Zeng, D.H.; Lee, D.K.; He, X.Y.; Fan, Z.P.; Jin, Y.H. Effects of Pinus sylvestris var. mongolica afforestation on soil phosphorus status of the Keerqin sandy lands in China. J. Arid Environ. 2007, 69, 569–582. [Google Scholar] [CrossRef]
- Mao, R.; Zeng, D.-H. Changes in soil particulate organic matter, microbial biomass, and activity following afforestation of marginal agricultural lands in a semi-arid area of Northeast China. Environ. Manag. 2010, 46, 110–116. [Google Scholar] [CrossRef] [PubMed]
- De Kovel, C.G.F.; Van Mierlo, A.J.E.M.; Wilms, Y.J.O.; Berendese, F. Carbon and nitrogen in soil and vegetation at sites differing in successional age. Plant. Ecol. 2000, 149, 43–50. [Google Scholar] [CrossRef]
- Post, W.; Kwon, K. Soil carbon sequestration and land-use change: Processes and potential. Glob. Chang. Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Gifford, R. Soil carbon stocks and land use change: A meta-analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Del Galdo, I.; Six, J.; Peressotti, A.; Cotrufo, M.F. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Glob. Chang. Biol. 2003, 9, 1204–1213. [Google Scholar] [CrossRef]
- DeGryze, S.; Six, J.; Paustian, K.; Morris, S.J.; Paul, E.A.; Merckx, R. Soil organic carbon pool changes following land-use conversions. Glob. Chang. Biol. 2004, 10, 1120–1132. [Google Scholar] [CrossRef] [Green Version]
- Grünzweig, J.M.; Gelfand, I.; Fried, Y.; Yakir, D. Biogeochemical factors contributing to enhanced carbon storage following afforestation of a semi-arid shrubland. Biogeosciences 2007, 4, 891–904. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Ramirez, G.; Sauer, T.J.; Cambardella, C.A.; Brandle, J.R.; James, D.E. Carbon sources and dynamics in afforested and cultivated US Corn Belt soils. Soil Sci. Soc. Am. J. 2011, 75, 216–225. [Google Scholar] [CrossRef] [Green Version]
- Davis, M. Soil properties under pine forest and pasture at two hill country sites in Canterbury. N. Z. J. For. Sci. 2001, 31, 3–17. [Google Scholar]
- Davis, M.; Nordmeyer, A.; Henley, D.; Watt, M. Ecosystem carbon accretion 10 years after afforestation of depleted subhumid grassland planted with three densities of Pinus nigra. Glob. Chang. Biol. 2007, 13, 1414–1422. [Google Scholar] [CrossRef]
- Smal, H.; Olszewska, M. The effect of afforestation with Scots pine (Pinus silvestris L.) of sandy post-arable soils on their selected properties. II. Reaction, carbon, nitrogen and phosphorus. Plant. Soil 2008, 305, 171–187. [Google Scholar] [CrossRef]
- Strand, L.T.; Fjellstad, W.; Jackson-Blake, L.; De Wit, H.A. Afforestation of a pasture in Norway did not result in higher soil carbon, 50 years after planting. Landsc. Urban. Plan. 2021, 207, 104007. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Hooker, T.D.; Compton, J.E. Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecol. Appl. 2003, 13, 299–313. [Google Scholar] [CrossRef]
- Vesterdal, L.; Clarke, N.; Sigurdsson, B.D.; Gundersen, P. Do tree species influence soil carbon stocks in temperate and boreal forests? For. Ecol. Manag. 2013, 309, 4–18. [Google Scholar] [CrossRef]
- Paul, K.I.; Polglase, P.J.; Nyakuengama, J.G.; Khanna, P.K. Change in soil carbon following afforestation. For. Ecol. Manag. 2002, 168, 241–257. [Google Scholar] [CrossRef]
- Huang, M.; Ji, J.J.; Li, K.R.; Liu, Y.F.; Yang, F.T.; Tao, B. The ecosystem carbon accumulation after conversion of grasslands to pine plantations in subtropical red soil of south China. Tellus B Chem. Phys. Meteorol. 2007, 59, 439–448. [Google Scholar] [CrossRef]
- Li, D.; Niu, S.; Luo, Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: A meta-analysis. New Phytol. 2012, 195, 172–181. [Google Scholar] [CrossRef]
- Ministry of Agriculture of the Republic of Lithuania. Lithuanian Rural Development Programme. In Investments in Development of Forest Areas and Improvement of Forest Viability; Legal Act No. 3D-142, No. 4182; Ministry of Agriculture of the Republic of Lithuania: Vilnius, Lithuania, 2021. [Google Scholar]
- Ministry of Agriculture and Ministry of Environment of the Republic of Lithuania. Order for Afforestation in Non-Forest Land; Ministry of Agriculture and Ministry of Environment of the Republic of Lithuania: Vilnius, Lithuania, 2004; Updated 2016, No. 3D-130/D1-144. [Google Scholar]
- Mozgeris, G.; Juknelienė, D. Modeling Future Land Use Development: A Lithuanian Case. Land 2021, 10, 360. [Google Scholar] [CrossRef]
- Information on LULUCF Actions in Lithuania. Progress Report under Requirements of Article 10 of the EU Decision No. 529/2013/EU Submission to the European Commission. 2021. Available online: https://am.lrv.lt/uploads/am/documents/files/KLIMATO%20KAITA/%C5%A0ESD%20apskaitos%20ir%20kt%20ataskaitos/Information%20on%20LULUCF%20actions%20in%20Lithuania%202021.pdf (accessed on 11 November 2021).
- Lithuanian Hydrometeorological Service under the Ministry of Environment. Climate Atlas of Lithuania; Lithuanian Hydrometeorological Service under the Ministry of Environment: Vilnius, Lithuania, 2013. [Google Scholar]
- Eggleston, H.S.; Miwa, K.; Srivastava, N.; Tanabe, K. (Eds.) National Greenhouse Gas Inventories Programme. In IPCC Guidelines for National Greenhouse Gas. Inventories–A Primer; IGES: Hayama, Japan, 2006. [Google Scholar]
- Ring, E.; Andersson, E.; Armolaitis, K.; Eklöf, K.; Finér, L.; Gil, W.; Glazko, Z.; Janek, M.; Lībiete, Z.; Lode, E.; et al. Good Practices for Forest Buffers to Improve Surface Water Quality in the Baltic Sea Region. In ARBETSRAPPORT 995–2018; Rootsi Skogforsk: Uppsala, Sweden, 2018; Available online: https://converges.eu/wp-content/uploads/2020/10/ring_2018.pdf (accessed on 8 October 2021).
- FAO Global Forest Resources Assessment 2015 (FRA). Available online: http://www.fao.org/3/a-i4808e.pdf (accessed on 8 October 2021).
- Lithuanian Statistical Yearbook of Forestry 2019. Ministry of Environment, State Forest Service. Available online: http://www.amvmt.lt/index.php/leidiniai/misku-ukio-statistika/2019 (accessed on 25 July 2021).
- USDA Foreign Agricultural Service; Grain and Feed Annual–Lithuania 2017. GAIN Report (Global Agricultural International Network). Available online: https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Grain%20and%20Feed%20Annual%20-%20Lithuania%202017_Warsaw_Lithuania_4-25-2017.pdf (accessed on 25 July 2021).
- Europe’s Biodiversity–Biogeographical Regions and Seas; EEA Report No 1/2002. Available online: https://www.eea.europa.eu/publications/report_2002_0524_154909 (accessed on 25 July 2021).
- Buivydaitė, V.; Vaičys, M.; Juodis, J.; Motuzas, A. Lithuanian Soil Classification; Mokslas: Vilnius, Lithuania, 2001; p. 137. (In Lithuanian) [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014; International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 192, Update 2015. [Google Scholar]
- Armolaitis, K.; Varnagirytė-Kabašinskienė, I.; Žemaitis, P.; Stakėnas, V.; Kulbokas, G.; Beniušis, R.; Urbaitis, G. Evaluation of organic carbon stocks in mineral and organic soils in Lithuania. Soil Use Manag. 2021. [Google Scholar] [CrossRef]
- Vesterdal, L.; Schmidt, I.K.; Callesen, I.; Nilsson, L.O.; Gundersen, P. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For. Ecol. Manag. 2008, 255, 35–48. [Google Scholar] [CrossRef]
- Laganière, J.; Angers, D.A.; Paré, D. Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Glob. Chang. Biol. 2010, 16, 439–453. [Google Scholar] [CrossRef]
- Markewitz, D.; Sartori, F.; Craft, C. Soil change and carbon storage in longleaf pine stands planted on marginal agricultural lands. Ecol. Appl. 2002, 12, 1276–1285. [Google Scholar] [CrossRef]
- Thuille, A.; Schulze, E.-D. Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Glob. Chang. Biol. 2006, 12, 325–342. [Google Scholar] [CrossRef]
- Smal, H.; Ligȩza, S.; Pranagal, J.; Urban, D.; Pietruczyk-Popławska, D. Changes in the stocks of soil organic carbon, total nitrogen and phosphorus following afforestation of post-arable soils: A chronosequence study. For. Ecol. Manag. 2019, 451, 117536. [Google Scholar] [CrossRef]
- Thuille, A.; Buchmann, N.; Schulze, E.-D. Carbon stocks and soil respiration rates during deforestation, grassland use and subsequent Norway spruce afforestation in the Southern Alps, Italy. Tree Physiol. 2000, 20, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Poeplau, C.; Don, A.; Vesterdal, L.; Leifeld, J.; Van Wesemael, B.; Schumacher, J.; Gensior, A. Temporal dynamics of soil organic carbon after land-use change in the temperate zone-carbon response functions as a model approach. Glob. Chang. Biol. 2011, 17, 2415–2427. [Google Scholar] [CrossRef]
- Schulp, C.; Nabuurs, G.-J.; Verburg, P.H.; de Waal, R.W. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. For. Ecol. Manag. 2008, 256, 482–490. [Google Scholar] [CrossRef]
- Augusto, L.; De Schrijver, A.; Vesterdal, L.; Smolander, A.; Prescott, C.; Ranger, J. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biol. Rev. 2015, 90, 444–466. [Google Scholar] [CrossRef]
- Berger, T.; Neubauer, C.; Glatzel, G. Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria. For. Ecol. Manag. 2002, 159, 3–14. [Google Scholar] [CrossRef]
- De Vos, B.; Cools, N.; Ilvesniemi, H.; Vesterdal, L.; Vanguelova, E.; Camicelli, S. Benchmark values for forest soil carbon stocks in Europe: Results from a large scale forest soil survey. Geoderma 2015, 251, 33–46. [Google Scholar] [CrossRef]
- Vesterdal, L.; Raulund-Rasmussen, K. Forest floor chemistry under seven tree species along a soil fertility gradient. Can. J. For. Res. 1998, 28, 1636–1647. [Google Scholar] [CrossRef]
- Berthrong, S.; Jobbagy, E.; Jackson, R. A global meta-analysis of soil exchangeable cations, pH, carbon and nitrogen with afforestation. Ecol. Appl. 2009, 19, 2228–2241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podrázský, V.; Holubík, O.; Vopravil, J.; Khel, T.; Moser, W.K.; Prknová, H. Effects of afforestation on soil structure formation in two climatic regions of the Czech Republic. J. For. Sci. 2015, 61, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Abdalla, M.; Espenberg, M.; Hastings, A.; Hallett, P.; Smith, P. A systematic analysis and review of the impacts of afforestation on soil quality indicators as modified by climate zone, forest type and age. Sci. Total Environ. 2021, 757, 143824. [Google Scholar] [CrossRef]
- Rumpel, C.; Kogel-Knabner, I.; Bruhn, F. Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Org. Geochem. 2002, 33, 1131–1142. [Google Scholar] [CrossRef]
- Liski, J. Variation in soil organic carbon and thickness of soil horizons within a boreal forest stand–effect of trees and implications for sampling. Silva Fenn. 1995, 29, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Vogt, K.; Vogt, D.; Brown, S.; Tilley, J.; Edmonds, R.; Silver, W.; Siccama, T. Dynamics of Forest Floor and Soil Organic Matter Accumulation in Boreal, Temperate, and Tropical Forests. In Soil Management and Greenhouse Effect, Advances in Soil Science; Lal, R., Kimble, J., Levine, E., Stewart, B., Eds.; CRC Press: Boca Raton, FL, USA, 1995; pp. 159–178. [Google Scholar]
- Shi, S.; Zhang, W.; Zhang, P.; Yu, Y.; Ding, F. A synthesis of change in deep soil organic carbon stores with afforestation of agricultural soils. For. Ecol. Manag. 2013, 296, 53–63. [Google Scholar] [CrossRef]
- Wellock, M.; Rafique, R.; LaPerle, C.M.; Peichl, M.; Kiely, G. Changes in ecosystem carbon stocks in a grassland ash (Fraxinus excelsior L.) afforestation chronosequence in Ireland. J. Plant. Ecol. 2014, 7, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Römkens, P.; van der Pflicht, J.; Hassink, J. Soil organic matter dynamics after the conversion of arable land to pasture. Biol. Fertil. Soils 1999, 28, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Murty, D.; Kirschbaum, M.U.F.; McMurtrie, R.E.; McGilvray, A. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob. Chang. Biol. 2002, 8, 105–123. [Google Scholar] [CrossRef]
- Segura, C.; Jiménez, M.N.; Nieto, O.; Navarro, F.B.; Fernández-Ondoñoa, E. Changes in soil organic carbon over 20 years after afforestation in semiarid SE Spain. For. Ecol. Manag. 2016, 381, 268–278. [Google Scholar] [CrossRef]
Species | Number of Plots | |
---|---|---|
Arenosols | Luvisols | |
Coniferous tree species * | 39 | 28 |
Norway spruce (Picea abies (L.) Karst.) | 7 | 21 |
Scots pine (Pinus sylvestris L.) | 32 | 3 |
European larch (Larix decidua Mill.) | - | 4 |
Deciduous tree species | 28 | 33 |
Silver birch (Betula pendula Roth.) | 20 | 13 |
Grey alder (Alnus incana (L.) Moench.) | 2 | 2 |
Pedunculate oak (Quercus robur L.) | - | 9 |
Black alder (Alnus glutinosa (L.) Gaertn.) | 2 | 7 |
European aspen (Populus tremula L.) | 4 | 1 |
Small-leaved lime (Tilia cordata Mill.) | - | 1 |
Land-Use Category | Arenosols | Luvisols | ||
---|---|---|---|---|
Mean Mass (t ha−1) | Mean SOC Concentrations (g kg−1) | Mean Mass (t ha−1) | Mean SOC Concentrations (g kg−1) | |
Afforested land, 1–10 years old a | 5.0 ± 0.6 | 349.6 ± 16.1 | 3.1 ± 0.6 | 342.8 ± 11.5 |
Grassland b | 2.2 ± 0.5 | 378.4 ± 15.9 | 0.0 ± 0.0 | n.d. c |
Coniferous, 1–10 years old | 5.6 ± 1.0 | 374.2 ± 18.4 | 4.0 ± 1.1 | 350.0 ± 13.6 |
Grassland | 2.4 ± 0.0 | 357.1 ± 0.0 | 0.0 ± 0.0 | n.d. |
Deciduous, 1–10 years old | 4.3 ± 0.7 | 331.6 ± 23.7 | 2.2 ± 0.5 | 336.2 ± 18.6 |
Grassland | 2.1 ± 0.9 | 389.0 ± 20.5 | 0.0 ± 0.0 | n.d. |
Afforested land, 11–20 years old | 8.4 ± 0.8 | 354.3 ± 9.7 | 6.3 ± 0.8 | 337.7 ± 11.4 |
Grassland | 1.7 ± 0.7 | 391.7 ± 12.1 | 2.6 ± 0.5 | 354.2 ± 4.7 |
Coniferous, 11–20 years old | 10.3 ± 0.9 | 338.4 ± 9.3 | 6.8 ± 1.4 | 332.4 ± 13.9 |
Grassland | 1.7 ± 0.7 | 391.7 ± 12.1 | 3.4 ± 0.0 | 358.9 ± 0.0 |
Deciduous, 11–20 years old | 6.2 ± 0.8 | 375.0 ± 17.3 | 5.7 ± 0.8 | 343.0 ± 18.7 |
Grassland | 0.0 ± 0.0 | n.d. | 2.4 ± 0.5 | 354.2 ± 4.7 |
Afforested land, 21–30 years old | 13.5 ± 1.7 | 387.1 ± 8.4 | 7.3 ± 0.9 | 343.0 ± 10.4 |
Grassland | 1.22 ± 0.0 | 368.5 ± 0.0 | 0.0 ± 0.0 | n.d. |
Coniferous, 21–30 years old | 16.3 ± 2.0 | 387.1 ± 10.9 | 10.0 ± 1.2 | 337.2 ± 16.0 |
Grassland | 0.0 ± 0.0 | n.d. | 0.0 ± 0.0 | n.d. |
Deciduous, 21–30 years old | 7.4 ± 1.1 | 387.1 ± 13.3 | 5.4 ± 1.1 | 347.2 ± 15.0 |
Grassland | 1.2 ± 0.0 | 368.5 ± 0.0 | 0.0 ± 0.0 | n.d. |
Land-Use Category | Bulk Density (g cm−3) | |||
---|---|---|---|---|
Arenosols | Luvisols | |||
0–10 cm | 10–30 cm | 0–10 cm | 10–30 cm | |
Afforested land, 1–10 years old a | 1.20 ± 0.03 | 1.35 ± 0.03 | 1.31 ± 0.03 | 1.50 ± 0.02 |
Control b | 1.21 ± 0.03 | 1.35 ± 0.02 | 1.32 ± 0.03 | 1.49 ± 0.02 |
Coniferous, 1–10 years old | 1.21 ± 0.04 a | 1.31 ± 0.04 a | 1.31 ± 0.04 ab | 1.48 ± 0.03 a |
Cropland | 1.17 ± 0.05 a | 1.35 ± 0.02 a | 1.37 ± 0.07 b | 1.52 ± 0.04 a |
Grassland | 1.30 ± 0.05 b | 1.37 ± 0.04 a | 1.25 ± 0.06 a | 1.44 ± 0.06 a |
Deciduous, 1–10 years old | 1.20 ± 0.06 a | 1.38 ± 0.05 a | 1.32 ± 0.04 ab | 1.51 ± 0.02 a |
Cropland | 1.21 ± 0.08 a | 1.38 ± 0.04 a | 1.42 ± 0.05 b | 1.50 ± 0.03 a |
Grassland | 1.14 ± 0.05 a | 1.30 ± 0.05 a | 1.23 ± 0.05 a | 1.50 ± 0.04 a |
Afforested land, 11–20 years old | 1.11 ± 0.02 | 1.27 ± 0.03 | 1.19 ± 0.02 | 1.41 ± 0.03 |
Control | 1.18 ± 0.03 | 1.31 ± 0.03 | 1.36 ± 0.04 | 1.53 ± 0.02 |
Coniferous, 11–20 years old | 1.09 ± 0.03 a | 1.25 ± 0.03 a | 1.19 ± 0.04 a | 1.45 ± 0.04 a |
Cropland | 1.14 ± 0.04 b | 1.26 ± 0.03 a | 1.48 ± 0.02 b | 1.61 ± 0.05 b |
Grassland | 1.08 ± 0.07 a | 1.26 ± 0.07 a | 1.26 ± 0.12 a | 1.54 ± 0.03 ab |
Deciduous, 11–20 years old | 1.14 ± 0.03 a | 1.30 ± 0.04 a | 1.18 ± 0.02 a | 1.37 ± 0.03 a |
Cropland | 1.35 ± 0.06 b | 1.42 ± 0.05 a | 1.46 ± 0.03 b | 1.47 ± 0.04 a |
Grassland | 1.17 ± 0.06 a | 1.33 ± 0.05 a | 1.27 ± 0.05 a | 1.48 ± 0.05 a |
Afforested land, 21–30 years old | 1.14 ± 0.03 | 1.29 ± 0.02 | 1.20 ± 0.04 | 1.37 ± 0.03 |
Control | 1.30 ± 0.03 | 1.40 ± 0.02 | 1.41 ± 0.02 | 1.52 ± 0.03 |
Coniferous, 21–30 years old | 1.19 ± 0.03 a | 1.31 ± 0.03 a | 1.17 ± 0.07 a | 1.38 ± 0.06 a |
Cropland | 1.27 ± 0.03 ab | 1.39 ± 0.03 a | 1.45 ± 0.01 b | 1.52 ± 0.02 a |
Grassland | 1.34 ± 0.05 b | 1.44 ± 0.03 a | 1.37 ± 0.03 b | 1.46 ± 0.07 a |
Deciduous, 21–30 years old | 1.07 ± 0.04 a | 1.26 ± 0.04 | 1.22 ± 0.04 | 1.37 ± 0.04 |
Cropland | 1.33 ± 0.04 b | 1.42 ± 0.04 | 1.41 ± 0.02 | 1.56 ± 0.04 |
Grassland | 1.05 a | 1.24 | n.d. c | n.d. |
Land-Use Category | Mean SOC Concentration (g kg−1) | |||
---|---|---|---|---|
Arenosols | Luvisols | |||
0–10 cm | 10–30 cm | 0–10 cm | 10–30 cm | |
Afforested land, 1–10 years old a | 16.8 ± 2.0 | 12.7 ± 1.6 | 17.9 ± 1.7 | 12.2 ± 1.0 |
Control b | 19.1 ± 2.1 | 15.4 ± 2.1 | 20.7 ± 3.6 | 14.8 ± 2.8 |
Coniferous, 1–10 years old | 15.1 ± 2.9 a | 11.7 ± 2.4 a | 17.8 ± 2.8 a | 11.8 ± 1.5 a |
Cropland | 13.9 ± 4.1 a | 17.2 ± 5.7 a | 12.1 ± 2.7 a | 11.2 ± 1.5 a |
Grassland | 14.4 ± 3.1 a | 11.6 ± 3.2 a | 33.8 ± 12.3 b | 23.8 ± 12.8 b |
Deciduous, 1–10 years old | 18.3 ± 2.9 a | 13.6 ± 2.2 a | 18.0 ± 2.2 a | 12.6 ± 1.3 a |
Cropland | 21.6 ± 3.9 a | 20.2 ± 5.7 a | 11.5 ± 3.0 a | 12.2 ± 1.8 a |
Grassland | 26.0 ± 3.9 a | 13.8 ± 2.2 a | 28.2 ± 5.0 b | 13.6 ± 1.8 a |
Afforested land, 11–20 years old | 18.9 ± 1.7 | 15.1 ± 1.7 | 20.5 ± 2.0 | 13.4 ± 1.2 |
Control | 19.8 ± 2.0 | 16.5 ± 1.7 | 23.4 ± 4.3 | 15.0 ± 2.9 |
Coniferous, 11–20 years old | 21.3 ± 2.0 a | 15.2 ± 2.0 a | 21.8 ± 3.3 a | 13.6 ± 2.1 a |
Cropland | 20.9 ± 3.0 a | 18.5 ± 3.2 a | 12.6 ± 1.3 a | 9.0 ± 1.4 a |
Grassland | 28.6 ± 4.5 b | 20.1 ± 3.4 a | 21.1 ± 3.2 a | 11.7 ± 2.3 a |
Deciduous, 11–20 years old | 15.8 ± 2.7 a | 15.0 ± 3.2 a | 19.2 ± 2.3 a | 13.2 ± 1.5 a |
Cropland | 12.2 ± 1.4 a | 11.5 ± 1.7 a | 17.9 ± 4.5 a | 15.9 ± 3.1 a |
Grassland | 16.8 ± 3.6 a | 14.9 ± 4.6 a | 28.3 ± 8.5 b | 21.6 ± 8.5 b |
Afforested land, 21–30 years old | 17.3 ± 2.4 | 12.1 ± 1.8 | 23.1 ± 2.3 | 15.3 ± 2.3 |
Control | 14.8 ± 1.8 | 11.4 ± 1.3 | 17.1 ± 2.6 | 11.9 ± 1.6 |
Coniferous, 21–30 years old | 15.3 ± 2.6 a | 9.8 ± 1.5 a | 25.3 ± 4.6 b | 15.4 ± 2.1 a |
Cropland | 12.6 ± 2.5 a | 13.1 ± 2.4 a | 11.3 ± 1.1 a | 17.3 ± 1.8 a |
Grassland | 15.5 ± 3.3 a | 8.6 ± 2.6 a | 22.5 ± 5.6 b | 14.9 ± 2.1 a |
Deciduous, 21–30 years old | 21.0 ± 4.7 a | 16.4 ± 3.8 | 21.6 ± 3.2 | 15.3 ± 3.5 |
Cropland | 14.5 ± 3.4 a | 9.8 ± 0.4 | 16.4 ± 3.8 | 7.3 ± 1.5 |
Grassland | 31.2 b | 22.4 | n.d. | n.d. |
Land-Use Category | Arenosols | Luvisols | ||||
---|---|---|---|---|---|---|
n | Mean SOC Stocks (t ha−1) | National SOC Values (t ha−1) b | n | Mean SOC Stocks (t ha−1) | National SOC Values (t ha−1) b,c | |
Afforested land, 1–10 years old a | 23 | 50.9 ± 4.6 a | - | 22 | 59.1 ± 4.0 ab | - |
Cropland | 10 | 69.8 ± 11.9 a | - | 13 | 51.2 ± 5.5 a | - |
Grassland | 9 | 55.5 ± 6.4 a | - | 9 | 69.6 ± 7.8 b | - |
Afforested land, 11–20 years old | 22 | 57.5 ± 4.9 a | - | 21 | 60.3 ± 4.8 ab | - |
Cropland | 12 | 60.5 ± 6.5 a | - | 12 | 58.1 ± 7.7 a | - |
Grassland | 11 | 68.1 ± 8.9 a | - | 10 | 71.8 ± 8.8 b | - |
Afforested land, 21–30 years old | 22 | 46.3 ± 5.1 a | - | 18 | 61.4 ± 4.3 ab | - |
Cropland | 11 | 49.4 ± 5.7 a | - | 14 | 53.3 ± 6.4 a | - |
Grassland | 9 | 51.5 ± 11.5 a | - | 8 | 73.5 ± 12.1 b | - |
Afforested land, 1–30 years old | 67 | 51.8 ± 2.8 a | 55.7 d | 61 | 60.2 ± 2.5 ab | 96.2 d |
Cropland | 33 | 58.8 ± 4.6 a | 62.0 | 39 | 54.1 ± 3.7 a | 67.0 |
Grassland | 29 | 59.1 ± 4.8 a | 55.3 | 26 | 70.2 ± 5.1 b | 77.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varnagirytė-Kabašinskienė, I.; Žemaitis, P.; Armolaitis, K.; Stakėnas, V.; Urbaitis, G. Soil Organic Carbon Stocks in Afforested Agricultural Land in Lithuanian Hemiboreal Forest Zone. Forests 2021, 12, 1562. https://doi.org/10.3390/f12111562
Varnagirytė-Kabašinskienė I, Žemaitis P, Armolaitis K, Stakėnas V, Urbaitis G. Soil Organic Carbon Stocks in Afforested Agricultural Land in Lithuanian Hemiboreal Forest Zone. Forests. 2021; 12(11):1562. https://doi.org/10.3390/f12111562
Chicago/Turabian StyleVarnagirytė-Kabašinskienė, Iveta, Povilas Žemaitis, Kęstutis Armolaitis, Vidas Stakėnas, and Gintautas Urbaitis. 2021. "Soil Organic Carbon Stocks in Afforested Agricultural Land in Lithuanian Hemiboreal Forest Zone" Forests 12, no. 11: 1562. https://doi.org/10.3390/f12111562
APA StyleVarnagirytė-Kabašinskienė, I., Žemaitis, P., Armolaitis, K., Stakėnas, V., & Urbaitis, G. (2021). Soil Organic Carbon Stocks in Afforested Agricultural Land in Lithuanian Hemiboreal Forest Zone. Forests, 12(11), 1562. https://doi.org/10.3390/f12111562