Root Foraging Ability for Phosphorus in Different Genotypes Taxodium ‘Zhongshanshan’ and Their Parents under Phosphorus Deficiency
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Design
2.3. Plants Measurements
2.4. Statistical Analysis
3. Results
3.1. Interactive Effects of Experimental Materials and P Levels
3.2. Changes of Root Morphology
3.3. Changes of Plant Growth
3.4. Changes of Root–Shoot Ratio
3.5. Changes of Plant P Contents
3.6. Correlation Analysis
3.7. Comprehensive Evaluation of Root P-Foraging Ability
3.8. Stepwise Regression Analysis
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kvakić, M.; Pellerin, S.; Ciais, P.; Achat, D.L.; Augusto, L.; Denoroy, P.; Gerber, J.S.; Goll, D.; Mollier, A.; Mueller, N.D.; et al. Quantifying the Limitation to World Cereal Production Due To Soil Phosphorus Status. Glob. Biogeochem. Cycles 2018, 32, 143–157. [Google Scholar] [CrossRef]
- Van der Salm, C.; Kros, J.; de Vries, W. Evaluation of different approaches to describe the sorption and desorption of phosphorus in soils on experimental data. Sci. Total Environ. 2016, 571, 292–306. [Google Scholar] [CrossRef]
- Xu, X.; Qiu, H.; Zhou, X. The absorption, Translocation and Metabolism of Phosphorus of Plant. J. Shandong Agric. Univ. 2001, 3, 397–400. [Google Scholar]
- Zhao, Q.; Zeng, D. Phosphorus cycling in terrestrial ecosystems and its controlling factors. Acta Phytoecol. Sin. 2005, 1, 153–163. [Google Scholar]
- Miguel, M.A.; Postma, J.A.; Lynch, J.P. Phene Synergism between Root Hair Length and Basal Root Growth Angle for Phosphorus Acquisition. Plant Physiol. 2015, 167, 1430–1439. [Google Scholar] [CrossRef]
- Yu, J.; Yin, D.; Wu, J.; Zhou, C.; Ma, X. A review of Adaptation Mechanism of Trees under low Phosphorus stress. World For. Res. 2007, 30, 18–23. [Google Scholar]
- Gu, X. Effects of Planting Methods and Nitrogen Application Rate on Soil Environment and Yield of Winter Rapeseed. Ph.D. Thesis, Northwest Agriculture and Forestry University, Xianyang, China, 2018. [Google Scholar]
- Cathcart, J.B. World phosphate reserves and resources. In The Role of Phosphorus in Agriculture; Khasawneh, F.E., Sample, E.C., Kamprath, E.J., Eds.; American Society of Agronomy: Madison, WI, USA, 1980; pp. 1–18. [Google Scholar]
- Li, Y.; Xiao, Z. China’s Forestland Soil Pollution, Degradation, Erosion Problems and Countermeasures. For. Econ. 2015, 37, 3–15. [Google Scholar]
- Kale, R.R.; Anila, M.; Swamy, H.M.; Bhadana, V.P.; Rani, C.V.D.; Senguttuvel, P.; Sundaram, R.M. Morphological and molecular screening of rice germplasm lines for low soil P tolerance.Journal of plant biochemistry and biotechnology. J. Plant Biochem. Biotechnol. 2020, 10, 1–12. [Google Scholar]
- Lambers, H.; Plaxton, W.C. Phosphorus:Back to the roots. Annu. Plant Rev. 2015, 48, 3–22. [Google Scholar]
- Da Silva, A.; Bruno, I.P.; Franzini, V.I.; Marcante, N.C.; Benitiz, L.; Muraoka, T. Phosphorus uptake efficiency, root morphology and architecture in Brazilian wheat cultivars. J. Radioanal. Nucl. Chem. 2016, 7, 1055–1063. [Google Scholar] [CrossRef]
- Yao, J.; Zhou, Z.; Chu, X. Effect of neighborhood competition on dry matter accumulation, nitrogen and phosphorus efficiency of three provenances of Schima superba in a heterogeneous nutrient environment. Acta Ecol. Sin. 2018, 38, 1780–1788. [Google Scholar]
- He, X.; Qi, B.; Wang, M.; Sun, Y. Differences in Biomass and Phosphorus Nutrition of Oats with Different Phosphorus Efficiency under Low Phosphorus Stress. Mol. Plant Breed. 2019, 38, 1780–1788. [Google Scholar]
- Xu, X.; Zhang, Y. Research progress on the root adaptation mechanism of plants under low phosphorus stress. Jiangsu J. Agric. Sci. 2018, 34, 1425–1429. [Google Scholar]
- Liu, P.; Wu, A.; Wang, J. Study on Phosphorus Use Efficiency and Phosphorus Remobilization Characteristics of Four Different Sorghum Genotypes. J. Shanxi Agric. Sci. 2018, 46, 344–349. [Google Scholar]
- Li, T.; Ye, D.; Zhang, X.; Guo, J. Research advances on response characteristics of plants to different forms of phosphorus. J. Plant Nutr. Fertil. 2017, 23, 1536–1546. [Google Scholar]
- Wu, W.; Wang, P.; Chen, N. Root foraging ability for phosphorus of different Chinese fir family seedlings under low phosphorus supply. J. Fujian Agric. For. Univ. 2019, 48, 174–181. [Google Scholar]
- Aziz, T.; Steffens, D.; Rahmatullah; Schubert, S. Variation in phosphorus efficiency among brassica cultivars II:Changes in root morphology and carboxylate exudation. J. Plant Nutr. 2011, 34, 2127–2138. [Google Scholar] [CrossRef]
- Wang, Z.; Hua, J.; Yin, Y. An Integrated Transcriptome and Proteome Analysis Reveals Putative Regulators of Adventitious Root Formation in Taxodium ‘Zhongshanshan’. Int. J. Mol. Sci. 2019, 20, 1225. [Google Scholar] [CrossRef]
- Yu, C.; Xu, S.; Yin, Y. Transcriptome analysis of the Taxodium ‘Zhongshanshan 405’ roots in response to salinity stress. Plant Physiol. Biochem. 2016, 100, 156–165. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, C.; Xuan, L.; Hua, J.; Shi, Q.; Fan, W.; Yin, Y.; Yu, F. Identification of suitable reference genes in Taxodium ‘Zhongshanshan’ under abiotic stresses. Trees 2017, 31, 1519–1530. [Google Scholar] [CrossRef]
- Qi, B.; Yang, Y.; Yin, Y.; Xu, M.; Li, H. De novo sequencing, assembly, and analysis of the Taxodium‘Zhongshansa’roots and shoots transcriptome in response to short-term waterlogging. BMC Plant Biol. 2014, 14, 201. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, L.; Zhang, Q. Effects of waterlogging stress on photosynthesis and fluorescence of Taxodium hybrid. J. Fujian Agric. For. Univ. 2019, 48, 447–452. [Google Scholar]
- Shi, Q.; Yin, Y.; Wang, Z. Response in cuttings of Taxodium hybrid‘Zhongshanshan’and their parents to drought and re-hydration. Chin. J. Appl. Ecol. 2016, 27, 3435–3443. [Google Scholar]
- Yu, C.; Xu, J.; Lu, Z.; Yin, Y. A regional experiment of new cultivars of Taxodium mucronatum hybrid. South China For. Sci. 2015, 43, 27–30. [Google Scholar] [CrossRef]
- Yin, Y.; Chen, Y.; Chaoguang, Y.U. Breeding and popularization of new hybrid varieties of Taxodium Rich. Trees Sci. Technol. Achiev. 2013. [Google Scholar]
- Xu, J.; Yin, Y.; Hua, J. Analysis on Growth Characteristics of Three Taxodium mucronatum Hybrids. Mod. Agric. Sci. Technol. 2015, 24, 144–146, 150. [Google Scholar]
- Li, C.; Wang, J.; Chen, X. Experimental study on introduction of Taxodium hybrid‘Zhongshanshan’. J. Hebei For. Sci. Technol. 2012, 2, 9–12. [Google Scholar]
- Guo, J.; Shi, Q.; Xiong, Y.; Yin, Y.; Hua, J. Effects of salt-alkaline mixed stress on growth and photosynthetic characteristics of Taxodium hybrid ‘Zhongshanshan 406’. J. Nanjing For. Univ. 2019, 43, 61–68. [Google Scholar]
- Shen, J.; Mao, D. Methods of Plant Nutrition Research; China Agricultural University Press: Beijing, China, 2011. [Google Scholar]
- Yang, S.; Zhang, H.X.; Yang, X.Y.; Chen, Q.X.; Wu, H.W. Differential Growth Performance of Elaeagnus angustifolia Provenances under NaCl Stress. Sci. Silvae Sin. 2015, 51, 51–58. [Google Scholar]
- Chen, W.; OuYang, Z.; OuYang, S.; Li, Z.; He, Y. Effects of low phosphorus stress on growth and biomass of phyllostachys alba. Huannan For. Sci. Technol. 2020, 47, 25–30. [Google Scholar]
- Xu, J.; Li, Q.; Wu, W.; Rashid Muhammad, H.U.; Ma, X.; Wu, P. Effects of vertical phosphor competition on root growth and biomass allocation of Chinese fir. Acta Ecol. Sin. 2019, 39, 2071–2081. [Google Scholar]
- Yu, C.; Yin, Y.; Xu, J. Four hybrid varieties of Taxodium. Sci. Silvae Sin. 2011, 47, 181–182. (In Chinese) [Google Scholar]
- Hua, J.; Yin, Y.; Zhou, D.; Yu, C.; Xu, J. Effects of soil water conditions on growth and physiology of Taxodium ‘Zhongshanshan 406’. J. Ecol. Rural Environ. 2011, 6, 10. [Google Scholar]
- Yuan, J. Study on Adaptive Mechanism of Camellia Oleifera to Low-Phosphorus Environment. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2013. [Google Scholar]
- Li, B.; Xiao, K.; Li, Y. The genotypic differences in photosynthetic characteristics of wheat to low- phosphorous stress. J. Agric. Univ. Hebei. 2002, 1, 5–9. [Google Scholar]
- Haynes, R.J. Active ion uptake and maintenance of cationanion balance: A critical examination of their role in regulating rhizosphere pH. Plant Soil 1990, 126, 247–264. [Google Scholar] [CrossRef]
- Jones, D.L.; Darrah, P.R. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 1994, 166, 247–257. [Google Scholar] [CrossRef]
- Hinsinger, P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil 2001, 237, 173–195. [Google Scholar] [CrossRef]
Plants | Basal Diameter/mm | Plant Height/cm | Biomass/g |
---|---|---|---|
T.mucronatum | 3.21 ± 0.81 | 18.42 ± 2.7 | 1.87 ± 0.6 |
T.distichum | 4.26 ± 0.9 | 23.31 ± 4.25 | 3.6 ± 1.76 |
T.‘Zhongshanshan’118 | 3.39 ± 0.69 | 13.33 ± 3.75 | 2.42 ± 1.31 |
T.‘Zhongshanshan’302 | 4.37 ± 1.00 | 19.07 ± 3.19 | 3.24 ± 1.79 |
T.‘Zhongshanshan’406 | 4.68 ± 1.19 | 23.18 ± 4.22 | 4.82 ± 1.72 |
Mean value | 4 ± 1.09 | 19.54 ± 5.13 | 3.21 ± 1.81 |
Indicators | Materials | P Level | Materials × P Level | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
Root length | 32.720 | 0.000 | 2.248 | 0.070 | 0.637 | 0.846 |
Root surface area | 26.770 | 0.000 | 2.668 | 0.037 | 0.703 | 0.784 |
Root volume | 27.036 | 0.000 | 0.886 | 0.476 | 1.232 | 0.259 |
Net biomass | 13.512 | 0.000 | 7.496 | 0.000 | 1.308 | 0.209 |
Net basal diameter | 7.316 | 0.000 | 1.284 | 0.282 | 2.106 | 0.014 |
Net plant height | 5.103 | 0.001 | 15.109 | 0.000 | 2.571 | 0.002 |
Root-shoot ratio (fresh weight) | 12.724 | 0.000 | 32.825 | 0.000 | 3.719 | 0.000 |
Root-shoot ratio (dry weight) | 14.362 | 0.000 | 25.047 | 0.000 | 5.179 | 0.000 |
P content of aboveground | 2.451 | 0.051 | 14.717 | 0.000 | 1.315 | 0.203 |
P content of underground | 3.076 | 0.020 | 12.224 | 0.000 | 2.249 | 0.008 |
P content of whole plant | 1.528 | 0.200 | 5.373 | 0.001 | 2.010 | 0.019 |
Indicators | Measuring Range | T.Mucronatum | T.Distichum | T.‘Zhongshanshan’118 | T.‘Zhongshanshan’302 | T.‘Zhongshanshan’406 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | ||
Root length (cm) | 0 < Root length ≤ 0.500 | 0.593 | 0.672 | 0.973 | 0.445 | 1.29 | 0.311 | 2.086 | 0.121 | 3.609 | 0.023 |
0.500 < Root length ≤ 1.000 | 3.900 | 0.018 | 0.718 | 0.590 | 0.320 | 0.861 | 0.279 | 0.888 | 1.467 | 0.250 | |
1.000 < Root length ≤ 1.500 | 1.548 | 0.229 | 0.988 | 0.438 | 0.696 | 0.604 | 1.589 | 0.216 | 1.070 | 0.398 | |
1.500 < Root length ≤ 2.000 | 0.72 | 0.589 | 2.13 | 0.117 | 0.624 | 0.651 | 1.449 | 0.255 | 2.171 | 0.109 | |
2.000 < Root length ≤ 2.500 | 0.787 | 0.548 | 1.639 | 0.206 | 0.727 | 0.585 | 0.878 | 0.495 | 1.808 | 0.167 | |
2.500 < Root length ≤ 3.000 | 0.173 | 0.949 | 2.068 | 0.125 | 0.607 | 0.662 | 1.022 | 0.420 | 1.173 | 0.352 | |
Root length > 3.000 | 0.668 | 0.622 | 1.632 | 0.207 | 0.785 | 0.550 | 0.986 | 0.438 | 1.807 | 0.167 | |
Root surface area (cm2) | 0 < Root surface area ≤ 0.500 | 0.702 | 0.600 | 0.929 | 0.468 | 1.422 | 0.267 | 1.952 | 0.141 | 2.82 | 0.053 |
0.500 < Root surface area ≤ 1.000 | 3.829 | 0.019 | 0.743 | 0.574 | 0.317 | 0.863 | 0.275 | 0.890 | 1.418 | 0.264 | |
1.000 < Root surface area ≤ 1.500 | 1.435 | 0.261 | 0.963 | 0.45 | 0.698 | 0.604 | 1.611 | 0.210 | 1.168 | 0.355 | |
1.500 < Root surface area ≤ 2.000 | 0.731 | 0.582 | 2.125 | 0.117 | 0.644 | 0.638 | 1.449 | 0.255 | 2.140 | 0.113 | |
2.000 < Root surface area ≤ 2.500 | 0.778 | 0.553 | 1.646 | 0.204 | 0.716 | 0.592 | 0.851 | 0.510 | 1.798 | 0.169 | |
2.500 < Root surface area ≤ 3.000 | 0.161 | 0.955 | 2.019 | 0.133 | 0.598 | 0.669 | 1.002 | 0.430 | 1.179 | 0.350 | |
Root surface area > 3.000 | 0.636 | 0.643 | 1.648 | 0.204 | 0.757 | 0.567 | 0.989 | 0.436 | 1.785 | 0.171 | |
Root volume (cm3) | 0 < Root volume ≤ 0.500 | 0.941 | 0.462 | 0.892 | 0.488 | 1.383 | 0.279 | 1.827 | 0.163 | 2.105 | 0.118 |
0.500 < Root volume ≤ 1.000 | 3.717 | 0.021 | 0.76 | 0.564 | 0.315 | 0.864 | 0.291 | 0.881 | 1.352 | 0.286 | |
1.000 < Root volume ≤ 1.500 | 1.319 | 0.299 | 0.935 | 0.465 | 0.698 | 0.603 | 1.634 | 0.205 | 1.276 | 0.312 | |
1.500 < Root volume ≤ 2.000 | 0.743 | 0.575 | 2.117 | 0.118 | 0.663 | 0.625 | 1.453 | 0.254 | 2.110 | 0.117 | |
2.000 < Root volume ≤ 2.500 | 0.767 | 0.560 | 1.660 | 0.201 | 0.706 | 0.598 | 0.836 | 0.519 | 1.786 | 0.171 | |
2.500 < Root volume ≤ 3.000 | 0.151 | 0.960 | 1.968 | 0.140 | 0.588 | 0.675 | 0.988 | 0.437 | 1.184 | 0.348 | |
Root volume > 3.000 | 0.603 | 0.665 | 1.679 | 0.196 | 0.736 | 0.580 | 0.993 | 0.434 | 1.762 | 0.176 |
Indicators | Net Plant Height | Net Biomass | Net Basal Diameter | Root Volume | Root Surface Area | Root Length | Root–Shoot Ratio (Fresh Weight) | Root–Shoot Ratio (Dry Weight) | P Content of Whole Plant | P Content of Aboveground | P Content of Underground |
---|---|---|---|---|---|---|---|---|---|---|---|
Net plant height | 1 | ||||||||||
Net biomass | 0.635 ** | 1 | |||||||||
Net basal diameter | 0.206 | 0.114 | 1 | ||||||||
Root volume | 0.097 | 0.634 ** | 0.050 | 1 | |||||||
Root surface area | 0.228 | 0.515 ** | 0.449 * | 0.453 * | 1 | ||||||
Root length | −0.208 | 0.200 | −0.390 | 0.374 | 0.077 | 1 | |||||
Root–shoot ratio (fresh weight) | −0.648 ** | −0.560 ** | 0.001 | −0.044 | −0.289 | −0.248 | 1 | ||||
Root–shoot ratio (dry weight) | −0.651 ** | −0.509 ** | 0.041 | −0.099 | −0.245 | −0.313 | 0.913 ** | 1 | |||
P content of whole plant | −0.492 * | 0.746 ** | −0.120 | 0.371 | 0.298 | 0.292 | −0.530 ** | −0.561 ** | 1 | ||
P content of aboveground | 0.398 * | 0.753 ** | 0.216 | 0.595 ** | 0.515 ** | 0.469 * | −0..345 | −0.416 * | 0.828 ** | 1 | |
P content of underground | 0.386 | 0.391 | −0.506 ** | 0.088 | −0.176 | −0.112 | −0.402 * | −0.274 | 0.501 * | 0.039 | 1 |
Plants | Evaluation D | ||||
---|---|---|---|---|---|
P15 | P10 | P5 | P0 | Mean Value (D) | |
T.mucronatum | 0.516 | 0.659 | 0.708 | 0.513 | 0.599 |
T.distichum | 0.588 | 0.305 | 0.326 | 0.571 | 0.448 |
T.‘Zhongshanshan’118 | 0.481 | 0.560 | 0.605 | 0.108 | 0.439 |
T.‘Zhongshanshan’302 | 0.424 | 0.443 | 0.268 | 0.738 | 0.468 |
T.‘Zhongshanshan’406 | 0.210 | 0.303 | 0.265 | 0.627 | 0.351 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, R.; Hua, J.; Yin, Y.; Wan, F. Root Foraging Ability for Phosphorus in Different Genotypes Taxodium ‘Zhongshanshan’ and Their Parents under Phosphorus Deficiency. Forests 2021, 12, 215. https://doi.org/10.3390/f12020215
Xie R, Hua J, Yin Y, Wan F. Root Foraging Ability for Phosphorus in Different Genotypes Taxodium ‘Zhongshanshan’ and Their Parents under Phosphorus Deficiency. Forests. 2021; 12(2):215. https://doi.org/10.3390/f12020215
Chicago/Turabian StyleXie, Rongxiu, Jianfeng Hua, Yunlong Yin, and Fuxu Wan. 2021. "Root Foraging Ability for Phosphorus in Different Genotypes Taxodium ‘Zhongshanshan’ and Their Parents under Phosphorus Deficiency" Forests 12, no. 2: 215. https://doi.org/10.3390/f12020215
APA StyleXie, R., Hua, J., Yin, Y., & Wan, F. (2021). Root Foraging Ability for Phosphorus in Different Genotypes Taxodium ‘Zhongshanshan’ and Their Parents under Phosphorus Deficiency. Forests, 12(2), 215. https://doi.org/10.3390/f12020215