Exploring Environmental and Economic Costs and Benefits of a Forest-Based Circular Economy: A Literature Review
Abstract
:1. Introduction
2. Methodology
2.1. Search and Selection of Relevant Studies
2.2. Exploration and Visualization of Keywords
3. Results
3.1. Descriptive Analysis
3.2. Keyword Network Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Winans, K.; Kendall, A.; Deng, H. The history and current applications of the circular economy concept. Renew. Sustain. Energy Rev. 2017, 68, 825–833. [Google Scholar] [CrossRef]
- European Commission (EC). Moving towards a Circular Economy with EMAS. Best Practices to Implement Circular Economy Strategies (with Case Study Examples); European Commission: Luxembourg, 2017. [Google Scholar]
- EMF. Growth within: A Circular Economy Vision for a Competitive Europe; Ellen MacArthur Foundation: Cowes, UK, 2015. [Google Scholar]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Loiseau, E.; Saikku, L.; Antikainen, R.; Droste, N.; Hansjürgens, B.; Pitkänen, K.; Leskinen, P.; Kuikman, P.; Thomsen, M. Green economy and related concepts: An overview. J. Clean Prod. 2016, 139, 361–371. [Google Scholar] [CrossRef]
- Proskurina, S.; Sikkema, R.; Heinimö, J.; Vakkilainen, E. Five years left—How are the EU member states contributing to the 20% target for EU’s renewable energy consumption; the role of woody biomass. Biomass Bioenergy 2016, 95, 64–77. [Google Scholar] [CrossRef]
- Van Buren, N.; Demmers, M.; van der Heijden, R.; Witlox, F. Towards a circular economy: The role of Dutch logistics industries and governments. Sustainability 2016, 8, 647. [Google Scholar] [CrossRef] [Green Version]
- Trigkas, M.; Itsos, G.; Lazaridou, D. Investigation of Factors Affecting Consumers’ Awareness on Circular Economy: Preliminary Evidence from Greece. J. Reg. Socio-Econ. Issues 2018, 8, 47–57. [Google Scholar]
- Tavares, C.S.; Martins, A.; Faleiro, M.L.; Graca Miguel, M.; Duarte, L.C.; Gameiro, J.A.; Roseiro, L.; Figueiredo, A.C. Bioproducts from forest biomass: Essential oils and hydrolates from wastes of Cupressus lusitanica Mill. and Cistus ladanifer L. Ind. Crop. Prod. 2020, 144. [Google Scholar] [CrossRef]
- Husgafvel, R.; Linkosalmi, L.; Hughes, M.; Kanerva, J.; Dahl, O. Forest sector circular economy development in Finland: A regional study on sustainability driven competitive advantage and an assessment of the potential for cascading recovered solid wood. J. Clean. Prod. 2018, 181, 483–497. [Google Scholar] [CrossRef]
- Jarre, M.; Petit-Boix, A.; Priefer, C.; Meyer, R.; Leipold, S. Transforming the bio-based sector towards a circular economy—What can we learn from wood cascading? For. Policy Econ. 2020, 110. [Google Scholar] [CrossRef]
- Hetemäki, L.; Palahì, M.; Nasi, R. Seeing the Wood in the Forests; European Forest Institute (EFI): Joensuu, Finland, 2020. [Google Scholar]
- D’Amato, D.; Veijonaho, S.; Toppinen, A. Towards sustainability? Forest-based circular bioeconomy business models in Finnish SMEs. For. Policy Econ. 2020, 110. [Google Scholar] [CrossRef]
- Temmes, A.; Peck, P. Do forest biorefineries fit with working principles of a circular bioeconomy? A case of Finnish and Swedish initiatives. For. Policy Econ. 2020, 110. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. VOSviewer Manual; Leiden University: Leiden, The Netherlands, 2020. [Google Scholar]
- European Commission (EC). Closing the Loop: An Action Plan for the Circular Economy; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- European Commission (EC). Commission Staff Working Document. Multi-Annual Implementation Plan of the New EU Forest Strategy; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Hamelin, L.; Borzęcka, M.; Kozak, M.; Pudełko, R. A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27. Renew. Sustain. Energy Rev. 2019, 100, 127–142. [Google Scholar] [CrossRef]
- D’Amato, D.; Bartkowski, B.; Droste, N. Reviewing the interface of bioeconomy and ecosystem service research. Ambio 2020, 49, 1878–1896. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, D.; Korhonen, J.; Toppinen, A. Circular, Green, and Bio Economy: How Do Companies in Land-Use Intensive Sectors Align with Sustainability Concepts? Ecol. Econ. 2019, 158, 116–133. [Google Scholar] [CrossRef]
- Näyhä, A. Transition in the Finnish forest-based sector: Company perspectives on the bioeconomy, circular economy and sustainability. J. Clean. Prod. 2019, 209, 1294–1306. [Google Scholar] [CrossRef]
- Molina-Moreno, V.; Leyva-Díaz, J.C.; Sánchez-Molina, J. Pellet as a technological nutrient within the circular economy model: Comparative analysis of combustion efficiency and CO and NOx emissions for pellets from olive and almond trees. Energies 2016, 9, 777. [Google Scholar] [CrossRef] [Green Version]
- Cruz, N.C.; Rodrigues, S.M.; Carvalho, L.; Duarte, A.C.; Pereira, E.; Römkens, P.F.A.M.; Tarelho, L.A.C. Ashes from fluidized bed combustion of residual forest biomass: Recycling to soil as a viable management option. Environ. Sci. Pollut. Res. 2017, 24, 14770–14781. [Google Scholar] [CrossRef]
- Husgafvel, R.; Karjalainen, E.; Linkosalmi, L.; Dahl, O. Recycling industrial residue streams into a potential new symbiosis product–The case of soil amelioration granules. J. Clean. Prod. 2016, 135, 90–96. [Google Scholar] [CrossRef]
- Mosquera-Losada, M.; Santiago-Freijanes, J.; Rois-Díaz, M.; Moreno, G.; Herder, M.D.; Aldrey-Vázquez, J.; Ferreiro-Domínguez, N.; Pantera, A.; Pisanelli, A.; Rigueiro-Rodríguez, A. Agroforestry in Europe: A land management policy tool to combat climate change. Land Use Policy 2018, 78, 603–613. [Google Scholar] [CrossRef]
- Sierra-Pérez, J.; García-Pérez, S.; Blanc, S.; Boschmonart-Rives, J.; Gabarrell, X. The use of forest-based materials for the efficient energy of cities: Environmental and economic implications of cork as insulation material. Sustain. Cities Soc. 2018, 37, 628–636. [Google Scholar] [CrossRef] [Green Version]
- Voshell, S.; Mäkelä, M.; Dahl, O. A review of biomass ash properties towards treatment and recycling. Renew. Sustain. Energy Rev. 2018, 96, 479–486. [Google Scholar] [CrossRef]
- Hueso-González, P.; Martínez-Murillo, J.F.; Ruiz-Sinoga, J.D. Benefits of adding forestry clearance residues for the soil and vegetation of a Mediterranean mountain forest. Sci. Total Environ. 2018, 615, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Taskhiri, M.S.; Jeswani, H.; Geldermann, J.; Azapagic, A. Optimising cascaded utilisation of wood resources considering economic and environmental aspects. Comput. Chem. Eng. 2019, 124, 302–316. [Google Scholar] [CrossRef]
- Valverde, J.C.; Arias, D.; Campos, R.; Jiménez, M.F.; Brenes, L. Forest and agro-industrial residues and bioeconomy: Perception of use in the energy market in Costa Rica. Energy Ecol. Environ. 2020. [Google Scholar] [CrossRef]
- Pei, Z.; Zhu, N.; Gong, Y.A. study on cutting temperature for wood-plastic composite. J. Thermoplast. Compos. Mater. 2016, 29, 1627–1640. [Google Scholar] [CrossRef]
- Paredes-Sánchez, J.P.; Conde, M.; Gómez, M.A.; Alves, D. Modelling hybrid thermal systems for district heating: A pilot project in wood transformation industry. J. Clean. Prod. 2018, 194, 726–734. [Google Scholar] [CrossRef]
- Modolo, R.C.E.; Senff, L.; Ferreira, V.M.; Tarelho, L.A.C.; Moraes, C.A.M. Fly ash from biomass combustion as replacement raw material and its influence on the mortars durability. J. Mater. Cycles Waste Manag. 2018, 20, 1006–1015. [Google Scholar] [CrossRef]
- Grohmann, D.; Petrucci, R.; Torre, L.; Micheli, M.; Menconi, M.E. Street trees’ management perspectives: Reuse of Tilia sp.’s pruning waste for insulation purposes. Urban For. Urban Green 2019, 38, 177–182. [Google Scholar] [CrossRef]
- Anton, J.M.C.; Oliver-Villanueva, J.V.; Pastor, J.V.T.; Jiménez, M.D.R.; Romero, J.A.G.; Cuquerella, J.M. Reduction of Phosphorous from Wastewater Through Adsorption Processes Reusing Wood and Straw Ash Produced in Bioenergy Facilities. Water Air Soil Pollut. 2020, 231. [Google Scholar] [CrossRef]
- Song, C.; Zhang, C.; Zhang, S.; Lin, H.; Kim, Y.; Ramakrishnan, M.; Du, Y.; Zhang, Y.; Zheng, H.; Barceló, D. Thermochemical liquefaction of agricultural and forestry wastes into biofuels and chemicals from circular economy perspectives. Sci. Total Environ. 2020, 749. [Google Scholar] [CrossRef]
- Torreiro, Y.; Pérez, L.; Piñeiro, G.; Pedras, F.; Rodríguez-Abalde, A. The role of energy valuation of agroforestry biomass on the circular economy. Energies 2020, 13, 2516. [Google Scholar] [CrossRef]
- Chen, W.; He, L.; Tian, S.; Masabn, J.; Zjang, R.; Zou, F.; Yuan, D. Combined addition of bovine bone and cow manure: Rapid composting of chestnut burrs and production of a high-quality chestnut seedling substrate. Agronomy 2020, 10, 288. [Google Scholar] [CrossRef] [Green Version]
- Cortina-Escribano, M.; Pihlava, J.M.; Miina, J.; Veteli, P.; Linnakoski, R.; Vanhanen, H. Effect of strain, wood substrate and cold treatment on the yield and β-glucan content of ganoderma lucidum fruiting bodies. Molecules 2020, 25, 4732. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Santos, P.; Zanuso, E.; Genisheva, Z.; Rocha, C.M.R.; Teixeira, J.A. Green and sustainable valorization of bioactive phenolic compounds from pinus by-products. Molecules 2020, 25, 2931. [Google Scholar] [CrossRef] [PubMed]
- Negro, M.J.; Álvarez, C.; Doménech, P.; Iglesias, R.; Ballesteros, I. Sugars production from municipal forestry and greening wastes pretreated by an integrated steam explosion-based process. Energies 2020, 13, 4432. [Google Scholar] [CrossRef]
- Bruno, M.R.; Russo, D.; Faraone, I.; D’Auria, M.; Milella, L.; Todaro, L. Orchard biomass residues: Chemical composition, biological activity and wood characterization of apricot tree (Prunus armeniaca L.). Biofuels Bioprod. Biorefining 2021. [Google Scholar] [CrossRef]
- Slavova, G.; Ivanova, M. Someone’s Garbage is someone else’s Treasure”-Cross-sectoral Integration in Circular Economy. In Proceedings of the 12th International Scientific Conference on Digitalisation and Circular Economy-WoodEMA, Varna, Bulgaria, 11–13 September 2019; pp. 61–66. [Google Scholar]
- Cantero, D.; Jara, R.; Navarrete, A.; Pelaz, L.; Queiroz, J.; Rodríguez-Rojo, S.; Cocero, M.J. Pretreatment processes of biomass for biorefineries: Current status and prospects. Annu. Rev. Chem. Biomol. Eng. 2019, 10, 289–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millward-Hopkins, J.; Purnell, P. Circulating blame in the circular economy: The case of wood-waste biofuels and coal ash. Energy Policy 2019, 129, 168–172. [Google Scholar] [CrossRef]
- Ouhimmou, M.; Rönnqvist, M.; Lapointe, L.A. Assessment of sustainable integration of new products into value chain through a generic decision support model: An application to the forest value chain. Omega 2021, 99. [Google Scholar] [CrossRef]
- Marini, F.; Zikeli, F.; Corona, P.; Vinciguerra, V.; Manetti, M.C.; Portoghesi, L.; Mugnozza, G.S.; Romagnoli, M. Impact of bio-based (Tannins) and nano-scale (CNC) additives on bonding properties of synthetic adhesives (PVAc and MUF) using chestnut wood from young coppice stands. Nanomaterials 2020, 10, 956. [Google Scholar] [CrossRef] [PubMed]
- Ianni, F.; Segoloni, E.; Blasi, F.; Di Maria, F. Low-molecular-weight phenols recovery by eco-friendly extraction from quercus spp. wastes: An analytical and biomass-sustainability evaluation. Processes 2020, 8, 387. [Google Scholar] [CrossRef] [Green Version]
- Pieratti, E.; Paletto, A.; De Meo, I.; Fagarazzi, C.; Giovannini, M.R.M. Assessing the forest-wood chain at local level: A multi-criteria decision analysis (MCDA) based on the circular bioeconomy principles. Ann. For. Res. 2019, 62, 123–138. [Google Scholar] [CrossRef]
- Dimic-Misic, K.; Barceló, E.; Brkić, V.S.; Gane, P. Identifying the challenges of implementing a European bioeconomy based on forest resources: Reality demands circularity. FME Trans. 2019, 47, 60–69. [Google Scholar] [CrossRef]
- Erni, M.; Burg, V.; Bont, L.; Thees, O.; Ferretti, M.; Stadelmann, G.; Schweier, J. Current (2020) and long-term (2035 and 2050) sustainable potentials of wood fuel in Switzerland. Sustainability 2020, 12, 9749. [Google Scholar] [CrossRef]
- Zhang, J. Study on the relationship between resources recycling and reduction as well as being harmless: A case of forest industrial enterprises. In Proceedings of the 2011 International Conference on Management Science and Industrial Engineering, MSIE 2011, Harbin, China, 8–11 January 2011; Volume 11, pp. 1232–1236. [Google Scholar] [CrossRef]
- Bais, A.L.S.; Lauk, C.; Kastner, T.; Erb, K. Global patterns and trends of wood harvest and use between 1990 and 2010. Ecol. Econ. 2015, 119, 326–337. [Google Scholar] [CrossRef]
- Buonocore, E.; Paletto, A.; Russo, G.F.; Franzese, P.P. Indicators of environmental performance to assess wood-based bioenergy production: A case study in Northern Italy. J. Clean. Prod. 2019, 221, 242–248. [Google Scholar] [CrossRef]
- Allegret, J.P.; Yakovleva, E.A.; Titova, E.V. Closed-loop economic model formation in the forest industry. IOP Conf. Ser. Earth Environ. Sci. 2020, 595. [Google Scholar] [CrossRef]
- Babuka, R.; Sujová, A.; Kupčák, V. Cascade use of wood in the Czech Republic. Forests 2020, 11, 681. [Google Scholar] [CrossRef]
- Beckmann, A.; Sivarajah, U.; Irani, Z. Circular economy versus planetary limits: A Slovak forestry sector case study. J. Enterp. Inf. Manag. 2020. [Google Scholar] [CrossRef]
- Lu, S.; Tang, X.; Guan, X.; Qin, F.; Liu, X.; Zhang, D. The assessment of forest ecological security and its determining indicators: A case study of the Yangtze River Economic Belt in China. J. Environ. Manag. 2020, 258. [Google Scholar] [CrossRef] [PubMed]
- Lazaridou, D.C. The association between financial subsidies and introduction of non-native plant species: The paradox of afforestation programmes. Int. J. Sustain. Dev. World Ecol. 2021, 1–9. [Google Scholar] [CrossRef]
- Trigkas, M.; Partalidou, M.; Lazaridou, D. Trust and Other Historical Proxies of Social Capital: Do They Matter in Promoting Social Entrepreneurship in Greek Rural Areas? J. Soc. Entrep. 2020. [Google Scholar] [CrossRef]
- Binbin, Y.; Peijun, T.; Yuechen, Z. Analysis on the effect of poverty alleviation based on walnut industry. Adv. J. Food Sci. Technol. 2015, 8, 499–504. [Google Scholar] [CrossRef]
- Soltero, V.M.; Rodríguez-Artacho, S.; Velázquez, R.; Chacartegui, R. Biomass universal district heating systems. E3S Web Conf. 2017, 22. [Google Scholar] [CrossRef] [Green Version]
- Si, C.; Xiaomei, Z. Optimization of regional forestry industrial structure and economic benefit based on deviation share and multi-level fuzzy comprehensive evaluation. J. Intell. Fuzzy Syst. 2019, 37, 145–157. [Google Scholar] [CrossRef]
- Gatti, M.P.; Indrigo, A. The roads, tracks, paths, and ropeways of the First World War: An opportunity to preserve, maintain, and valorize Alpine landscape. Sustainability 2020, 12, 1157. [Google Scholar] [CrossRef] [Green Version]
- Kampelmann, S. Wood works: How local value chains based on urban forests contribute to place-based circular economy. Urban Geogr. 2020, 41, 911–914. [Google Scholar] [CrossRef]
- Linser, S.; Lier, M. The contribution of sustainable development goals and forest-related indicators to national bioeconomy progress monitoring. Sustainability 2020, 12, 2898. [Google Scholar] [CrossRef] [Green Version]
- Refsgaard, K.; Kull, M.; Slätmo, E.; Meijer, M.W. Bioeconomy—A driver for regional development in the Nordic countries. New Biotechnol. 2021, 60, 130–137. [Google Scholar] [CrossRef]
- Trigkas, M.; Anastopoulos, C.; Papadopoulos, I.; Lazaridou, D. Business model for developing strategies of forest cooperatives. Evidence from an emerging business environment in Greece. J. Sustain. For. 2020, 39, 259–282. [Google Scholar] [CrossRef]
- Reim, W.; Parida, V.; Sjödin, D.R. Circular business models for the bio-economy: A review and new directions for future research. Sustainability 2019, 11, 2558. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, F.A.; Simioni, F.J.; Hoff, D.N. Diagnosis of circular economy in the forest sector in southern Brazil. Sci. Total Environ. 2020, 706. [Google Scholar] [CrossRef] [PubMed]
- Tate, W.L.; Bals, L.; Bals, C.; Foerstl, K. Seeing the forest and not the trees: Learning from nature’s circular economy. Resour. Conserv. Recycl. 2019, 149, 115–129. [Google Scholar] [CrossRef]
- Wang, Y.F.; Wang, R. Study on the forestry industrial cluster in Muling city. In Proceedings of the International Conference on Information Systems for Crisis Response and Management, Harbin, China, 25–27 November 2011; pp. 283–289. [Google Scholar] [CrossRef]
- Brunnhofer, M.; Gabriella, N.; Schöggl, J.P.; Stern, T.; Posch, A. The biorefinery transition in the European pulp and paper industry—A three-phase Delphi study including a SWOT-AHP analysis. For. Policy Econ. 2020, 110. [Google Scholar] [CrossRef]
- Desing, H.; Brunner, D.; Takacs, F.; Nahrath, S.; Frankenberger, K.; Hischier, R.A. circular economy within the planetary boundaries: Towards a resource-based, systemic approach. Resour. Conserv. Recycl. 2020, 155. [Google Scholar] [CrossRef]
- Mat’ová, H.; Kaputa, V.; Triznová, M. Responsible Consumer in the context of Circular Economy. In Proceedings of the 12th International Scientific Conference on Digitalisation and Circular Economy-WoodEMA, Varna, Bulgaria, 11–13 September 2019; pp. 69–74. [Google Scholar]
- Chobanova, R.; Kotseva, M.; Mouchurova, M. From Linear to Circular Economy: The Role OF Forests (Survey of WoodEMA associated publications). In Proceedings of the 12th International Scientific Conference on Digitalisation and Circular Economy-WoodEMA, Varna, Bulgaria, 11–13 September 2019; pp. 11–22. [Google Scholar]
- Šupín, M.; Loučanová, E.; Olšiaková, M. Sustainable Bioenergy Policy for the Period after 2020. In Proceedings of the 12th International Scientific Conference on Digitalisation and Circular Economy-WoodEMA, Varna, Bulgaria, 11–13 September 2019; pp. 315–320. [Google Scholar]
- Ladu, L.; Imbert, E.; Quitzow, R.; Morone, P. The role of the policy mix in the transition toward a circular forest bioeconomy. For. Policy Econ. 2020, 110. [Google Scholar] [CrossRef]
- Rogge, K.S.; Schleich, J. Do policy mix characteristics matter for low-carbon innovation? A survey-based exploration of renewable power generation technologies in Germany. Res Policy 2018, 47, 1639–1654. [Google Scholar] [CrossRef]
- Watanabe, C.; Naveed, N.; Neittaanmäki, P. Digitalized bioeconomy: Planned obsolescence-driven circular economy enabled by Co-Evolutionary coupling. Technol. Soc. 2019, 56, 8–30. [Google Scholar] [CrossRef] [Green Version]
- Risse, M.; Weber-Blaschke, G.; Richter, K. Resource efficiency of multifunctional wood cascade chains using LCA and exergy analysis, exemplified by a case study for Germany. Resour. Conserv. Recycl. 2017, 126, 141–152. [Google Scholar] [CrossRef]
- Vis, M.; Mantau, U.; Allen, B. (Eds.) Study on the Optimised Cascading Use of Wood; Final Report, No 394/PP/ENT/RCH/14/7689; EU: Brussels, Belgium, 2016. [Google Scholar]
- Bais-Moleman, A.L.; Sikkema, R.; Vis, M.; Reumerman, P.; Theurl, M.C.; Erb, K.-H. Assessing wood use efficiency and greenhouse gas emissions of wood product cascading in the European Union. J. Clean. Prod. 2018, 172, 3942–3954. [Google Scholar] [CrossRef]
- Castellani, V.; Sala, S.; Mirabella, N. Beyond the throwaway society: A life cycle-based assessment of the environmental benefit of reuse. Integr. Environ. Assess. 2015, 11, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Staffas, L.; Gustavsson, M.; McCormick, K. Strategies and policies for the bioeconomy and bio-based economy: An analysis of official national approaches. Sustainability 2013, 5, 2751–2769. [Google Scholar] [CrossRef] [Green Version]
- Buchmann-Duck, J.; Beazley, K.F. An urgent call for circular economy advocates to acknowledge its limitations in conserving biodiversity. Sci. Total Environ. 2020, 727. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.D.D.S.; Soares, B.; Mascarenhas, C.; Galvao, A. The (Forest) Waste as Source of new Companies and job Creation. In Proceedings of the 37th International Scientific Conference on Economic and Social Development, Baku, Azerbaijan, 14–15 February 2019; pp. 1354–1362. [Google Scholar]
- Pérez-Piqueres, A.; Moreno, R.; López-Martínez, M.; Albiach, R.; Ribó, M.; Canet-Castelló, R. Composts and Organic By-Products in Pinus halepensis Forestry. Front. Sustain. Food Syst. 2018, 2. [Google Scholar] [CrossRef]
- Tong, J.; Sun, X.; Li, S.; Qu, B.; Wan, L. Reutilization of green waste as compost for soil improvement in the afforested land of the Beijing Plain. Sustainability 2018, 10, 2376. [Google Scholar] [CrossRef] [Green Version]
- Garcia, R.; Alvarenga, R.A.F.; Huysveld, S.; Dewulf, J.; Allacker, K. Accounting for biogenic carbon and end-of-life allocation in life cycle assessment of multi-output wood cascade systems. J. Clean. Prod. 2020, 275. [Google Scholar] [CrossRef]
- Marques, A.; Cunha, J.; De Meyer, A.; Navare, K. Contribution towards a comprehensive methodology for wood-based biomass material flow analysis in a circular economy setting. Forests 2020, 11, 106. [Google Scholar] [CrossRef] [Green Version]
- European Commission (EC). Innovating for Sustainable Growth: A Bioeconomy for Europe; European Commission: Luxembourg, 2012. [Google Scholar]
- Toppinen, A.; Pätäri, S.; Tuppura, A.; Jantunen, A. The European pulp and paper industry in transition to a bio-economy: A Delphi study. Futures 2017, 88, 1–14. [Google Scholar] [CrossRef]
Authors | Title | Number of Citations | Journal |
---|---|---|---|
Hamelin et al. [19] | A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27 | 39 | Renewable Sustainable Energy Reviews |
D’Amato et al. [21] | Circular, Green, and Bio Economy: How Do Companies in Land-Use Intensive Sectors Align with Sustainability Concepts? | 31 | Ecological economics |
Näyhä [22] | Transition in the Finnish forest-based sector: Company perspectives on the bioeconomy, circular economy and sustainability | 24 | Journal of Cleaner Production |
Molina-Moreno et al. [23] | Pellet as a technological nutrient within the circular economy model: Comparative analysis of combustion efficiency and CO and NOx emissions for pellets from olive and almond trees | 23 | Energies |
D’Amato et al. [14] | Towards sustainability? Forest-based circular bioeconomy business models in Finnish SMEs | 22 | Forest policy and economics |
Husgafvel et al. [11] | Forest sector circular economy development in Finland: A regional study on sustainability driven competitive advantage and an assessment of the potential for cascading recovered solid wood | 19 | Journal of Cleaner Production |
Jarre et al. [12] | Transforming the bio-based sector towards a circular economy—What can we learn from wood cascading? | 18 | Forest Policy and Economics |
Cruz et al. [24] | Ashes from fluidized bed combustion of residual forest biomass: recycling to soil as a viable management option | 16 | Environmental Science and Pollution Research |
Husgafvel et al. [25] | Recycling industrial residue streams into a potential new symbiosis product—The case of soil amelioration granules | 15 | Journal of Cleaner Production |
Mosquera-Losada et al. [26] | Agroforestry in Europe: A land management policy tool to combat climate change | 14 | Land Use Policy |
Sierra-Pérez et al. [27] | The use of forest-based materials for the efficient energy of cities: Environmental and economic implications of cork as insulation material | 14 | Sustainable Cities and Society |
Voshell et al. [28] | A review of biomass ash properties towards treatment and recycling | 13 | Renewable and Sustainable Energy Reviews |
Hueso-Gonzalez et al. [29] | Benefits of adding forestry clearance residues for the soil and vegetation of a Mediterranean mountain forest | 11 | Science of The Total Environment |
Keyword | Co-Occurrence | Frequency (%) |
---|---|---|
Circular Economy | 26 | 17.33 |
Sustainability | 12 | 8.00 |
Biomass | 10 | 6.67 |
Bioeconomy | 8 | 5.33 |
Bioenergy | 8 | 5.33 |
Life Cycle Assessment—lca | 8 | 5.33 |
Systems | 8 | 5.33 |
Future | 6 | 4.00 |
Management | 7 | 4.67 |
Technology | 7 | 4.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazaridou, D.C.; Michailidis, A.; Trigkas, M. Exploring Environmental and Economic Costs and Benefits of a Forest-Based Circular Economy: A Literature Review. Forests 2021, 12, 436. https://doi.org/10.3390/f12040436
Lazaridou DC, Michailidis A, Trigkas M. Exploring Environmental and Economic Costs and Benefits of a Forest-Based Circular Economy: A Literature Review. Forests. 2021; 12(4):436. https://doi.org/10.3390/f12040436
Chicago/Turabian StyleLazaridou, Dimitra C., Anastasios Michailidis, and Marios Trigkas. 2021. "Exploring Environmental and Economic Costs and Benefits of a Forest-Based Circular Economy: A Literature Review" Forests 12, no. 4: 436. https://doi.org/10.3390/f12040436
APA StyleLazaridou, D. C., Michailidis, A., & Trigkas, M. (2021). Exploring Environmental and Economic Costs and Benefits of a Forest-Based Circular Economy: A Literature Review. Forests, 12(4), 436. https://doi.org/10.3390/f12040436