Effect of Soil Diversity on Forest Plant Species Abundance: A Case Study from Central-European Highlands
Abstract
:1. Introduction
2. Material and Methods
2.1. Investigated Area
2.2. Data
2.3. Statistical Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thom, D.; Rammer, W.; Dirnböck, T.; Müller, J.; Kobler, J.; Katzensteiner, K.; Helm, N.; Seidl, R. The impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscape. J. Appl. Ecol. 2017, 54, 28–38. [Google Scholar] [CrossRef]
- Vávrová, E.; Cudlín, O.; Vavříček, D.; Cudlín, P. Ground vegetation dynamics in mountain spruce (Picea abies/L./Karsten) forests recovering after air pollution stress impact. Plant Ecol. 2009, 205, 305–321. [Google Scholar] [CrossRef]
- Pimm, S.L. Biodiversity: Climate Change or Habitat Loss—Which Will Kill More Species? Curr. Biol. 2008, 18, R117–R119. [Google Scholar] [CrossRef] [Green Version]
- De La Riva, E.G.; Lloret, F.; Pérez-Ramos, I.M.; Marañón, T.; Saura-Mas, S.; Díaz-Delgado, R.; Villar, R. The importance of functional diversity in the stability of Mediterranean shrubland communities after the impact of extreme climatic events. J. Plant Ecol. 2017, 10, 281–293. [Google Scholar] [CrossRef] [Green Version]
- Kier, G.; Mutke, J.; Dinerstein, E.; Ricketts, T.H.; Küper, W.; Kreft, H.; Barthlott, W. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 2005, 32, 1107–1116. [Google Scholar] [CrossRef]
- Whittaker, R.J.; Willis, K.J.; Field, R. Scale and species richness: Towards a general hierarchical theory of species diversity. J. Biogeogr. 2001, 28, 453–470. [Google Scholar] [CrossRef] [Green Version]
- Cox, C.B. The biogeographic regions reconsidered. J. Biogeogr. 2001, 28, 511–523. [Google Scholar]
- Carnaval, A.C.; Moritz, C. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J. Biogeogr. 2008, 35, 1187–1201. [Google Scholar] [CrossRef]
- Zeng, C.; Yang, L.; Zhu, A.-X.; Rossiter, D.G.; Liu, J.; Liu, J.; Qin, C.; Wang, D. Mapping soil organic matter concentration at different scales using a mixed geographically weighted regression method. Geoderma 2016, 281, 69–82. [Google Scholar] [CrossRef]
- Barthlott, W.; Biedinger, N.; Braun, G.; Feig, F.; Kier, G.; Mutke, J. Terminological and methodological aspects of the mapping and analysis of global biodiversity. Acta Bot. Fenn. 1999, 162, 103–110. [Google Scholar]
- Weigelt, P.; Steinbauer, M.J.; Cabral, J.S.; Kreft, H. Late Quaternary climate change shapes island biodiversity. Nature 2016, 532, 99–102. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Qian, H.; Song, J.-S.; Krestov, P.; Guo, Q.; Wu, Z.; Shen, X.; Guo, X. Large-scale phytogeographical patterns in East Asia in relation to latitudinal and climatic gradients. J. Biogeogr. 2003, 30, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Hisano, M.; Searle, E.B.; Chen, H.Y.H. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 2018, 93, 439–456. [Google Scholar] [CrossRef]
- Loreau, M. Linking biodiversity and ecosystems: Towards a unifying ecological theory. Philos. Trans. R. Soc. B 2010, 365, 49–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooper, D.U.; Chapin, F.S., III; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of biodiversity on ecosystem functioning: A concensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Yachi, S.; Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. USA 1999, 96, 1463–1468. [Google Scholar] [CrossRef] [Green Version]
- Loreau, M.; de Mazancourt, C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett. 2013, 16, 106–115. [Google Scholar] [CrossRef]
- Chapin, F.S., III; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E.; et al. Consequences of changing biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef]
- Loreau, M. Ecosystem development explained by competition within and between material cycles. Proc. R. Soc. Lond. B 1998, 265, 33–38. [Google Scholar] [CrossRef]
- Augusto, L.; Ranger, J.; Binkley, D.; Rothe, A. Impact of several common tree species of European temperate forests on soil fertility. Ann. For. Sci. 2002, 59, 233–253. [Google Scholar] [CrossRef] [Green Version]
- Dempster, M.; Dunlop, P.; Scheib, A.; Cooper, M. Principal component analysis of the geochemistry of soil developed on till in Northern Ireland. J. Maps 2013, 9, 373–389. [Google Scholar] [CrossRef] [Green Version]
- Solomou, A.D.; Sfougaris, A. Predicting Woody Plant Diversity as Key Component of Ecosystems: A Case Study in Central Greece. Int. J. Agric. Environ. Inf. Syst. 2019, 10, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, A.M.D.; Outhwaite, C.L.; Dalin, C.; Newbold, T. A review of the interactions between biodiversity, agriculture, climate change, and international trade: Research and policy priorities. One Earth 2021, 4, 88–101. [Google Scholar] [CrossRef]
- Proutsos, N.; Solomou, A.; Karetsos, G.; Tsagari, K.; Mantakas, G.; Kaoukis, K.; Bourletsikas, A.; Lyrintzis, G. The Ecological Status of Juniperus foetidissima Forest Stands in the Mt. Oiti-Natura 2000 Site in Greece. Sustainability 2021, 13, 3544. [Google Scholar] [CrossRef]
- Giam, X. Global biodiversity loss from tropical deforestation. Proc. Natl. Acad. Sci. USA 2017, 114, 5775–5777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plexida, S.; Solomou, A.; Poirazidis, K.; Sfougaris, A. Factors affecting biodiversity in agrosylvopastoral ecosystems with in the Mediterranean Basin: A systematic review. J. Arid Environ. 2018, 151, 125–133. [Google Scholar] [CrossRef]
- Ibañez, J.J.; De-Alba, S.; Bermúdez, F.F.; García-Álvarez, A. Pedodiversity concepts and tools. Catena 1995, 24, 215–232. [Google Scholar] [CrossRef]
- Guo, Y.; Gong, P.; Amundson, R. Pedodiversity in the United States of America. Geoderma 1995, 117, 99–115. [Google Scholar] [CrossRef] [Green Version]
- Bohn, F.J.; Huth, A. The importance of forest structure to biodiversity–productivity relationships. R. Soc. Open Sci. 2017, 4, 160521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukac, M. Soil biodiversity and environmental change in European forests. Cent. Eur. For. J. 2017, 63, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Schröter, D.; Cramer, W.; Leemans, R.; Prentice, I.C.; Araújo, M.B.; Arnell, N.W.; Bondeau, A.; Bugmann, H.; Carter, T.R.; Gracia, C.A.; et al. Ecosystem Service Supply and Vulnerability to Global Change in Europe. Science 2005, 310, 1333–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Chichester, UK, 2002. [Google Scholar]
- Chytrý, M. Vegetation of the Czech Republic: Diversity, ecology, history and dynamics. Preslia 2012, 84, 427–504. [Google Scholar]
- Neuhäuslová, Z.; Blažková, D.; Grulich, V.; Husová, M.; Chytrý, M.; Jeník, J.; Jirásek, J.; Kolbek, J.; Kropáč, Z.; Ložek, V.; et al. Map of Potential Natural Vegetation of the Czech Republic; Academia: Prague, Czech Republic, 1998. [Google Scholar]
- Zouhar, V. Dřevinná skladba. In Oblastní Plány Rozvoje Lesů 2; ÚHÚL Brandýs nad Labem, Česká lesnická společnost, Ministerstvo zemědělství České Republiky: Praha, Czech Republic, 2018; pp. 20–22. [Google Scholar]
- Céza, V.; Čermáková, E.; Kochová, T.; Mertl, J.; Pokorný, J.; Přech, J.; Rollerová, M.; Vlčková, V. Zpráva o Životním Prostředí České Republiky 2018; CENIA: Praha, Czech Republic, 2019. [Google Scholar]
- Culek, M. Biogeographical provinces, subprovinces and bioregions of the Czech Republic. J. Landsc. Ecol. 2013, 6, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Divíšek, J.; Chytrý, M.; Grulich, V.; Poláková, L. Landscape classification of the Czech Republic based on the distribution of natural habitats. Preslia 2014, 86, 209–231. [Google Scholar]
- Bošeľa, M.; Redmond, J.; Kučera, M.; Marim, G.; Adolt, R.; Gschwantner, T.; Petráš, R.; Korhonen, K.; Kuliešis, A.; Kulbokas, G.; et al. Stem quality assessment in European National Forest Inventories: An opportunity for harmonised reporting? Ann. For. Sci. 2016, 73, 635–648. [Google Scholar] [CrossRef] [Green Version]
- Vlčková, V.; Buček, A.; Machar, I.; Kiliánová, H. The Application of Geobiocoenological Landscape Typology in the Modelling of Climate Change Implications. J. Landsc. Ecol. 2015, 8, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Kubalíková, L. Geomorphological heritage and Geoconservation in the Czech Republic. In Landscapes and Landforms of the Czech Republic; Pánek, T., Hradecký, J., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 387–398. [Google Scholar]
- Simon, J. Management strategies on territories with special status of protection in the Czech Republic. J. For. Sci. 2004, 50, 510–513. [Google Scholar] [CrossRef] [Green Version]
- Cudlín, P.; Pechanec, V.; Štěrbová, L.; Cudlín, O.; Purkyt, J. Integrated approach to the mitigation of biodiversity lost in Central Europe. In Ecological Integrity and Land Use. Sovereignty, Governance, Displacements and Land Grabs; Westra, L., Bosselmann, K., Zabrano, V., Eds.; Nova Science Publishers: New York, NY, USA, 2019; pp. 75–86. [Google Scholar]
- Adolt, R.; Ene, L.; Fejfar, J.; Kohn, I.; Morneau, F.; Pesty, B.; Reidel, T.; Lanz, A. Scalable pan-European model-assisted biomass estimation. In A Century of National Forest Inventories—Informing Past, Present and Future Decisions; Tomppo, E., McRoberts, R., Fernandez, C.A., Alberdi, I., Breidenbach, J., Eds.; Norsk Institutt for Bioøkonomi Ås: Ås, Norway, 2019; Available online: https://nibio.pameldingssystem.no/auto/1/NFI-100-abstract/220_abstract-oslo-2019_v2.pdf (accessed on 22 May 2019).
- Affleck, D.L.R.; Gregoire, T.G.; Valentine, H.T. Edge effects in line intersect sampling with segmented transects. J. Agric. Biol. Environ. Stat. 2005, 10, 460–477. [Google Scholar] [CrossRef]
- Schad, P.; van Huysteen, C.; Michéli, E.; Vargas, R. (Eds.) World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014. [Google Scholar]
- Gauger, T.; Anshelm, F.; Schuster, H.; Erisman, J.W.; Vermeulen, A.T.; Draaijers, G.P.J.; Bleeker, A.; Nagel, H.D. Mapping of Ecosystem Specific Long-Term Trends in Deposition Loads and Concentrations of Air Pollutants in Germany and Their Comparison with Critical Loads and Critical Levels; Umweltbundesamt: Berlin, Germany, 2002. [Google Scholar]
- Samec, P.; Zapletal, M.; Horáček, M. Forest transformation urgency for topsoil diversity optimization during environmental change. J. Landsc. Ecol. 2020, 13, 82–106. [Google Scholar]
- Frego, K.A. Bryophytes as potential indicators of forest integrity. For. Ecol. Manag. 2007, 242, 65–75. [Google Scholar] [CrossRef]
- Kubát, K.; Hrouda, L.; Chrtek, J., Jr.; Kaplan, Z.; Kirchner, J.; Štěpánek, J. (Eds.) Klíč ke Květeně České Republiky; Academia: Praha, Czech Republic, 2002. [Google Scholar]
- Gollini, I.; Lu, B.; Charlton, M.; Brundson, C.; Harris, P. GWmodel: An R Package for Exploring Spatial Heterogeneity using Geographically Weighted Models. J. Stat. Softw. 2015, 63, 1–52. [Google Scholar] [CrossRef] [Green Version]
- Finstad, K. Response Interpolation and Scale Sensitivity: Evidence against 5-Point Scales. J. Usability Stud. 2010, 5, 104–110. [Google Scholar]
- Pauli, H.; Gottfried, M.; Dullinger, S.; Abdaladze, O.; Akhalkatsi, M.; Alonso, J.L.B.; Coldea, G.; Dick, J.; Erchbamer, B.; Calzado, R.F.; et al. Recent Plant Diversity Changes on Europe’s Mountain Summits. Science 2012, 336, 353–355. [Google Scholar] [CrossRef] [Green Version]
- Gégout, J.-C.; Križová, E. Comparison of indicator values of forest understorey plant species in Western Carpathians (Slovakia) and Vosges Mountains (France). For. Ecol. Manag. 2003, 182, 1–11. [Google Scholar]
- Sporbert, M.; Keil, P.; Seidler, G.; Bruelheide, H.; Jandt, U.; Aćić, S.; Biurrun, I.; Campos, J.A.; Čarni, A.; Chytrý, M.; et al. Testing macroecological abundance patterns: The relationship between local abundance and range size, range position and climatic suitability among European vascular plants. J. Biogeogr. 2020, 47, 2210–2222. [Google Scholar] [CrossRef]
- Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 2005, 220, 242–258. [Google Scholar] [CrossRef]
- Cools, N.; Vesterdal, L.; De Vos, B.; Vanguelova, E.; Hansen, K. Tree species is the major factor explaining C:N ratios in European forest soils. For. Ecol. Manag. 2014, 311, 3–16. [Google Scholar] [CrossRef]
- Bakker, M.R.; Brunner, I.; Ashwood, F.; Bjarnadottir, B.; Bolger, T.; Børja, I.; Carnol, M.; Cudlín, P.; Dalsgaard, L.; Erktan, A.; et al. Belowground Biodiversity Relates Positively to Ecosystem Services of European Forests. Front. For. Glob. Chang. 2019, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Wurtzebach, Z.; Schultz, C. Measuring Ecological Integrity: History, Practical Applications, and Research Opportunities. BioScience 2016, 66, 446–457. [Google Scholar] [CrossRef] [Green Version]
Diversity | Average ± SD | Min–Max | H′ ± SD | H′min–H′max | E | A |
---|---|---|---|---|---|---|
BGMB (km2) | 22.13 ± 43.49 | 0.00–506.91 | 2.56 ± 0.88 | 0.01–4.17 | 0.34 | −0.72 |
FSG (n) | 25 ± 43 | 1–409 | 2.50 ± 0.76 | 0.00–4.41 | 0.41 | −0.26 |
FSC (1) | - | - | 10.45 ± 2.40 | 0.00–15.31 | 2.81 | −0.80 |
pH [−logc(H+)] | 4.84 ± 0.86 | 4.11–7.57 | 1.07 ± 0.46 | 0.00–1.92 | −0.12 | −0.44 |
CEC (cmol+/kg) | 12.08 ± 12.27 | 2.70–421.10 | 1.38 ± 0.42 | 0.00–2.12 | 2.04 | −1.15 |
BS (%) | 33.71 ± 33.73 | 7.40–99.95 | 1.66 ± 0.47 | 0.00–2.26 | 3.41 | −1.69 |
Corg (%) | 2.02 ± 3.92 | 0.29–9.91 | 1.29 ± 0.53 | 0.00–2.36 | −0.60 | −0.24 |
Nt (%) | 0.13 ± 0.16 | 0.03–0.32 | 1.41 ± 0.44 | 0.00–2.36 | 0.44 | −0.45 |
Al2O3 (g/kg) | 29.71 ± 17.98 | 8.35–81.07 | 0.53 ± 0.57 | 0.00–2.12 | 0.25 | 1.04 |
CaO (g/kg) | 3.08 ± 17.89 | 0.13–87.70 | 0.80 ± 0.57 | 0.00–2.00 | −0.89 | 0.28 |
MgO (g/kg) | 5.71 ± 7.52 | 0.92–17.80 | 1.18 ± 0.61 | 0.00–2.28 | −0.58 | −0.29 |
P2O5 (g/kg) | 0.75 ± 0.82 | 0.21–3.68 | 1.12 ± 0.40 | 0.00–2.25 | 0.93 | −0.28 |
Tree (%) | 44.17 ± 10.45 | 24.49–69.19 | 2.65 ± 0.71 | 1.14–4.06 | −0.55 | −0.22 |
Shrub (%) | 18.43 ± 9.90 | 1.17–57.90 | 3.32 ± 0.63 | 0.59–4.31 | 2.90 | −1.13 |
Herb (%) | 17.93 ± 7.41 | 4.69–37.61 | 4.54 ± 0.76 | 1.44–5.88 | 2.79 | −1.29 |
Moss (%) | 21.04 ± 15.24 | 1.75–67.00 | 1.70 ± 0.82 | 0.00–3.03 | −0.29 | −0.74 |
Plant (%) | 76.05 ± 28.35 | 47.75–100.00 | 12.20 ± 1.85 | 4.85–15.79 | 1.73 | −0.93 |
Component | Diversity | BGMB | FSG | FSC | pH | CEC | BS | Corg | Nt | Al2O3 | CaO | MgO | P2O5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Abiotic | BGMB | - | 0.29 | 0.18 | −0.02 | 0.36 | 0.40 | 0.06 | 0.13 | −0.24 | −0.05 | 0.05 | 0.40 |
FSG | - | - | 0.62 | 0.19 | 0.49 | 0.43 | 0.44 | 0.43 | 0.36 | −0.03 | 0.56 | 0.14 | |
Biotic | Tree | −0.18 | −0.16 | 0.15 | 0.38 | 0.08 | −0.12 | −0.04 | 0.06 | 0.08 | 0.51 | −0.13 | −0.17 |
Shrub | 0.37 | 0.19 | 0.44 | 0.51 | 0.34 | 0.38 | 0.04 | 0.22 | 0.03 | 0.41 | 0.09 | 0.19 | |
Herb | 0.48 | 0.09 | 0.27 | 0.33 | 0.27 | 0.31 | 0.08 | 0.22 | −0.18 | 0.30 | −0.09 | 0.19 | |
Moss | 0.59 | 0.31 | 0.15 | −0.08 | 0.21 | 0.43 | 0.05 | 0.03 | −0.02 | −0.34 | 0.25 | 0.32 | |
Plant | 0.52 | 0.18 | 0.38 | 0.42 | 0.35 | 0.40 | 0.05 | 0.20 | −0.04 | 0.31 | 0.05 | 0.22 |
X | Y | A | A0 | ϵ | w | AQ | AIC | R2 |
---|---|---|---|---|---|---|---|---|
BGMB | FSG | 0.22 ± 0.06 | 1.95 ± 0.19 | 0.02 ± 0.69 | 51.49 ± 3.95 | 0.36 | 228 | 0.11 ± 0.04 |
FSC | 0.55 ± 0.78 | 9.13 ± 2.22 | −0.06 ± 2.02 | 14.67 ± 2.46 | 0.08 | 467 | 0.28 ± 0.05 | |
TPD | 1.14 ± 0.73 | 9.38 ± 2.00 | 0.00 ± 1.20 | 9.23 ± 2.09 | 0.05 | 363 | 0.59 ± 0.19 | |
Soil group | FSC | 2.04 ± 0.05 | 5.18 ± 0.10 | −0.01 ± 1.87 | 72.38 ± 1.79 | 0.63 | 440 | 0.39 ± 0.01 |
TPD | 0.36 ± 0.86 | 11.10 ± 2.49 | 0.09 ± 1.14 | 6.31 ± 1.84 | 0.03 | 365 | 0.62 ± 0.18 | |
Soil chemistry | TPD | 0.34 ± 0.30 | 8.54 ± 3.70 | 0.02 ± 1.19 | 8.82 ± 1.97 | 0.04 | 364 | 0.59 ± 0.20 |
Formula | Atribute | BGMB | FSG | Tree | Shrub | Herb | Moss | Plant |
---|---|---|---|---|---|---|---|---|
Parameter | pH | −0.38 ± 0.21 | −0.23 ± 0.07 | 0.40 ± 0.28 | 0.40 ± 0.12 | 0.14 ± 0.19 | −0.19 ± 0.29 | 0.74 ± 0.37 |
CEC | 0.74 ± 0.11 | 0.37 ± 0.10 | −0.04 ± 0.27 | 0.17 ± 0.06 | 0.19 ± 0.10 | 0.38 ± 0.48 | 0.65 ± 0.11 | |
BS | 0.47 ± 0.07 | 0.43 ± 0.03 | −0.21 ± 0.18 | 0.22 ± 0.04 | 0.33 ± 0.12 | 0.57 ± 0.38 | 0.91 ± 0.25 | |
Corg | −0.22 ± 0.27 | 0.47 ± 0.10 | −0.09 ± 0.13 | −0.32 ± 0.02 | −0.20 ± 0.14 | 0.08 ± 0.45 | −0.54 ± 0.51 | |
Ntot | 0.17 ± 0.28 | 0.16 ± 0.11 | 0.04 ± 0.27 | 0.29 ± 0.09 | 0.26 ± 0.22 | −0.15 ± 0.41 | 0.42 ± 0.70 | |
Al2O3 | −0.05 ± 0.07 | 0.11 ± 0.08 | 0.18 ± 0.21 | −0.14 ± 0.05 | −0.33 ± 0.16 | −0.18 ± 0.28 | −0.47 ± 0.25 | |
CaO | −0.20 ± 0.04 | −0.05 ± 0.03 | 0.40 ± 0.08 | 0.15 ± 0.01 | 0.17 ± 0.03 | −0.54 ± 0.39 | 0.24 ± 0.19 | |
MgO | 0.11 ± 0.15 | 0.42 ± 0.09 | −0.19 ± 0.13 | 0.06 ± 0.09 | −0.08 ± 0.24 | 0.16 ± 0.16 | −0.03 ± 0.40 | |
P2O5 | 0.32 ± 0.08 | −0.21 ± 0.12 | −0.24 ± 0.07 | 0.06 ± 0.07 | 0.05 ± 0.17 | 0.44 ± 0.28 | 0.28 ± 0.36 | |
0 | 1.20 ± 0.36 | 0.41 ± 0.11 | 2.78 ± 0.25 | 2.15 ± 0.10 | 3.58 ± 0.09 | 0.41 ± 0.36 | 8.96 ± 0.28 | |
ϵ | 0.00 ± 0.55 | 0.01 ± 0.42 | 0.00 ± 0.45 | −0.01 ± 0.47 | −0.02 ± 0.62 | −0.01 ± 0.47 | −0.04 ± 1.38 | |
Characteristics | w | 53.24 ± 3.74 | 47.38 ± 4.17 | 38.74 ± 4.23 | 62.91 ± 3.11 | 53.11 ± 3.77 | 37.66 ± 4.13 | 55.57 ± 3.53 |
AQ | 0.38 | 0.32 | 0.24 | 0.48 | 0.37 | 0.24 | 0.40 | |
AIC | 194 | 137 | 156 | 158 | 220 | 165 | 389 | |
R2 | 0.58 ± 0.05 | 0.67 ± 0.02 | 0.57 ± 0.06 | 0.46 ± 0.06 | 0.42 ± 0.10 | 0.66 ± 0.08 | 0.45 ± 0.06 |
Geodiversity | R2 | F | p | SPF | Parameter |
---|---|---|---|---|---|
BGMB | 0.01 | 0.53 | 0.47 | 0.00031 | 0.444 |
Soil group | 0.01 | 1.33 | 0.25 | −0.00065 | 0.591 |
Soil chemistry | 0.00 | 0.02 | 0.89 | −0.00005 | 0.502 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samec, P.; Volánek, J.; Kučera, M.; Cudlín, P. Effect of Soil Diversity on Forest Plant Species Abundance: A Case Study from Central-European Highlands. Forests 2021, 12, 534. https://doi.org/10.3390/f12050534
Samec P, Volánek J, Kučera M, Cudlín P. Effect of Soil Diversity on Forest Plant Species Abundance: A Case Study from Central-European Highlands. Forests. 2021; 12(5):534. https://doi.org/10.3390/f12050534
Chicago/Turabian StyleSamec, Pavel, Jiří Volánek, Miloš Kučera, and Pavel Cudlín. 2021. "Effect of Soil Diversity on Forest Plant Species Abundance: A Case Study from Central-European Highlands" Forests 12, no. 5: 534. https://doi.org/10.3390/f12050534
APA StyleSamec, P., Volánek, J., Kučera, M., & Cudlín, P. (2021). Effect of Soil Diversity on Forest Plant Species Abundance: A Case Study from Central-European Highlands. Forests, 12(5), 534. https://doi.org/10.3390/f12050534